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Cavity exciton-polaritons exhibit ballistic transport and can achieve a distance of 100 µm in one
picosecond. This ballistic transport significantly enhances mobility compared to that of bare ex-
citons, which often move diffusively and become the bottleneck for energy conversion and transfer
devices. Despite being robustly reproduced in experiments and simulations, there is no comprehen-
sive microscopic theory addressing the group velocity of polariton transport, and its renormalization
due to phonon scattering while still preserving this ballistic behavior. In this work, we develop a
microscopic theory to describe the group velocity renormalization using a finite-temperature Green’s
function approach. Utilizing the generalized Holstein-Tavis-Cummings Hamiltonian, we analytically
derive an expression for the group velocity renormalization and find that it is caused by phonon-
mediated transitions from the lower polariton (LP) states to the dark states, then scattering from
dark states back to LP. The dark states do not have to be populated in this process, serving as
the virtual state for super-exchange (especially true for a large light-matter detuning). The the-
ory predicts that the magnitude of group velocity renormalization scales linearly with the phonon
bath reorganization energy under weak coupling conditions (perturbative regime for exciton-phonon
coupling) and also linearly depends on the temperature in the high-temperature regime. These pre-
dictions are numerically verified using quantum dynamics simulations, demonstrating quantitative
agreement. Our findings provide theoretical insights and a predictive analytical framework that
advance the understanding and design of cavity-modified semiconductors and molecular ensembles,
opening new avenues for engineered polaritonic devices.

Recent experiments [1–7] have shown that exciton
transport in semiconductors can be significantly en-
hanced by coupling these excitons to confined electro-
magnetic modes inside an optical cavity. By forming cav-
ity exciton-polaritons, the electronic excitation is capable
of traversing long distances ballistically at a high group
velocity vg. This novel strategy of cavity-enhanced bal-
listic exciton energy transport allows devices to bypass
the intrinsic bottleneck of diffusive transport, offering a
paradigm shift in fundamental energy science and de-
vice applications such as halide perovskite [8] and light-
emitting diode displays [9–11]. The high group veloc-
ity mainly arises from the large curvature of the disper-
sion curve of the polariton bands (compared to the pure-
matter band). Due to polariton-phonon interactions, ex-
periments [4] have shown a further reduction in the group
velocity (often referred to as group velocity renormaliza-
tion) when increasing the excitonic fraction of the polari-
ton, thus deviating from the derivative of the polariton
dispersion curve which equates to the upper limit of the
group velocity.

Recent progress in the theoretical understanding of
polariton transport [2, 12–19] have emerged through
numerical simulations [6, 18–20] and theoretical mod-
els [6, 13, 14], providing valuable insights into this com-
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plex phenomenon. In the framework of theoretical mod-
els, two prevailing hypotheses for vg renormalization have
been presented. One is the thermally activated scatter-
ing theory in Ref. 6, which posits that there will be a
quasi-equilibrium between the polariton band and the
dark exciton states. Under this theory, ballistic trans-
port occurs only during the period when the system is
in the polariton band (see the detail of the theory in the
Supplementary Information of Ref. 6). As such, vg is
reduced, and the extent of the renormalization depends
on the energy difference between the polariton band and
the dark excitons. A similar hypothesis is also proposed
in Ref. 3. The second hypothesis is the transient lo-
calization hypothesis proposed in Ref. [4], which arises
from the interpretation of trajectory results in the Ehren-
fest mixed-quantum-classical (MQC) simulations. Ac-
cording to this hypothesis, the polariton wavepacket pre-
dominantly exhibits ballistic coherent transport, but the
wavepacket becomes transiently localized due to phonon
coupling. This hypothesis explains the group velocity
renormalization and the ballistic transport concurrently
and can be examined from the trajectories obtained from
the mixed quantum-classical simulations directly. De-
spite these promising developments, there is no micro-
scopic theory, to the best of our knowledge, that quanti-
tatively describes vg-renormalization and shows how vg-
renormalization depends on exciton-phonon coupling (re-
organization energy λ), temperature T , exciton fraction
in the polariton, etc.

In this work, we develop a microscopic theory us-
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ing a field-theoretic approach to explain the polariton
vg-renormalization due to polariton-phonon interactions.
By utilizing the polariton Green’s functions, we derive
the modified band structure for polaritons, which results
in a renormalized polariton group velocity. Our theory
indicates that within the lower polariton branch, the sys-
tem manifests a phonon-mediated attractive interaction
between the polaritons, thus slowing down the band-like
transport. The theory predicts that the extent of mod-
ification scales linearly with the phonon bath reorgani-
zation energy λ, and similarly, displays a linear temper-
ature dependence in the high-temperature regime. We
also show that the theoretical predictions are in quanti-
tative agreement with numerical results based on MQC
simulations [19].

RESULTS AND DISCUSSIONS

Model System. We use the Generalized Holstein-
Tavis-Cummings (GHTC) Hamiltonian [21–24] to de-
scribe N excitons interacting with M cavity modes,
and N ≫ M in line with typical experimental con-
ditions [25]. The total Hamiltonian can be written in
the form of the system-bath model and is expressed as

Ĥ = ĤS + ĥB + ĤSB. The system Hamiltonian ĤS con-
sists of the excitonic degrees of freedom (DOF) and the
photonic DOF of the cavity. Each exciton is modeled as
an effective two-level system that consists of the ground
state |gn⟩ and excited state |en⟩ (for the nth exciton).
Without making the long-wavelength approximation [24],

ĤS is expressed as follows,

ĤS =ℏω0

N∑
n=1

σ̂†
nσ̂n +

M∑
k

ℏωkâ
†
kâk (1)

+
∑
k

N∑
n=1

ℏgk
[
â†kσ̂ne

−ik∥·xn + σ̂†
nâke

ik∥·xn

]
,

where σ̂†
n = |en⟩⟨gn| and σ̂n = |gn⟩⟨en| are the creation

and annihilation operators of the nth molecule’s exciton,
and ω0 is the excitation energy between the molecule’s

ground and excited state. Further, âk and â†k are the pho-
tonic field annihilation and creation operators for mode
k whose frequency is ωk.
For Fabry-Pérot (FP) cavities, the dispersion is

ωk(k∥) = c
√
k2⊥ + k2∥, (2)

where c is the speed of light in vacuum. When k∥ = 0, the
photon frequency is ωc ≡ ωk(k∥ = 0) = ck⊥. The second
line of Eq. 1 represents light-matter interaction, where
gk = gc

√
(ωk/ωc) cos θ is the k-dependent light-matter

coupling strength [4], and tan θ = k∥/k⊥ is the incident
angle. Further, xn is the position of the nth exciton. We
consider the cavity modes inside the same simulation box
as the excitons, with total size NL along the k∥ direction
(L = xn − xn−1).

| |

⊥

LP

DS

phonon 
mediated
exchange

FIG. 1. Schematics of the GHTC model and band
structure. (a) Schematics of the model setup. Inside an
optical cavity, the separated molecules collectively interact
with many cavity modes. (b) Polariton band structure, where
the matter fraction is shown in terms of colorbar. The dashed
lines are the bare photon (red) and matter (silver) dispersions,
respectively. The phonon-mediated exchange effect between
the lower polariton (LP) and the dark states (DS) manifold
is also indicated, which is the main cause of polariton group
velocity renormalization.

As such, k∥ has discrete (but quasi-continuous) val-

ues of k∥ = 2π
NLk, where the mode index is k ∈

[−M−1
2 , ...0, ...M−1

2 ]. Diagonalizing ĤS in the singly ex-
cited subspace leads to 2M polariton states |±k⟩, with
eigen-energies

ϵ±k = ℏω±k =
ℏ
2
(ωk + ω0)±

ℏ
2

√
(ωk − ω0)2 + 4Ng2k,

(3)

where + and − denotes the upper polariton (UP) and
lower polariton (LP) branches, respectively. In addition,
there are N −M dark states |Dk⟩ with energies ℏωDk =
ℏω0, which do not mix with photonic states and they
form the dark polariton branch.
Under the polariton representation, the system Hamil-

tonian in Eq. 1 is expressed as ĤS =
∑

µ,k ℏωµkP̂
†
µ,kP̂µ,k,

where P̂ †
µ,k, P̂µ,k are the polariton creation and annihila-

tion operators for polariton state k on polariton band µ,
respectively, and the band label µ ∈ {+,−,D}. Specifi-
cally,

P̂ †
+,k = cosΘkB̂

†
k + sinΘkâ

†
k (4a)

P̂ †
−,k = − sinΘkB̂

†
k + cosΘkâ

†
k, (4b)

where B̂†
k = (1/

√
N)
∑N

n=1 e
−ik∥·xn σ̂†

n creates the collec-
tive bright excitons, and

Θk =
1

2
arctan

(
2
√
Ngk

ωk − ω0

)
∈ [0,

π

2
) (5)

is the mixing angle. Details on the derivation in the po-
lariton representation as well as the expressions of the
polariton operators are provided in Supplementary Note
1. We present a schematic illustration of the model sys-
tem above, as well as the polariton band structure, in
Fig. 1. Without coupling to phonons, the polariton ex-
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hibits band-like transport characterized by the group ve-
locity

vg,±(k∥) = dω±k/dk∥, (6)

where the k∥-dependence of ω±k is carried by ωk via
Eq. 2.

The bath Hamiltonian ĥB describes the nuclear DOF,
which we assume is a phonon environment that con-
sists of a set of non-interacting harmonic oscillators,

ĥB =
∑N

n=1

∑
α ℏωαb̂

†
α,nb̂α,n, where b̂α,n, b̂

†
α,n are the

αth bosonic bath phonon annihilation and creation op-
erators in the nth molecule with phonon frequency ωα.
Furthermore, ĤSB describes the exciton-phonon inter-

action ĤSB =
∑N

n=1 σ̂
†
nσ̂n ⊗

∑
α cα(b̂α,n + b̂†α,n), where

cα is the exciton-phonon coupling strength. We assume
the coupling strength is identical for all excitons and cα
is therefore independent of the label n. Based on the
Caldeira-Leggett model [26, 27], the baths as well as their
interactions with the system are described by the spectral
density

J(ω) =
π

ℏ
∑
α

c2αδ(ω − ωα), (7)

and λ = (1/π)
∫ +∞
0

dω J(ω)/ω =
∑

α c
2
α/ωα is the reor-

ganization energy.
We further introduce the Fourier transform of the bath

phonon operators b̂α,k = (1/
√
N)
∑N

n=1 e
ik∥·xn b̂α,n. Us-

ing these transforms, the bath Hamiltonian is expressed

as ĥB =
∑

k

∑
α ℏωαb̂

†
α,k b̂α,k, and the polariton-phonon

interaction Hamiltonian is given by

ĤSB =
∑

µ,k,ν,k′

ζµk·ζνk′ P̂ †
µ,kP̂ν,k′

∑
α

cα√
N

(b̂α,k−k′+b̂†α,k′−k),

(8)
where the band labels µ, ν ∈ {+,−,D}, and ζµk is a
state-dependent coefficient that characterizes the matter
fraction of the polariton state, with ζ+k = cosΘk and
ζ−k = sinΘk. The ζ+k and ζ−k are commonly referred
to as the Hopfield coefficients [22, 28, 29], and we note
that ζDk = 1. These polariton-phonon interactions will
modify the polariton band structure, and will, in turn, af-
fect the polariton transport properties such as the group
velocity in Eq. 6.

Theory. We derive the expression for vg-
renormalization using the equilibrium Green’s functions
at finite temperature. We restrict our discussions on po-
lariton transport in the weak exciton-phonon coupling
regime and the band-like transport regime [4, 6]. The
single-particle Green’s function of the polaritons at finite
temperature is expressed as follows [30],

Gµ,k(t) ≡ −iθ(t)⟨P̂µ,k(t)P̂
†
µ,k(0)⟩, (9)

where θ(t) is the Heaviside step function, the time-

dependence of the operators read as P̂µ,k(t) =

e
i
ℏ ĤtP̂µ,k(0)e

− i
ℏ Ĥt, and ⟨Â⟩ ≡ Tr[Âe−βĤ ]/Tr[e−βĤ ]

denotes the thermal average under finite tempera-
ture β ≡ 1/(kBT ), where kB is the Boltzmann con-
stant. Similarly, one defines the Green’s function of the

phonons as Dq(t) ≡ −i
∑

α(c
2
α/N) · ⟨θ(t)b̂α,q(t)b̂†α,q(0) +

θ(−t)b̂†α,−q(t)b̂α,−q(0)⟩. The Green’s function in Eq. 9
can be determined by the self-consistent Dyson equation
in the time domain as [30](
iℏ
∂

∂t
− ϵµk

)
Gµ,k(t)−

∫ t

0

dτ Σµ,k(t− τ)Gµ,k(τ) = δ(t),

(10)

where Σµ,k(t) is the self-energy, and ϵµk = ℏωµk is the
bare polariton energy. Eq. 10 is recast in the frequency
domain as

G−1
µ,k(ω) = ℏ(ω − ωµk + iη)− Σµ,k(ω), (11)

where Gµ,k(ω) is the Fourier transform of Gµ,k(t), and
we take η → 0+. To obtain the polariton band renor-
malization, we further define the renormalized polariton
energies Ẽµk = Eµk + iΓµk and plug it into Eq. 11, ar-
riving at the expression [31]

Eµk = ℏωµk +Re[Σµ,k(Ẽµk/ℏ)], (12a)

Γµk = Im[Σµk(Ẽµk/ℏ)], (12b)

which has to be solved self-consistently for Eµk and Γµk.
Consequently, Eµk is the renormalized polariton band,
and the renormalized polariton group velocity is obtained
via ṽg,±(k∥) = (1/ℏ)dE±k/dk∥, which leads to

ṽg,±(k∥) = vg,±(k∥) +
1

ℏ
d

dk∥
Re[Σ±,k(Ẽ±k/ℏ)]. (13)

The second term in the right-hand side of Eq. 13 char-
acterizes the modification of the polariton group veloc-
ity due to polariton-phonon interaction. We hypothesize
that this term is the main cause of the renormalization
of vg [4, 19].
In most cases, Eq. 12 cannot be solved exactly and

approximations are needed to obtain the self-energy in
a closed form. Here, we derive the leading contribu-
tion to polariton band renormalization using the stan-
dard tools of diagrammatic perturbation theory. The
first-order self-energy is expressed as [30, 32, 33]

Σ
(1)
µ,k(t) = iζ2µk

∑
ν,k′

ζ2νk′ ·D(0)
k−k′(t)G

(0)
ν,k′(t), (14)

where G
(0)
±,k(t) = −iθ(t)e−iω±kt and G

(0)
D,k(t) =

−iθ(t)e−iω0t are the non-interacting Green functions of
the polaritons, and the low-temperature limit is taken be-

cause ϵµk ≫ kBT . Further, D
(0)
k−k′(t) is the free phonon

propagator under finite temperature, and is expressed as

D(0)
q (t) = −i

∑
α

2c2α
N

[(1 + nα)e
−iωα|t| + nαe

iωα|t|], (15)
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where D
(0)
q (t) is independent of q (see right-hand side of

Eq. 14), nα = 1/(eβℏωα−1) is the Bose-Einstein distribu-
tion function, and the factor of 2 results from the degen-
eracy of the bath modes such that ωα,q = ωα,−q = ωα.
Eq. 14 is the Fan-Migdal self-energy [31], and when sub-
stituted in Eq. 13 leads to the following expression for
the modified polariton bands

E
(2)
µk = ℏωµk + ζ2µk ·

∑
ν,k′

∑
α

ζ2νk′ ·
2c2α
N

·Ξµk,νk′(ωα), (16)

where Ξµk,νk′(ωα) is the real part of the polarizability
and is given by

Ξµk,νk′(ωα) (17)

= Re
[ 1 + nα
ωµk − ωνk′ − ωα + iη

+
nα

ωµk − ωνk′ + ωα + iη

]
.

A detailed derivation of Eq. 17 is provided in Supplemen-
tary Note 2. For continuous spectral density functions,
the summation over the phonon modes α in Eq. 16 can
be written as an integral in terms of J(ω) (see Supple-
mentary Note 3). We note that the band modification
can also be obtained directly from the total Hamiltonian
using Rayleigh-Schrödinger perturbation theory [31], by

treating ĤSB as perturbative interactions that cause 2nd
order energy corrections (that scatter |−, k⟩ to dark
states then scatter back). This derivation is provided
in Supplementary Note 2D, with the results identical to
Eq. 16 (with η = 0).

In this work, we focus on the LP’s vg renormaliza-
tion, which is dominated by scattering to the dark ex-
citon states (a total of N − M of them), as opposed
to scattering to the M LP and M UP states, because
N − M ≫ 2M. Thus, one can explicitly perform the
summation over k′ that only includes the dark exciton
contributions, with

∑
k′ f(ωνk′) ≈ (N − M)f(ω0), and

the N −M factor will cancel with 1/N in Eq. 17 under
the large N limit. This cancellation also indicates that in
simulations, as long as one can keep N −M/N → 1, one
should expect the same converged results, and the de-
tailed choice of N or M does not matter that much (as-
suming sufficient resolution of the polariton wavepacket
in the spatial and k-space).
With the above considerations, the renormalized LP

group velocity becomes

ṽg,− = vg,− +
d

dk∥

[
|Ck|2

∑
α

2c2α · Ξ−k,0(ωα)

]
, (18)

where the Hopfield coefficient |Ck|2 is expressed as

|Ck|2 = sin2 Θk =
1

2

[
1 +

ωk − ω0√
(ωk − ω0)2 + 4Ng2k

]
,

which characterizes the matter fraction of the LP. Fur-
ther, Ξ−k,0(ωα) only considers the dark exciton contri-
bution, and is expressed as

Ξ−k,0(ωα) =
nα · (ωα −∆ω−k)

(ωα −∆ω−k)2 + η2
− 1 + nα
ωα +∆ω−k

, (19)

where ∆ω−k = ω0 − ω−k > 0 is the energy gap between
the dark exciton states and the LP band at k∥ = 2π

NLk.
Eq. 18 provides an analytic expression of the LP group
velocity based on the current theory. It predicts that the
magnitude of the vg renormalization will depend linearly
on λ [through c2α], and also predicts that vg is sensitive
to Ck and temperature [through nα]. Further taking the
η → 0 limit of Eq. 19, one can analytically express Eq. 18
as

∆vg,− ≡ ṽg,− − vg,− (20)

= − d

dk∥

[
|Ck|2

∑
α

2c2αωα
∆ω−k · (2nα + 1)− ωα

∆ω2
−k − ω2

α

]
.

In most experiments, the LP initial excitation is in a
region ∆ω−k ≫ ωα, thus Ξ−k,0(ωα) is negative. For a
broad range of phonon frequencies, the high-frequency
phonon makes a positive contribution to Ξ−k,0(ωα), but
the overall results should still be dominated by the low-
frequency phonons, making Ξ−k,0(ωα) negative. Note
that Eq. 18 is only valid when dark excitons dominate the
sum in Eq. 16. Nevertheless, one is able to derive simpler
analytic answers from Eq. 16 or Eq. 18 under different
regimes of spectral densities J(ω) or temperatures.
Mechanistic Picture. We want to comment on the

mechanistic picture suggested by Eqs. 20 and 16. The LP
group velocity renormalization occurs mainly due to the
presence of the dark states as a virtual scattering state.
The transition from LP to all dark states, and scatter-
ing back to the LP (|−, k⟩ → |D⟩ → |−, k⟩) leads to
the reduction of the group velocity, which can be under-
stood as the perturbative energy correction up to second
order. Indeed, the overall scaling of ∆vg,− ∝ 1/∆ω−k.
This scaling means that even with large light matter de-
tunings, such that the dark states are never appreciably
populated from the LP, these dark states still act like
virtual states, such that their perturbative presence will
lead to energy correction of LP and hence vg renormaliza-
tion. In this sense, we can classify the physical picture
predicted by Eq. 20 as the super-exchange mechanism,
where the dark exciton states act like virtual states to
the super-exchange population with LP. For small light-
matter detuning (such as in Ref. 3), the LP might be able
to transfer the population to the dark states. For large
light-matter detuning, dark states will only be virtually
populated and thus will not be detected spectroscopi-
cally, as experimentally observed under resonant excita-
tion of the LP in Ref. 4. We also note that the mechanism
is also akin to the Raman scattering process, which is evi-
denced by the expression of Ξµk,νk′(ωα) in Eq. 17. In fact,
Eq. 16 is the Raman-type polarizability in the frequency
domain, which is the well-known Kramers-Heisenberg-
Dirac (KHD) expression [34–37], but now with tempera-

ture dependence (because the interaction is ĤSB, which
is temperature dependent, and not the dipole interaction
with the field in the original KHD expression). Supple-

mentary Note 2D clearly shows how the ĤSB term me-
diates the transition from LP to dark states and back to
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LP bands. As such, the vg-renormalization can also be
described as a phonon-mediated Raman-type scattering
process, which is a non-resonant process. A schematic
illustration is provided in Fig. 1b.

Numerical Results. To quantitatively examine the
accuracy of the above theory (Eq. 16, or the correspond-
ing ṽg,−), we perform quantum dynamics simulations
for the GHTC model Hamiltonian using the Ehrenfest
method [19], and verify various scaling relations and pre-
dictions made by the theory. For the system Hamilto-
nian, we chose the exciton energy ℏω0 = 1.96 eV, the
cavity frequency ℏωc = 1.90 eV, and the collective light-
matter coupling strength

√
Ngc = 120 meV. Details of

the models and computations are provided in Supple-
mentary Note 4, with a brief summary provided in the
Methods section.

Fig. 2a presents the modified polariton band structure
with different λ. One observes that the modification of
vg increases as λ and the matter fraction increases. For
the LP branch, the second term in Eq. 16 is negative,
which effectively provides an attractive interaction be-
tween polaritons (mediated by phonons) and decreases
the LP energy. Similarly, the energy increases for the UP
branch. Since ζ2µk is the matter fraction of the polariton
branch, it is straightforward to see that as k∥ increases,

ζ2−k increases with larger matter fraction, thus providing
more modifications to the LP band. The modified polari-
ton band structure consequently leads to polariton group
velocity renormalization.

Fig. 2b presents the LP group velocity at different en-
ergies (see Fig. 2a) and for different λ, where the the-
oretical results using Eq. 16 are compared to quantum
dynamics simulations (open circles). One sees that as
λ increases, the magnitude of the group velocity renor-
malization increases (from the blue curve to the green
curve), further deviating from the derivative of the LP
band, vg (black solid curve). Further, as the LP energy
increases, the matter character of the LP state |C2

k | also
increases, which further reduces the group velocity. For
all cases, the theory agrees very well with the numer-
ical simulations for small λ (< 12 meV). However, for
larger λ, the polariton-phonon interaction enters the non-
perturbative regime, and the first-order self-energy level
theory in Eq. 16 becomes inadequate. As a result, the
theory gradually deviates from numerical simulations, as
expected. Nevertheless, the theory describes the overall
semi-quantitative trend of the data from the simulation.

Fig. 2c presents the scaling relation of the LP group
velocity ṽg,− (c.f. Eq. 18) as a function of λ, which char-
acterizes the modification to the LP group velocity by the
polariton-phonon interaction. Importantly, the theory in
Eq. 18 predicts that this renormalization magnitude is
proportional to c2α and thus |∆vg,−| = |ṽg,− − vg,−| ∝ λ.
Fig. 2c presents ṽg,− versus λ at different LP energies.
We observe that ṽg,− scales linearly with λ, and the slope
increases as the matter fraction increases. It is clear from
Eq. 16 that the polariton band structure (or group veloc-
ity) modification is proportional to λ due to its quadratic

dependence on cα. The results obtained from quantum
dynamics simulations agree quite well with the theory,
especially for cases with small λ and matter fractions.
As λ and matter fraction increase, the Ehrenfest results
gradually deviate from the theory and show a nonlinear
dependence on λ, due to non-perturbative effects; see the
ϵ−k = 1.84 eV (shallow green) curve for example. Nev-
ertheless, the semi-quantitative trend is always captured
by the theory, and we stress that there are no free param-
eters in the current theory. Furthermore, our quantum
dynamics simulation is based on the Ehrenfest MQC ap-
proximation which may lead to inaccurate results when
λ is large. Future efforts are needed to evaluate vg in the
large λ regime using more accurate quantum dynamics
approaches.
Fig. 2d presents the temperature dependence of the po-

lariton group velocity renormalization. Fig. 2d presents
ṽg,− versus T at LP energy ϵ−,k = 1.86 eV and λ = 6
meV. From a theoretical standpoint, the temperature de-
pendence is mainly carried by the Bose-Einstein distribu-
tion function in Eq. 16 which is nonlinear in T . In partic-
ular, under the high-temperature limit (ℏωα ≪ kBT for
all ωα), the Bose-Einstein distribution function can be
approximated as nα ≈ kBT/(ℏωα) ∝ T . As a result, the
modification of the polariton band structure (or group
velocity) is proportional to T . At temperatures near 300
K, the parameters we used satisfy the high-temperature
limit, thus ∆vg,− scales linearly with T . In the Ehrenfest
dynamics simulations, the nuclear quantum effect comes
from the Wigner distribution of the nuclear thermal den-
sity only, which does not give accurate results in the
very low-temperature regime. Considering this, we place
greater confidence in the analytic theory, which should
be accurate under the low λ and T → 0 limits because of
the perturbative treatment. Nevertheless, both the cur-
rent theory (solid green line) and the numerical simula-
tion agree reasonably well across all temperature regimes.
Overall, the theory and simulations predict that vg,− de-
creases as T increases. This is because when T increases,
the phonon fluctuations cause transitions from the LP
band to the dark exciton states, thus reducing the group
velocity. We also want to emphasize that there is no free
parameter in current theory to predict the temperature
dependence.
Note that a phenomenological expression has previ-

ously been proposed based on the thermally activated
scattering theory (TAST) [6], due to scattering from |−k⟩
to the dark states, resulting in the following expression
for the group velocity renormalization

ṽg,− =
vg,−

1 +G · e−βℏ∆ω−k
, (21)

where G is a free parameter. See Supplementary Note
5, as well as Supplementary Information S3 in Ref. 6
for further details. The TAST is based on the idea that
transport depends on the proportion of time the system
spends in the LP band relative to the dark states, result-
ing in a temperature-dependent modification of vg that
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FIG. 2. Polariton band structure modification and group velocity renormalization due to polariton-phonon
interaction. (a) Modified polariton band structure under different λ. (b) Group velocity of the LP branch ṽg,− under
different λ. (c) Scaling relation of the LP group velocity ṽg,− with λ. (d) Temperature-dependence of the LP group velocity
ṽg,− at LP energy ϵ−k = 1.86 eV and λ = 6 meV. Theoretical results using Eq. 16 (solid lines) are compared to Ehrenfest
dynamics simulations (open circles).

is sensitive to the energy gap ∆ω−k. Although the TAST
makes intuitive sense (and aligns with findings from our
microscopic theory), we found that Eq. 21 does not give
the correct temperature dependence when G is treated as
a temperature-independent parameter. In Fig. 2, the re-
sult from TAST is plotted as the red dashed curve, with
a fitting parameter G = 3.0 to reproduce the correct
value of ṽg,− at T = 300 K. One sees that it does not
give the correct T -dependence across a broad range of
temperatures unless one further chooses a T -dependent
G parameter. The reason TAST fails to reproduce an
accurate T -dependence is because the expression from
TAST scales as 1/(1 + e−βℏ∆ω−k), whereas the micro-
scopic theory in Eq. 18 posits that the temperature de-
pendence is nα ≈ e−βℏωα under the low-temperature
limit when ℏωα ≫ kBT , and nα ≈ kBT/(ℏωα) under
the high-temperature limit when ℏωα ≪ kBT . Addition-
ally, TAST assumes that the transition between the LP
band and dark exciton states follows Boltzmann statis-
tics, whereas, in our current theory, the phonons obey
the Bose-Einstein statistics, which mediate the (virtual)
transitions between the LP band and the dark states.
Our microscopic theory also predicts that ∆vg,− should
depend on ∆ω−k, but this dependence (in Eq. 18) is not
in the Boltzmann factor.

CONCLUSIONS

We developed a microscopic theory that successfully
explains the renormalization of polariton group veloc-
ity due to polariton-phonon interactions. We analyze
a theoretical model based on the GHTC Hamiltonian,
which comprises of N identical copies of molecular sys-
tems consisting of excitons and phonons that are col-
lectively coupled to M cavity modes which satisfy some
dispersion relation. The theory uses a diagrammatic per-
turbative treatment to the equilibrium Green’s function
of the polaritons, revealing how exciton-phonon interac-
tions renormalize the LP band and thus reduce the group
velocity in polariton transport. Crucially, the theory cap-
tures the λ and T dependence of the vg renormaliza-
tion magnitude and semi-quantitatively agrees with re-
sults from quantum dynamics simulations. We emphasize
that there is no free parameter in our microscopic the-
ory, and every quantity is derived from the microscopic
light-matter interaction Hamiltonian.

We expect the theory will eventually break down with
increasing λ and matter fraction such that the system
enters into the non-perturbative regime. However, for
λ ≤ kBT , the analytic theory almost quantitatively
agrees with the numerical results. Although the the-
ory does not capture transient non-equilibrium dynami-
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cal behaviors in the short-time regime, it yields quanti-
tatively accurate answers compared to numerical simula-
tions that do include all transient non-equilibrium effects.
This strongly suggests that the LP vg renormalization is
largely dictated by the renormalization of the LP band
due to phonons and is less sensitive to the transient, non-
equilibrium dynamics.

Our theory yields several predictions regarding the
scaling relation with matter fraction |Ck|2, phonon bath
reorganization energy λ, temperature , etc, and these
have been verified through our quantum dynamics sim-
ulations. These predictions can, in principle, be verified
with experiments [3, 4, 6]. The theory is simple enough
to be extended to multidimensional systems with multi-
ple dispersive matter bands and phonons, such as semi-
conductor materials. It is also feasible to implement our
theory along with ab initio simulations [31].

METHODS

Numerical Evaluation of Eq. 16. We assume a
Drude-Lorentz form for the phonon bath spectral density
J(ω) = π

ℏ
∑

α c
2
αδ(ω − ωα) = 2λωfω/(ω

2 + ω2
f ), where λ

is the reorganization energy, and ωf is the bath charac-
teristic frequency. We adopt an efficient and commonly
used type of bath discretization procedure [38], which
discretizes the spectral density with equal intervals in λ
(instead of in frequency), with

ωα = ωf tan[
π

2
(1− α

Nb + 1
)], cα =

√
λωα

Nb + 1
,

where α = 1, · · · , Nb, and Nb is the number of bath
modes. Here Nb = 104 is used to evaluate Eq. 16 to
generate converged results, and the infinitesimal imagi-
nary term in Eq. 17 is taken as η = 1 meV. The value
of ṽ−,g is directly obtained by numerically differentiat-

ing E
(2)
µk in Eq. 16. Note that one can adopt a smaller η

value in numerical calculations, but it then requires an
even larger Nb to reach to convergence.
Quantum Dynamics Simulations. We use the

mean-field Ehrenfest dynamics [39] to propagate the
quantum dynamics of polariton transport. The transport
dynamics mainly occur in the single excitation subspace,
defined as follows

|En⟩ = |en⟩
⊗
m̸=n

|gm⟩
⊗
k

|0k⟩

|k⟩ = |G⟩
⊗
k′ ̸=k

|0k′⟩ ⊗ |1k⟩ ,

where |En⟩ is the singly excited state for the nth molecule
located at xn, |k⟩ is the one-photon-dressed ground state
with wave-vector k∥ = 2π

NLk, and |G⟩ =
⊗
n
|gn⟩

⊗
α
|0k⟩

represents the common ground state for the hybrid sys-
tem. We describe the time-dependent quantum state in

the exciton-photon subspace as

|ψ(t)⟩ =
N∑
n

cn(t) |En⟩+
∑
k

ck(t) |k⟩ ,

where cn(t) and ck(t) are the excitonic and photonic ex-
pansion coefficients respectively. The polariton quantum
dynamics for |ψ(t)⟩ is propagated by solving the time-
dependent Schrödinger equation (TDSE),

iℏ
∂

∂t
|ψ(t)⟩ = ĤQ(R)|ψ(t)⟩,

where ĤQ = ĤS + ĤSB(R). The bath nuclear DOF R,
on the other hand, is propagated classically using Hamil-
tonian’s equations of motion (EOM), governed by the
time-dependent mean-field force

F = −∇R

[
⟨ψ(t)|ĤSB(R)|ψ(t)⟩+ hB(R)

]
.

The polariton group velocity ṽg is computed by tracking
the wavefront of the LP polariton wavepacket using the
same method reported in previous works [4, 19], with
details provided in Supplementary Note 4.

Simulation Details. For all quantum dynamics
simulations, we use N = 104 molecules and M = 102

cavity modes, keeping the ratio of N/M ≈ 35. More
details about the precise number of molecules and
modes for each parameter regime explored in Fig. 2 are
provided in Supplementary Note 4. A total of Nb = 35
phonon modes were sampled based on the same equal-λ
procedure mentioned above. The total light-matter
coupling strength is set to

√
Ngc = 120 meV. All results

are obtained with an ensemble of 500 independent
trajectories. Convergence tests are performed with up
to 1000 trajectories. The nuclear time step is ∆t = 2.5
fs, where during each nuclear propagation, there are 100
electronic propagation steps with a time step dt = 0.025
fs. The nuclear EOM is numerically integrated with the
velocity verlet algorithm and the TDSE is solved with
the Runge-Kutta-4 algorithm.
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