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We benchmark the accuracy of various trajectory-based non-adiabatic methods in simulating the polariton
relaxation dynamics under the collective coupling regime. The Holstein-Tavis-Cummings (HTC) Hamiltonian
is used to describe the hybrid light-matter system of N molecules coupled to a single cavity mode. We
apply various recently developed trajectory-based methods to simulate the population relaxation dynamics
by initially exciting the upper polariton state, and benchmark the results against populations computed from
exact quantum dynamical propagation using the hierarchical equations of motion (HEOM) approach. In
these benchmarks, we have systematically varied the number of molecules N , light-matter detunings, and
the light-matter coupling strengths. Our results demonstrate that the symmetrical quasi-classical method
with γ correction (γ-SQC) and spin-mapping linearized semi-classical (spin-LSC) approaches yield more
accurate polariton population dynamics than traditional mixed quantum-classical (MQC) methods such as
the Ehrenfest and surface hopping techniques.

I. INTRODUCTION

Molecular cavity quantum electrodynamics (QED) sys-
tems, which contain strongly interacting molecules with
quantized cavity photonic modes, are emerging quan-
tum systems that exhibit new phenomena in chem-
istry and physics.1–7 Previous theoretical studies have
shown that these hybrid light-matter states, so-called
polaritons,2,3,8–11, can modify chemical reactions via
light-matter coupling.2,3,9,12–14 In addition, recent ex-
periments have shown that molecular polaritons have
drastically different transport properties compared to
their bare excitonic components, paving the way for
efficient and scalable optoelectronic devices based on
polaritons15–20. The light-matter hybridization also par-
tially reduces the influence of phonons on the polariton,
because the photon component does not couple to the
phonon. This leads to the polaron decoupling effect21,22

and the well-known absorption lineshape narrowing.23,24

In particular, coupling N molecular exciton states with
a quantized cavity mode produces two polariton states,
commonly referred to as the upper polariton (UP) and
lower polariton (LP) states, each containing light and
matter excitation characters. There are N − 1 remaining
dark exciton states that do not mix with photonic states
or have a significant transition dipole from the ground
state, and are thus optically dark. Upon photoexcitation
to UP, the system will quickly relax to the dark states
and slowly transition to the lower polaritons.25,26 Po-
lariton relaxation dynamics play a crucial role in under-
standing the polariton photoluminescence spectra,26–29

a)Electronic mail: depinghu@bnu.edu.cn
b)Electronic mail: pengfei.huo@rochester.edu

understanding the relative lifetime of the polariton and
dark states,25,27 interpret the sub-average behavior of
motional narrowing,30 and the transition rates between
the polaritons and dark states,25 as well as the corre-
sponding decoherence process.31

To study polariton relaxation dynamics, one
often uses the Holstein-Tavis-Cummings (HTC)
Hamiltonian5,6,21,26,32,33 to model the interplay be-
tween the exciton, photon, and phonon degrees of
freedom (DOF). The HTC model couples many
molecules, which are described as two-level systems, to
both a cavity photon mode and phonon modes that
are added phenomenologically to the molecules. In the
strong-coupling regime, it has been shown that the HTC
Hamiltonian captures the underlying physics of the
cavity-QED systems6,7,26,34–38, such as the polariton’s
relaxation dynamics6,25,26,37 and the polaron decoupling
effect between excitons and their corresponding phonon
modes23,39.

A popular approach to simulate the non-adiabatic dy-
namics of systems with coupled electronic-nuclear de-
gree of freedom is the mixed quantum-classical (MQC)
methods40–43, which has been widely used to model po-
lariton relaxation dynamics.5,6,33 Two commonly used
MQC methods are the mean-field Ehrenfest method
(MFE)44 and the surface hopping method.45,46 These
methods treat the electronic DOFs quantum mechan-
ically while propagating the nuclear DOFs classically
(while often sampling the initial condition through quan-
tum Wigner distributions). To simulate the dynam-
ics of molecular polaritons, one extends the MQC ap-
proaches to treat both the electronic and photonic DOFs
quantum mechanically while propagating the nuclear
DOFs classically4–7,47–53. However, the mixed quantum-
classical approximations built into these methods have
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been known to produce unphysical results, such as the
breakdown of detailed balance (that is, the long-term
populations) for the MFE method54 and the introduction
of artificial electronic coherence or incorrect chemical ki-
netics for the surface hopping method55.
To address the shortcomings of the MQC approaches

above, other non-adiabatic dynamics methods have been
developed in the diabatic representation, several of
which are based on mapping formalism.56,57 For ex-
ample, methods such as the partially linearized den-
sity matrix (PLDM) method58,59, symmetrical quasi-
classical (SQC) method60,61, and the quantum-classical
Liouville equation (QCLE) method62,63 are developed
based on the Meyer-Miller-Stock-Thoss (MMST) map-
ping formalism56,64,65. Further, methods such as the
spin-mapped linearized semi-classical (spin-LSC)66–68

and the spin-mapped partially linearized density ma-
trix (spin-PLDM) method69,70 are derived from the re-
cently developed generalized spin-mapping formalism,
which uses the generalized spin-mapping relations to de-
scribe the electronic DOF67 while using a linearized ap-
proximation for the nuclear DOF71,72. These methods
have shown significant improvements in numerical results
over existing MQC approaches, such as in characteriz-
ing the population dynamics of spin-boson models66 ex-
citon dynamics in light-harvesting complexes,67 ab initio
on-the-fly simulations,73–76 as well as exciton-polariton
quantum dynamics52 and vibrational polariton quantum
dynamics.43 Based on these previous results, these non-
adiabatic dynamical methods based on mapping formal-
ism should also outperform MQC methods in simulat-
ing the polariton relaxation dynamics, although there
have been limited investigations into the efficacy of these
methods for polaritonic systems.23,26,27,43,77,78

In this paper, we use the Ehrenfest method, global
flux surface-hopping (GFSH) method79, SQC method
with corrected zero-point energy (γ-SQC)80 and spin-
LSC method,67,81 to simulate the population dynamics
of a system that is initially excited into the upper polari-
ton state. These methods are benchmarked with the nu-
merically exact hierarchical equations of motion (HEOM)
approach82–84. Numerical results are presented for HTC
models with different physical parameters, such as the
number of molecules that are coupled to the cavity mode,
the single-molecule coupling strength, the light-matter
detunings, and various parameters for the phonon bath.
Our results provide valuable information on the accuracy
of the commonly used MQC methods and the recently
developed mapping approaches for simulating polariton
relaxation dynamics in the HTC model.

II. THEORY AND METHODS

A. The Holstein-Tavis-Cummings QED Hamiltonian

We use the Holstein-Tavis-Cummings (HTC)
Hamiltonian1,22,26,85,86 to model the polariton dy-

namics in the collective coupling regime. The total
Hamiltonian can be separated into a component describ-
ing the system term ĤS, a component describing the

bath term ĥB, and a system-bath interaction term ĤSB.
This separation of terms is expressed as

ĤHTC = ĤS + ĥB + ĤSB. (1)

In the remainder of the paper, we use units ℏ = 1 for
convenience.
The system term ĤS consists of the excitonic DOF of

the molecules and the photonic DOF of the cavity and is
further expressed as31,87

ĤS = ĤM + Ĥcav + ĤLM, (2)

where ĤM describes the matter contribution due to the
excitonic DOF, Ĥcav describes the cavity contribution,
and ĤLM is the light-matter interaction term. The mat-
ter contribution ĤM to the Hamiltonian describes N
identical and non-interacting molecules. In this descrip-
tion, each molecule is modeled as an effective two-level
system that represents the molecule’s ground and excited
states. The resulting Hamiltonian is written as

ĤM = (ωa + λ)

N∑
n=1

σ̂†
nσ̂n, (3)

where σ̂†
n = |en⟩⟨gn| and σ̂n = |gn⟩⟨en| creates and an-

nilates an excitation on the nth molecule, respectively,
with |gn⟩ and |en⟩ as the ground and excited states for
molecule n, and ωa is the excitation energy between the
molecule’s ground and excited state. The corresponding
reorganization energy λ is due to exciton-phonon cou-
pling, which is described in the system-bath interaction
ĤSB (see Eq. 7).

The quantized radiation mode of the cavity is ex-
pressed as

Ĥcav = ωc(â
†â+

1

2
), (4)

where ωc is the photon frequency of the cavity mode, and
â† and â are the creation and annihilation operators for
a photon in the cavity mode. Here, we consider only a
single cavity mode interacting with the molecules.
For the light-matter interaction term ĤLM, we as-

sume the long-wavelength approximation, that is, each
molecule is coupled to the quantized radiation field with
the same light-matter coupling strength gc. Assuming
the rotating wave approximation, ĤLM is expressed as

ĤLM = gc

Na∑
n=1

(
â†σ̂−

n + âσ̂+
n

)
(5)

The bath Hamiltonian ĥB in Eq. 1 describes the nu-
clear DOF, which we assume is a phonon environment
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Figure 1. The energy level diagrams of polariton states that are derived from the HTC Hamiltonian through hybridization of
light and matter states. We show the relative positions of the dark states with respect to the upper and lower polaritons for
three cases: a) ωc = ωa+λ (zero detuning or resonance), b) ωc < ωa+λ (negative detuning) c) ωc > ωa+λ (positive detuning).

that consists of a set of identical, non-interacting har-
monic oscillators:

ĥB =

N∑
n=1

∑
k

ωk(ν̂
†
k,nν̂k,n +

1

2
), (6)

where ωk are the phonon frequencies, and ν̂†k,n and ν̂k,n
are the kth phonon mode’s creation and annihilation op-
erators for the nth molecule that satisfy the bosonic com-
mutation relations. The last term ĤSB in Eq. 1. char-
acterizes the system-bath interaction, which we assume
takes the linear form,

ĤSB =
∑
n

σ̂+
n σ̂

−
n

∑
k

ck

(
ν̂†k,n + ν̂k,n

)
, (7)

where ck denotes the coupling strength between the nth

molecule and the kth phonon mode of its associated bath.
To describe the interactions between the system and
bath, we use the spectral density function88,89

J(ω) = π
∑
k

c2kδ (ω − ωk) . (8)

We use a Drude-Lorentz form for the spectral density in
our investigations,

J(ω) =
2λωνω

ω2
ν + ω2

(9)

where ων is the bath characteristic frequency, and the
reorganization energy λ can be reformulated in terms of
the coupling strength and the phonon frequencies as

λ =
1

π

∫ +∞

0

dω
J(ω)

ω
=

∑
k

c2k
ωk

. (10)

Cavity loss is not considered in this work becasue our aim
is to benchmark the influence of phonons on polariton

relaxation dynamics. The influence of cavity loss can be
easily modeled with Lindblad dynamics,53,90 or through
stochastic Lindblad approaches23,90

B. Polariton States

We analyze ĤS in the single excitation subspace. The
diabatic states (without considering the phonons) in the
single excitation subspace are the photon-dressed ground
state |G, 1⟩ and the single-molecule excited state |En, 0⟩.
|G, 1⟩ is defined as the state where all the molecules are
in the ground state and one photon is in the cavity

|G, 1⟩ = |g0⟩ ⊗ ...|gn⟩...⊗ |gN−1⟩ ⊗ |1⟩, (11)

and |En, 0⟩ is defined as the states where all the molecules
are in the ground state except for the nth molecule

|En, 0⟩ = |g0⟩ ⊗ ...|en⟩...⊗ |gN−1⟩ ⊗ |0⟩ (12)

In the single excitation manifold, we also have a collective
“bright” excitonic state

|B, 0⟩ = 1√
Na

Na−1∑
n=0

|En, 0⟩ (13)

that couples to the |G, 1⟩ state through ĤLM. This cou-
pling leads to the polariton states |±⟩, which are eigen-

states of ĤS, expressed as follows87

|+⟩ = cos θ|B, 0⟩+ sin θ |G, 1⟩ (14a)

|−⟩ = − sin θ|B, 0⟩+ cos θ |G, 1⟩ , (14b)

where the mixing angle is

θ =
1

2
tan−1

[
2
√
Nagc

ωc − ωa − λ

]
, (15)
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and the corresponding energies ω± of the |±⟩ states are

ω± =
ωa + λ+ ωc

2
±
√
Nag2c +

(ωa + λ− ωc)2

4
. (16)

Furthermore, there exists Na − 1 dark states |Di⟩ that
are given by1

|Dα⟩ =
N−1∑
n=1

Cn,α |En, 0⟩ , (17)

where the coefficients Cn,i satisfy

1√
N

N−1∑
n=1

Cn,α = ⟨B, 0|Dα, 0⟩ = 0. (18)

We note from Eq. 18 that since the dark states have
no overlap with the collective “bright” states, they do
not participate in the interaction with the cavity mode
that is mediated by ĤLM. Further, there is no optical
transition from |G, 0⟩ to |Dα⟩, hence it is optically dark.
The choice of dark state is not unique. For example, one
can express them as follows87,91

|Dα⟩ =
1√
N

N∑
n=1

exp(−2πi
nα

N
)|En, 0⟩, (19)

where α ∈ {1, · · · , N − 1}, which is fully delocalized
among all N exciton states. Other choices are possible
(see Eq. 8 in Ref. 92 for the Schur–Weyl basis).

The polariton states for the HTC model are outlined
in Fig. 1. In the absence of exciton-phonon couplings,
the N − 1 dark states are energetically degenerate and
have the same energies as the excitation energy of the
bare molecule plus the reorganization energy, as shown
in Fig. 1a. The upper and lower polaritons in res-
onance are also energetically separated from the dark
states by an amount

√
Ngc when the system is in res-

onance (ωc = ωa + λ). However, when there is light-
matter detuning (i.e., ωc ̸= ωa + λ), the dark states are
no longer separated in energy from the upper and lower
polaritons by the same amount. In particular, with nega-
tive light-matter detuning (ωc < ωa+λ), the dark states
are closer in energy to the upper polariton state as illus-
trated in Fig. 1b. On the other hand, with positive de-
tuning (ωc > ωa+λ), the dark states are closer in energy
to the lower polariton state as depicted in Fig. 1c. Thus,
the polariton relaxation dynamics, mediated by exciton-
phonon coupling in ĤSB, will be affected by the energetics
of the polariton and dark states due to different energy
alignments caused by the light-matter detuning.

Note that the polariton state defined in Eq. 14 and
the dark states in Eq. 17 are diabatic in nature, be-
cause there is no nuclear configuration dependence. In
this case, the exciton-phonon couplings ĤSB will cou-
ple these polariton states and make transitions among
them.25,31 On the other hand, one can also choose to
define ĤS + ĤSB as the polariton Hamiltonian, whose

eigenvector will be adiabatic polariton and dark states,
and both of their characters will parametrically depend
on the nuclear configuration.26 In this case, the phonon
fluctuation caused by ĤSB on polariton and dark states
will be counted as the adiabatic polariton energy fluc-
tuations, and the transitions among these adiabatic po-
lariton and dark states are caused by the nuclear kinetic
energy operators (as the derivative couplings). This is the
picture used in the theoretical simulations in Ref. 26 (see
Fig. 4 in that reference). Nevertheless, rigorous quantum
mechanical descriptions of the dynamics (for all DOFs)
will generate identical results in both pictures. Ehrenfest
dynamics, as well as the mean-field-like approach (such
as the mapping-based methods used in this work), are
representation-independent, and thus generate identical
results for both representations. The trajectory surface
hopping approach, on the other hand, is not representa-
tion independent, and often performs the best in the adi-
abatic representation, so the adiabatic polariton Hamil-
tonian Ĥpl = ĤS + ĤSB should be used in these surface
hopping simulations.
Below, we briefly introduce the trajectory-based quan-

tum dynamics approaches used in this work. Which we
treat

R̂k,n =

√
ℏ

2ωk
(ν̂†k,n + ν̂k,n)

P̂k,n = i

√
ℏωk

2
(ν̂†k,n − ν̂k,n)

inside the ĥB + ĤSB as the classical DOF, and we de-
scribe the polariton quantum subsystem in the diabatic
basis of {|G, 1⟩ , |En, 0⟩} for Ehrenfes dynamics, γ-SQC,
spin-LSC, and spin-PLDM approaches. For the surface
hopping method, the adiabatic polariton states and dark
states (see Ref. 26) are required, which are defined as the

eigenstates of Ĥpl = ĤS + ĤSB as follows

Ĥpl(R)|Ψ(R)⟩ = E(R)|Ψ(R)⟩.

A schematic illustration of the adiabatic polariton energy
(and dark energy) can be found in Fig. 4 in Ref. 26.
Note that for a large N in the single excitation subspace,
diagonalizing the above equation is the computational
bottleneck.

C. Non-adiabatic Mapping Dynamics Methods

In this section, we briefly discuss the mapping-based
quantum dynamics approaches used in this work. De-
tails of the standard Ehrenfest dynamics and surface
hopping approaches are provided in the Supplemental
Information. The common starting point of these map-
ping dynamics is the Meyer-Miller-Stock-Thoss (MMST)
formalism,56,64,65 which maps the discrete quantum DOF
(described as discrete states) onto continuous phase space
variables. A Hamiltonian in the diabatic representation
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{|a⟩} is expressed as

Ĥ =
1

2M
P2 + U0(R̂) (20)

+
∑
a

Vaa(R̂)|a⟩⟨a|+ 1

2

∑
b̸=a

Vab(R̂)|a⟩⟨b| (21)

where R̂ and P̂ are the position and momenta for the nu-
clear DOFs respectively, U0(R̂) is the state-independent

part of the Hamiltonian, and Vab(R̂) = ⟨a|V̂ |b⟩. For the
HTC model, we have

ĥB =
1

2M
P2 + U0(R̂) (22a)

ĤS + ĤSB = V̂ (22b)

The MMST formalism maps the quantum Hamiltonian in
Eq. 20 on to the following classical MMST Hamiltonian

Hm =
1

2M
P2+

1

2

∑
ab

Vab(R) (papb + qaqb − 2γbδab)+U0(R)

(23)
where 2γb is viewed as a parameter57 which spec-
ifies the zero-point energy (ZPE) of the mapping
oscillators.57,66,67,93 In principle, 2γb is state-specific and
trajectory-specific.80 The MMST mapping Hamiltonian
has been historically justified by Stock and Thoss using
the raising and lowering operators of a harmonic oscilla-
tor as the mapping operator.64,65 Recently, a more natu-
ral mapping has been derived using the SU(N) Lie group
theory or so-called generalized spin mapping approach,81

which is connected to the MMST mapping approach.67,81

Classical trajectories are generated based on Hamil-
ton’s equations of motion (EOM) for Hm

q̇b = ∂Hm/∂pb; ṗa = −∂Hm/∂qa (24a)

Ṙ = ∂Hm/∂P; Ṗ = −∂Hm/∂R = F, (24b)

with the nuclear force expressed as

F = −1

2

∑
ab

∇Uab(R)
(
papb + qaqb − 2γbδab

)
−∇U0(R).

(25)
The above classical EOM for both mapping variables

(for the quantum subsystem) and the classical DOFs are
propagated using the velocity Verlet algorithm.

The γ-SQC approach. The γ-SQC approach sam-
ples the initial electronic condition and estimates the
population based on the action-angle variables, {εb, θb},
expressed as follows

εb =
1

2

(
p2b + q2b

)
; θb = − tan−1

(
pb
qb

)
. (26)

They are inversely related to the mapping variables as
follows

qb =
√
2εb cos(θb); pb = −

√
2εb sin(θb), (27)

where εb is a positive-definite action variable that is di-
rectly proportional to the mapping variables’ radius in
action space.80

The SQC approach calculates the population of elec-
tronic state |b⟩, which will be evaluated as57

ρbb(t) = TrR

[
ρ̂(0)eiĤt/ℏ|b⟩⟨b|e−iĤt/ℏ

]
(28)

≈
∫

dτρW(P,R)Wa(ε(0))Wb(ε(t)),

where ρ̂(0) = ρ̂R ⊗ |a⟩⟨a| is the initial density opera-
tor, ρW(P,R) is the Wigner transform of ρ̂R operator
for the nuclear DOFs, ε = {ε1, ε2, ..., εN } is the positive-
definite action variable vector for N electronic states,80

Wa(ε) = δ(εa − (1 + γa))
∏

a̸=b δ(εb − γb) is the Wigner

transformed action variables,94 and dτ ≡ dP ·dR ·dε ·dθ.
For practical reasons, the delta functions above in Wa(ε)
are broadened using a distribution function (so-called
window function) that is used to bin the resulting elec-
tronic action variables in action-space.57 Here, we used
the triangle window80,94 which is expressed as

Wb(ε) = w1(εb)

N∏
b′ ̸=b

w0(εb, εb′), (29)

where the window functions are defined as

w1(ε) =

{
(2− ε)2−N , 1 < ε < 2

0, else
(30)

and

w0(ε, ε
′) =

{
1, ε′ < 2− ε

0, else,
(31)

and trajectories are assigned to state b at time t if εb ≥ 1
and εb′ < 1 for all b′ ̸= b.
The time-dependent population of the state |b⟩ is com-

puted with Eq. 28. Using the window function estimator,
the total population is no longer properly normalized due
to the fraction of trajectories that are outside of any win-
dow region at any given time.60 Thus, the total popula-
tion must be normalized60 with the following procedure

ρbb(t)/

N∑
a=1

ρaa(t) → ρbb(t). (32)

In the γ-SQC approach,80 it was proposed that the
mapping ZPE should be chosen in such a way as to con-
strain the initial force to be composed purely of the ini-
tially occupied state.80 The basic logic of γ-SQC is to
choose a γb for each state |b⟩ in every given individual
trajectory, such that the initial population is forced to
respect the initial electronic excitation focused onto a
single excited state. If the initial electronic state is |a⟩,
then

γb = εb − δba, (33)
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or equivalently,

δba = εb − γb, (34)

where the {εb} are uniformly sampled inside the window
function (Eq. 29), and following that the γb are chosen
to satisfy Eq. 34.

These γb will be explicitly used in the EOMs in Eqs. 24-
25, and in particular, the nuclear forces become

F = −1

2

∑
ab

∇Vab(R)
(
papb + qaqb − 2γbδba

)
, (35)

ensuring the initial forces (at t = 0) are simply F =
−∇Vaa(R). Previously, without any adjustments to
γb, the chosen values for γb were only dependent on
the windowing function itself, i.e., γb = 0.366 for the
square windows and γb = 1/3 for the triangle win-
dows. With the above γ-correction method,80 each in-
dividual trajectory will have its own state-specific γb for
state |b⟩ that is completely independent of the choice
of window function. This method has been proven to
provide very accurate non-adiabatic dynamics in model
photo-dissociation problems (coupled Morse potential),
and has outperformed fewest-switches surface hopping
(FSSH) with decoherence correction in ab initio on-the-
fly simulations.74,75

The Spin-LSC method. For the spin-LSC
approach,66,67 one chooses a universal ZPE parameter
2γb = Γ for all states and trajectories. The spin-LSC
population dynamics is calculated as

ρbb(t) = TrR

[
ρ̂R ⊗ |a⟩⟨a|eiĤt/ℏ|b⟩⟨b|e−iĤt/ℏ

]
(36)

≈
∫

dτρW(P,R)
[
|a⟩⟨a|

]
s
(0) ·

[
|b⟩⟨b|

]
s̄
(t),

where the population estimators are obtained from the
Stratonovich-Weyl transformed electronic projection op-
erators, with the expressions as follows67[

|a⟩⟨a|
]
s
=

1

2
(q2a + p2a − Γ) (37a)

[
|b⟩⟨b|

]
s̄
=

N + 1

2(1 + NΓ
2 )2

· (q2b + p2b)−
1− Γ

2

1 + NΓ
2

. (37b)

The parameter Γ is related to the radius of the general-
ized Bloch sphere rs through Γ = 2

N (rs−1), where s and
s̄ are complementary indices in the Stratonovich-Weyl
transform. Among the vast parameter space, one of the
best-performing choices66,67 is when rs = rs̄ =

√
N + 1,

which is referred to as s = W, leading to a ZPE parame-
ter

Γ =
2

N
(
√
N + 1− 1), (38)

as well as the identical expression of [|a⟩⟨a|]s and
[|b⟩⟨b|]s̄ in Eq. 37. We further use the focused initial
condition66,67 that replaces the sampling of the mapping

variables in the dτ integral of Eq. 36 with specific values
of the mapping variables, such that 1

2 (q
2
a+p2a−Γ) = 1 for

initially occupied state |a⟩ and 1
2 (q

2
b +p2b −Γ) = 0 for the

initially unoccupied states |b⟩. The angle variables {θb}
(Eq. 26) are randomly sampled67 in the range of [0, 2π).
More computational details for the γ-SQC and spin-LSC
are provided in section III B.

III. COMPUTATIONAL DETAILS

Initial Conditions. We describe the details of the
HTC models used in our benchmark and the correspond-
ing initial condition for the dynamics. The initial condi-
tion for all our simulations is assumed to be separable,
and hence, the density matrix ρ̂ is given by

ρ̂ = ρ̂S ⊗ e−βĥB

ZB
, (39)

where ρ̂S is the system reduced density operator, β =

1/kBT is the inverse temperature, and ZB = Tr[e−βĥB ]
is the bare-bath partition function. In Eq. 39, we as-
sume that the bath is in thermal equilibrium so that the
bath reduced density matrix operator takes the form of
a Boltzmann distribution. Also, the system is initially
placed in the upper polariton state |Ψ(0)⟩ = |+⟩ and
the associated system reduced density operator is given
by ρ̂S = |+⟩ ⟨+|. This initial state is chosen so that we
can observe the relaxation from the upper polariton state
to the dark states and lower polariton state because of
exciton-phonon coupling.
Model Parameters. We construct six HTC bench-

mark models to investigate the performance of the
trajectory-based non-adiabatic methods to simulate po-
lariton relaxation dynamics. These models scan a range
of the following physical parameters: (1) number of
molecules (Na), (2) light-matter detuning (ωc − ωa − λ),
(3) single-molecule coupling strength (gc), (4) reorgani-
zation energy (λ), (5) bath cutoff frequency (ων), and (6)
temperature (β = 1/kBT ).
In each model, we vary one parameter and fix the other

five parameters. The values of these parameters for all
six models are provided in Table 1. We note that by
changing the parameters in models 1 to 3, the polari-
ton relaxation dynamics are affected through the system
contribution to the Hamiltonian, while in changing the
parameters in models 4 to 6, the dynamics are affected
through the system-bath interaction term. Furthermore,
the results for models 1 to 4 are presented in the main
text below, while models 5 and 6 are provided in Sec. III
of the Supplementary Material.

A. Details of the HEOM Simulations

For the model we considered, the molecular phonon
bath is described by the Drude-Lorentz spectral density,
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Table 1. The parameters assigned in different models used in this work. The results from model 1 to model 4 are presented in
the main text, while the results of model 5 and model 6 are presented in the supplementary information.

Model Na ωc − ωa − λ (meV) gc (meV) λ (meV) ων (meV) β (a.u)
1 5/10/15 0 68.1 30 24.8 1000
2 10 -200/0/200 68.1 30 24.8 1000
3 10 0 40.8/68.1/96.1 30 24.8 1000
4 10 0 68.1 10/30/50 24.8 1000
5 10 0 68.1 30 12.4/24.8/37.2 1000
6 10 0 68.1 30 24.8 250/1000/4000

so that its time-correlation function (TCF) decomposi-
tion is computed using the Padé spectral decomposition
(PSD) scheme.95–97 Here, we use the [N−1/N ] scheme97

with 2 low-temperature correction terms. For HEOM
propagation, we use the fourth order Runge-Kutta (RK-
4) integrator with a time step of 0.005 fs, together with
the on-the-fly filtering algorithm98 with an error toler-
ance of 1 × 10−6. The number of tiers is set as 20. The
convergence of the calculation is carefully checked with
the above parameters. Also, a factorizable initial full-
density matrix is applied, which is the same as Eq. 39.
Details about the HEOM method are provided in Sec. I
of the Supplementary Material.

B. Details of the Trajectory-based Dynamics

To perform the γ-SQC dynamics, we need to sam-
ple the initial condition for the quantum subsystem.
In this work, we sample the action-angle variables
{εb, θb} and subsequently transform them to the map-
ping variables{pb, qb} using Eq. 27. The action variables
{εb} are sampled according to the window function in
Eq. 29, and the angle variables {θb} are randomly sam-
pled from [0, 2π). The triangle window is used in this
work, although the square window generates similar re-
sults.

For the spin-LSC dynamics, we use the focused ini-
tial conditions67 as described in section IIC, where the
action variable εa is set to be 1+Γ/2 for the initially oc-
cupied state and Γ/2 for the initially unoccupied state,
with Γ expressed in Eq. 38. The angle variables {θb}
are randomly generated between [0, 2π) as in the γ-SQC
method. The canonical mapping variables are obtained
from Eq. 27.

The initial nuclear distribution of all trajectory-based
simulations (Ehrenfest, GFSH, γ-SQC, and spin-LSC)
are generated by sampling the Wigner density

[⟨R|χ⟩]w =
1

ℏπ
e−M(P 2+ω2

0(R−R0)
2)/ω0ℏ, (40)

which is the Wigner transformation of the nuclear wave-
function χ(R) = ⟨R|χ⟩ in the initial state. Here, R and P
are the nuclear coordinate and momentum, respectively.
The nuclear time step used in all the trajectory-based
simulations is dt = 3.0 a.u., with 200 equally spaced time
steps for the mapping variables’ integration during each

nuclear time step. The equation of motion in Eq. 24-
Eq. 25 are integrated using a second-order symplectic
integrator for the MMST variables99,100. The popula-
tion dynamics using all trajectory-based methods were
averaged over 10000 trajectories.

IV. RESULTS

In Fig. 2, we present the population dynamics of the
polariton states and the dark states for model 1, which
varies the number of molecules Na from 5 molecules to
15 molecules while keeping the other parameters fixed.
The trajectory-based methods are depicted using open
circles and are compared to numerically exact results
(HEOM) depicted using solid lines. We can see that
in Figs. 2a-2l, all trajectory-based methods are able to
semi-quantitatively account for the relaxation of the up-
per polariton (UP) state into the dark states (DS), and
eventually to the lower polariton (LP) state. However,
both mixed quantum-classical (MQC) methods, Ehren-
fest, and global flux surface hopping (GFSH) predict a
slower relaxation rate and a larger steady-state popula-
tion (see Fig. 2a-Fig. 2f) for the upper polariton state
compared to the HEOM results. Focusing on the transi-
tions into and out of the dark states, we observe that both
MQC methods are only able to qualitatively capture the
increase in the total dark state populations. After the
dark state populations have reached a maximum value,
both MQC methods predict little changes in the dark
state population, which is in contrast to numerically ex-
act results from the HEOM simulation. As a result, the
increase in lower polariton population calculated from
both MQC methods, which comes through the transi-
tions from the dark states, is smaller than that predicted
by the HEOM method.
On the other hand, the mapping-based methods (γ-

SQC and spin-LSC) show much more accurate relax-
ation dynamics from the upper polariton state, com-
pared to the HEOM results, and the steady-state pop-
ulation for the upper polariton is also similar to the ex-
act HEOM dynamics (Fis. 2g-2l). We also observe that
the transitions into the dark states are better captured
with these mapping-based methods, although the γ-SQC
method (Fig. 2g-Fig. 2i) slightly outperforms the spin-
LSC method (Fig. 2j-Fig. 2l) in predicting the longer
time transitions from the dark states to the lower polari-
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Figure 2. Population dynamics of the upper polaritonic state (UP), lower polaritonic state (LP), and sum over all dark states
(DS) for the HTC model computed with different MQC dynamics methods, including Ehrenfest, GFSH, γ-SQC, and spin-LSC.
Different numbers of molecules (Na = 5/10/15) are used in the dynamics simulations. The cavity frequency is ωc = 2.0 eV,
the light-matter coupling strength is gc = 68.1 meV, the reorganization energy is λ = 30 meV, the temperature is β = 1000
a.u. and the cutoff frequency during the initial sampling process is ων=24.8 meV. See Model 1 in Table 1.

ton states. Further, the population of the lower polariton
state computed from the mapping-based method is also
comparable to the populations predicted from the HEOM
method.

Fig. 3 presents the population dynamics of the polari-
ton states and the dark states for model 2, where the
light-matter detuning ωc−ωa−λ varies from negative to
positive values, while keeping the other parameters fixed.
In Fig. 3, all trajectory-based methods are able to quali-
tatively account for the relaxation of the upper polariton
state into the other states. However, both MQC meth-
ods (Ehrenfest and GFSH) predict a slower relaxation
rate and a larger steady-state population for the upper
polariton state compared to the HEOM results. Look-
ing at the transitions into and out of the dark states, we
observe that both MQC methods are only able to quali-

tatively capture the increase in the total dark state pop-
ulations due to relaxation from the upper polariton state
in the short time regime (up to 0.1 ps). One exception to
this observation about the dark states is given in Fig. 3d,
where the GFSH method predicts comparable dark state
populations compared to the HEOM method for nega-
tive detuning (ωc − ωa − λ = −200 meV). For the lower
polariton populations, both MQC methods consistently
underestimate the populations compared to the HEOM
method.

The mapping-based methods (γ-SQC and spin-LSC),
again, show more accurate results that are comparable to
the HEOM method, and the steady-state population for
the upper polariton is also similar to the HEOM method.
We also observe that the transitions into the dark states
are better captured with the mapping-based methods,
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Figure 3. Population dynamics of the upper polaritonic state (UP), lower polaritonic state (LP), and sum over all dark states
(DS) for the HTC model computed with different MQC dynamics methods, including Ehrenfest, GFSH, γ-SQC, and spin-LSC.
Different cavity frequencies (ωc = 1.8, 2.0, 2.2 eV) are used in the dynamics simulations. The number of molecules is Na = 10,
the light-matter coupling strength is gc = 68.1 meV, and the reorganization energy is λ = 30 meV. See Model 2 in Table 1 for
details.

although the γ-SQC method outperforms the spin-LSC
method again in predicting the longer time transitions
from the dark states to the lower polariton states. Fur-
ther, we note that the population of the lower polariton
state computed via the γ-SQC method is comparable
to the populations predicted from the HEOM method,
while the population of the lower polariton state com-
puted from the spin-LSC method is consistently lower
than that from the HEOM method.

Fig. 4 presents the population dynamics of the polari-
ton states and the dark states for model 3, which varies
the single-molecule coupling strength gc from 40.8 meV
to 96.1 meV, while keeping the other parameters fixed.
Again, all trajectory-based methods are able to qualita-
tively account for the relaxation of the upper polariton
state into the other states. However, both MQC methods

(MFE and GFSH) predict a slower relaxation rate and
a larger steady-state population for the upper polariton
state compared to the HEOM results. Looking at the
transitions into and out of the dark states, we observe
that both MQC methods are only able to qualitatively
capture the increase in the total dark state populations.
After the dark state populations have reached a maxi-
mum value, both MQC methods predict little changes
in the dark state population, which is in contrast to nu-
merically exact results from the HEOM method. Conse-
quently, the lower polariton population calculated from
both MQC methods is consistently underestimated com-
pared to the HEOM method.

In contrast, the mapping-based methods (γ-SQC and
spin-LSC) show more accurate relaxation rates for the
upper polariton state compared to the HEOM method,
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Figure 4. Population dynamics of the upper polaritonic state (UP), lower polaritonic state (LP), and sum over all dark states
(DS) for the HTC model computed with different MQC dynamics methods, including Ehrenfest, GFSH, γ-SQC, and spin-LSC.
Different light-matter coupling strengths (gc = 40.8/68.1/96.1 meV) are used in the dynamics simulations. The number of
molecules is Na = 10, the cavity frequency is ωc = 2.0 eV, and the reorganization energy is λ = 30 meV. See Model 3 in Table 1
for details.

and the steady-state population for the upper polariton
is also similar to the HEOM method. We also observe
that the transitions into the dark states are better cap-
tured with the mapping-based methods, and the γ-SQC
method again outperforms the spin-LSC method in pre-
dicting the longer time transitions from the dark states
to the lower polariton states. For the population of the
lower polariton state, we note that the γ-SQC method
tends to overestimate the population compared to the
HEOM method, while the spin-LSC method tends to
underestimate the population compared to the HEOM
method.

In Figure 5, we present the population dynamics of
the polariton states and the dark states for model 4,
which varies the reorganization energy λ from 10 meV
to 50 meV while keeping the other parameters fixed. All

trajectory-based methods are able to qualitatively ac-
count for the relaxation of the upper polariton state into
the other states. However, both MQC methods (Ehren-
fest and GFSH) predict a slower relaxation rate and a
larger steady-state population for the upper polariton
state compared to the HEOM results. For λ = 10 meV
and λ = 30 meV (Fig. 5a, Fig. 5b, Fig. 5d and Fig. 5e),
both MQC methods predict little changes in the dark
state population after the dark state populations have
reached a maximum value, which is in contrast to nu-
merically exact results from the HEOM method. On
the other hand, for λ = 50 meV (Fig. 5c and Fig. 5f),
the MQC methods underestimate the populations of the
dark states as compared to the HEOM method. As a
result, the increase in lower polariton population calcu-
lated from both MQC methods, which comes through the
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Figure 5. Population dynamics of the upper polaritonic state (UP), lower polaritonic state (LP), and sum over all dark states
(DS) for the HTC model computed with different MQC dynamics methods, including Ehrenfest, GFSH, γ-SQC, and spin-
LSC. Different reorganization energy (λ = 10/30/50 meV) are used in the dynamics simulations. The number of molecules is
Na = 10, and the cavity frequency is ωc = 2.0 eV. See Model 4 in Table 1 for details.

transitions from the dark states, is always smaller than
that predicted by the HEOM method.

The mapping-based methods (γ-SQC and spin-LSC)
show more reliable relaxation rates for the upper po-
lariton state compared to the HEOM method and the
steady-state population for the upper polariton is also
similar to the HEOM method for λ = 10 meV and λ = 30
meV (Fig. 5g, Fig. 5h, Fig. 5j, and Fig. 5k). We also ob-
serve that the transitions into the dark states are better
captured with the mapping-based methods, and the γ-
SQC method outperforms the spin-LSC method in pre-
dicting the longer time transitions from the dark states
to the lower polariton states. Consequently, the popu-
lation of the lower polariton state computed from the
mapping-based method is also comparable to the popu-
lations predicted from the HEOM method.

Further benchmark results for model 5 and model 6 are

provided in the Supplemental Materials, with changing
bath characteristic frequency ων (Fig. S1 for model 5)
and temperature T (Fig. S2 for model 6). All methods
show qualitatively correct dynamics, and the mapping
methods are more accurate than the MQC approaches,
and γ-SQC slightly outperforms spin-LSC.

Finally, in Fig. 6, we present a further comparison of
the polariton relaxation dynamics computed using the
spin-PLDM approach69,70 for model 1. The theoretical
details of this approach can be found in Ref. 69. Simi-
lar to the original PLDM approach,58,59 spin-PLDM ex-
plicitly accounts for the forward and backward propaga-
tors of the quantum subsystem, using the forward and
backward mapping variables. One can see in Fig. 6 that
spin-PLDM provides more accurate results compared to
spin-LSC and achieves an accuracy at a similar level of γ-
SQC (see Fig. 2g-h). However, being a partially forward

https://doi.org/10.26434/chemrxiv-2024-t818f ORCID: https://orcid.org/0000-0002-8639-9299 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-t818f
https://orcid.org/0000-0002-8639-9299
https://creativecommons.org/licenses/by/4.0/


12

10 Molecules
sp

in
-L

SC
5 Molecules

(a) (b)

(c) (d)

LPUP DS
sp

in
-P

LD
M

Figure 6. Same as Fig. 1, by comparing results obtained from
spin-LSC and spin-PLDM.

and backward method, the computational cost of spin-
PLDM is significantly increased compared to the Ehren-
fest method and all linearized mapping approaches (γ-
SQC and spin-LSC).

V. CONCLUSIONS

In this paper, we provide several benchmark results
for various trajectory-based non-adiabatic simulations on
polariton relaxation dynamics. The non-adiabatic meth-
ods we use in our benchmark are well-known in the liter-
ature, such as MQC-based methods and the recently de-
veloped mapping-based methods (both γ-SQC and spin-
mapping representation). In particular, we showed that
the MQC-based methods (MFE and GFSH) are able to
qualitatively capture the initial relaxation dynamics of
the polaritonic system but are unable to accurately de-
scribe subsequent relaxation to the dark states and the
lower polariton states. The spin-mapping method that
we chose (spin-LSC) markedly improves on the MQC-
based methods in terms of simulating the relaxation dy-
namics of polaritons, although it is unable to capture
the correct rates of relaxation from the dark states to
the lower polariton state. In comparison with the other
three methods, we find that the γ-SQC method is able
to accurately capture all relevant relaxation dynamics of
the polariton system, including the transition from dark
state to lower polariton states at long time scales. Thus,
for the models investigated in this work, we see that the
γ-SQC method outperforms the other three methods to
describe the relevant polariton physics in the HTCmodel.
Despite this observation, more work remains to be done
to theoretically investigate the limitations of the other
trajectory-based methods and address their shortcomings
in terms of simulating the relevant dynamics for polari-
ton chemistry and physics. We further envision that our

benchmark results will provide useful information to the
emergent polariton chemistry and physics community by
showcasing the applicability of various trajectory-based
methods to analyze problems of interest, such as polari-
ton photochemical processes and polariton transport dy-
namics.
As we approach the large Na limit with Na ∼ 106,

which is considered the experimentally relevant regime,1

we note that one should take advantage of the well-
known mean-field solution101,102 or the recently pro-
posed CUT-E approach103,104 (for the zero-temperature
case and with a single high-frequency vibration mode
per molecule) that effectively only treats one or a few
molecules. We can also exploit the sparsity of the HTC
Hamiltonian24 to enable direct simulations of Na ∼ 106

molecules coupled to a single cavity mode in the single
excitation subspace with trajectory-based methods. One
could also explore using the relatively short memory ker-
nel time compared to the density matrix dynamics time
to facilitate the simulations.105,106 These directions re-
main to be explored in the future.
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