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Molecular Polariton is becoming one of the leading directions to control a multitude of chemical and phys-
ical processes, such as charge transfer, selective bond breaking, and excited state dynamics. Accurately and
efficiently simulating polariton properties under the collective coupling regimes (between N molecules and the
cavity mode) remains a central theoretical challenge. In this work, we use a stochastic resolution of the identity
approach coupled with a Chebyshev expansion to compute various polariton photophysical properties, with a
substantially reduced computational effort than would be needed for a direct diagonalization of the same Hamil-
tonian, which is often the bottleneck for such large dimensionality. Such quantities of interest are the total
density of states (the eigenspectrum of the Hamiltonian) and the transmission spectrum (a probe of the photonic
degrees of freedom), the latter of which is a direct observable in the experiment. We simulate the linear spec-
troscopy of molecule-cavity hybrid systems, specifically exploring the effects of the distribution and magnitude
of molecular disorder for one, few, and many coupled molecules. We compare our numerical results to recent
work, which formulated analytic expressions in the large-N limit for the spectroscopic signals. We find that our
results match those of the analytic results when N = 100, at which point we find that the collective effects for
linear spectroscopy are converged.

I. INTRODUCTION

Exciton-polaritons, light-matter hybrid states with cavity
photon frequencies in the eV-range, have recently become a
topic of great interest for their ability to alter both chemi-
cal reactions/properties in the ground[1–9] and excited[3, 10–
15] states as well as photo-physics/spectroscopies[3, 16–35]
such as quasi-particle propagation [36–42]. Much theoreti-
cal work has been performed to simulate these intrinsically
many-body systems [8, 9, 15, 43–52]. An exciton-polariton
is an entangled state of light and matter in which the native
excitonic and photonic degrees of freedom hybridize to form
new states. These new states can be tuned in various ways
to modify chemical and physical properties, such as the po-
tential energy landscape or the emission efficiency of mate-
rials. However, much is still unknown about these new hy-
brid states. For example, collective effects – which arise from
the coherent coupling of N = 2− 1010 molecules to a single
optical cavity mode – are largely unexplored due to the size
complexity of the light-matter Hamiltonian.

To understand all of these effects, one turns to various types
of spectra to decipher how the molecular and photonic de-
grees of freedom (DOFs) are coupled to each other and their
surroundings. The simplest realization of this is the linear
spectroscopy in which the system encounters a measurement
photon at some frequency h̄ω . For the molecule-cavity hy-
brid system, there are multiple types of linear spectroscopy
that can be performed: (i) reflectance, (ii) absorption, and (iii)
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transmission. In the experiment, the reflectance R and trans-
mission T spectroscopies are collected directly. The absorp-
tion A is then calculated as A% = 1− T %−R% as an indi-
rect measurement. Our focus here is the transmission spec-
troscopy whose intensity is proportional to the photon number
inside the cavity, T ∝ ⟨â†â⟩ [53, 54].

Numerous theoretical and experimental works have ex-
plored the effects of collectivity on linear spectroscopy [13,
15, 25, 26, 30, 55–59]. However, many of these works have
assumed that the collective nature of the spectral signatures
requires a large number of molecules N, such as those analyt-
ical works relying on thermodynamic limits of linear response
equations, single-particle Green’s functions, and molecular
susceptibilities, etc [30, 55]. Therefore, it is widely assumed
that the collective nature of these hybrid systems is not di-
rectly reachable with standard “brute force”-style diagonal-
ization techniques.

In this work, we directly simulate the transmission spec-
troscopy of coupled light-matter systems, forming exciton-
polaritons, in the presence of various molecular excitation
frequency disorders. We find that the transmission spectra
take on drastically varied characteristics between different
electronic disorder types (Gaussian, rectangular, Lorentzian)
as well as between one-, two-, and many-molecule (more
than 100) systems for a given disorder type. Second, the
Lorentzian profile shows little-to-no modifications by vary-
ing N. Finally, our simulations reveal that the number of
molecules necessary to saturate the collective effects for linear
transmission spectroscopy to be N ∼ 100 or less, irrespective
of the disorder type and magnitude.
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II. LIGHT-MATTER HAMILTONIAN

In this work, we are interested in exciton-polaritons [15,
48], which are composed of electronic excitations (typically in
the frequency regime of ∼1-5 eV) coupled to a photonic exci-
tation of similar frequency. Moreover, we focus on collections
of excitons that simultaneously couple to one photonic mode
to explore the resulting linear spectroscopies in the presence
of static excitonic disorder of varying magnitude.

The non-relativistic Pauli-Fierz Hamiltonian ĤPF has been
widely applied [15, 46, 48, 60–62] to study light-matter hy-
brid systems. A widely used approximation to the Pauli-
Fierz Hamiltonian for many molecules in the weak-to-strong
coupling regime is the Tavis-Cummings (TC) Hamiltonian
ĤTC.[63–66] The TC Hamiltonian simultaneously drops the
dipole-self energy (DSE) and introduces the rotating wave ap-
proximation (RWA). The TC Hamiltonian can be written as,

ĤTC = Ĥel + Ĥph + Ĥel−ph (1a)

Ĥel =
N

∑
A

( N⊗
B<A

1̂(B)
ph ⊗ Ĥ(A)

el ⊗
N⊗

B>A

1̂(B)
el

)
⊗ 1̂ph (1b)

Ĥph =

( N⊗
A

1̂(A)
el

)
⊗ωc â†â (1c)

Ĥel−ph = ωcA0

N

∑
A

( N⊗
B<A

1̂(B)
el ⊗ µ̂

(A)⊗
N⊗

B>A

1̂(B)
el

)
⊗ (â† + â)

(1d)

where µ̂ ≡ ⃗̂µ · e⃗ is the molecular dipole operator projected into
the photonic polarization direction. Here, ωc is the cavity fre-
quency and

A0 =

√
1

2ωcεV
(2)

is the light-matter coupling strength with V as the cavity
mode volume and ε as the dielectric constant of the medium.

The exact solution of the above Hamiltonian using the
complete Hilbert space is already intractable for more than
N = 10 ∼ 20 molecules. This is because the dimension
of the Hamiltonian scales exponentially with the number of
molecules as dim[ĤTC] ∝ 2N assuming that the molecular de-
grees of freedom (DOFs) have only two basis states, {|g⟩, |e⟩}.
However, since we are interested in collective effects, we will
restrict the description of the above Hamiltonian to the basis
of the first-excited subspace. In the singly excited subspace,
the dimension scales as dim[ĤTC] ∝ N [8].

For clarity, the zero- (|S0⟩) and single-excitation (|S1⟩)
subspaces including only |g⟩ and |e⟩ electronic states, i.e.,
first two eigenstates of Ĥel (extension to multiple electroni-
cally excited states and an ab initio molecular system to come

in forthcoming work), for each molecule,

|S0⟩=
N⊗
A

|g⟩(A)⊗|0⟩, (3a)

|S1⟩=
N

∑
A

( N⊗
B<A

|g⟩(B)⊗|e⟩(A)⊗
N⊗

B>A

|g⟩(B)
)
⊗|0⟩ (3b)

+
N⊗
A

|g⟩(A)⊗|1⟩.

We further make the assumption that there are no permanent
electronic dipoles, thus decoupling the collective ground state,
⟨g, ...,g,0|ωA0µ̂(â† + â)|g, ...,g,1⟩ = ωA0 ∑

N
A µ

(A)
00 = 0. Al-

ternatively, to achieve the identical result, we could work in
the coherent state basis [67, 68], which shifts away a constant
proportional to the identity in the electronic subspace from the
Hamiltonian whereby, µ̂ → µ̂ −⟨µ⟩, with ⟨µ⟩ ≡ ⟨S0|µ̂|S0⟩
is chosen to be the ground state permanent dipole moment. In
both situations, the ground state is decoupled from the light-
matter interaction in the TC Hamiltonian, which is valid be-
low the ultra-strong coupling regime where most experiments
in linear spectroscopies of polaritons reside [69]. In this case,
the TC Hamiltonian, without the collective ground state |S0⟩,
which is to say, |S1⟩⟨S1|ĤJC|S1⟩⟨S1|, can be written as,

ĤTC=̇


E(0)

eg 0 0 · · · ωcA0µ
(0)
eg

0 E(1)
eg 0 · · · ωcA0µ

(1)
eg

0 0 E(2)
eg · · · ωcA0µ

(2)
eg

...
...

...
. . .

...
ωcA0µ

(0)
eg ωcA0µ

(1)
eg ωcA0µ

(2)
eg · · · ωc

 .

(4)
Here, E(A)

eg = E(A)
e −E(A)

g is the ground-to-excited transition
energy of molecule A with associated ground-to-excited tran-
sition dipole moment µ

(A)
eg = µ⃗

(A)
eg · e⃗.

For convenience of notation, we define the collective cou-
pling strength as

Ã0 = A0
√

N. (5)

The use of this parameter fixes the collective Rabi splitting
ΩR for any number of molecules N since ΩR ∝ A0

√
N for N

molecules resonantly coupled to the cavity. For all simula-
tions of the current work, we restrict the cavity parameters
to Ã0 = 0.01 a.u., ωc = 1.00 a.u., ⟨Eeg⟩N = 1.00 a.u., and
µ
(A)
eg = 1.00 a.u. In this case, the average of the molecular

transition frequencies are resonant with the cavity frequency,
⟨∆Eeg⟩N = ωc = 1.00, and all molecular dipole moments are
fixed and equal. As an example, for N = 3 and the above pa-
rameters, the working Hamiltonian becomes,

ĤTC=̇


E(0)

eg 0 0 0.01/
√

3
0 E(1)

eg 0 0.01/
√

3
0 0 E(2)

eg 0.01/
√

3
0.01/

√
3 0.01/

√
3 0.01/

√
3 1

 .
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As we will see later, the transition frequencies of the molec-
ular DOFs, ∆Eeg, will be sampled from various distributions,
Gaussian, Rectangular, and Lorentzian, which represent the
primary results of this work. Also, the high degree of sym-
metry and sparsity in this Hamiltonian lends itself well to ap-
proximate approaches that depend on the efficient implemen-
tation of matrix-vector multiplication discussed in the follow-
ing section.[29, 63, 70]

The definition of strong coupling arises through the defi-
nition of a unitless coupling parameter η = ΩR/(2ωc) (with
ωc = 1.0 a.u. in this work). For a set of identical molecules
perfectly resonant with the cavity, strong coupling is defined
as η = ΩR/2 = 0.01, ultra-strong coupling as η = ΩR/2 =
0.1, and deep-strong coupling as η = ΩR/2 = 1.0. Note
that the Rabi splitting depends on the molecular disorder,
ΩR ≡ ΩR

(
σ

Ã0

)
. In the present work, at σ/Ã0 = 0.0 (no molec-

ular disorder), η = ΩR/2 = Ã0 = 0.01 for all cases in all fig-
ures. This indicates that the system is initially at the bound-
ary between the weak and strong coupling regimes. We note
that the results presented in this work are independent of the
regime at zero disorder since all conclusions only depend on
the ratio of the disorder to the Rabi splitting at zero disorder
∼ σ/Ã0.

III. STOCHASTIC-CHEBYSHEV APPROACH

In this work, we aim to simulate a partial density of states
(DOS) for a given Hamiltonian. Following closely the nota-
tion of Ref. 29, the total density operator is defined as,

DOS(E) = Tr
[
δ̂ (E − Ĥ])

]
= ∑

i
δ (E −Ei), (6)

where E is an arbitrary energy, Tr is the trace operation, Ĥ is
an arbitrary Hamiltonian, Ei is the ith eigenvalue of the Hamil-
tonian Ĥ, and δ is the standard Dirac-δ -function. In practice,
if one cannot directly diagonalize the Hamiltonian, it is hard to
know the set of Ei to generate the exact DOS. However, in the
following, we will both approximate the δ -function and ob-
tain the DOS without diagonalizing the Hamiltonian or know-
ing its eigenvalues [29, 71]. The code and data that support
the findings of this article are openly available [72].

Chebyshev Expansion of an Operator Function
The δ -function of an operator can be approximated as var-

ious different functions in the limit of infinitely small broad-
ening parameter γ . Here, we choose a δ -Gaussian as,

δ (Ĥ −E) = lim
γ→0

e
− (Ĥ−E)2

2γ2

γ
√

2π
, (7)

though other functions can be used, such as a Lorentzian
∼ γ/(Ĥ2 + γ2). The Chebyshev polynomial expansion of an

operator function can be written as,

δ (Ĥ −E)|λ ⟩=
∞

∑
l=0

cl(E,γ)T̂l(
ˆ̃H)|λ ⟩ (8)

≈
Ncheb

∑
l=0

cl(E,γ)|λl(
ˆ̃H)⟩

where cl(E,γ) are the expansion coefficients, which encode
the finite-width spectral function and the energy grid point,
E, on which it is evaluated. In practice, the infinite sum
over Chebyshev moments is truncated to Ncheb terms, which is
treated as a convergence parameter. The action of T̂l(Ĥ) on an
arbitrary vector |λ ⟩ is defined as T̂l(Ĥ)|λl−1⟩= |λl(Ĥ)⟩. The
coefficients are evaluated by discrete Fourier transform as,

cl(E,γ) = (2−δl,0)
∫ 2π

0
dθ F(θ ;E) eilθ (9)

with F(θ ;E) dependent on the broadening function as,

F(θ ;E) =
1

γ
√

2π
e

(
∆Ecos(θ)−(E−Ē)

)2

2γ2 . (10)

These coefficients cl(E,γ) can be evaluated once and stored
on disc for all calculations which share the same number of
Chebyshev moments Ncheb, window size ∆E (defined below),
finite-broadening γ , and energy grid points E. All simulations
performed in this work share the same Chebyshev coefficients
cl(E,γ) since all such parameters are fixed.

The recursion relation of Chebyshev vectors can be written
as,

|λ0⟩= |λ ⟩ (11a)

|λ1(
ˆ̃H)⟩= ˆ̃H|λ0⟩ (11b)

|λl(
ˆ̃H)⟩= 2 ˆ̃H|λl−1(

ˆ̃H)⟩− |λl−2(
ˆ̃H)⟩. (11c)

Since the Chebyshev series is only defined on the interval
(−1,1), the shifted and normalize Hamiltonian is

ˆ̃H =
Ĥ − Ē1̂

∆E
, (12)

where Ē = ωc = ⟨Eeg⟩N = 1.00 is the expected average of the
spectrum and ∆E/Ã0 = 64 = 4 σmax/Ã0 (σ to be introduced
later) is the expected span of the spectrum such that the eigen-
values of ˆ̃H lie on the interval (−1,1).

Trace of an Operator in a Stochastic Basis
Using the stochastic resolution of the identity, 1 =〈

|ξ ⟩⟨ξ |
〉

ξ
, the trace can be written as

Tr
[

δ (Ĥ −E)
]
=

〈
⟨ξ |δ (Ĥ −E)|ξ ⟩

〉
ξ

(13)

=
1
Nr

Nr

∑
r
⟨ξr|δ (Ĥ −E)|ξr⟩

where |ξr⟩ is a random vector of size N = dim(Ĥ) with el-
ements ⟨n|ξr⟩ = eiθ where θ ∈ [0,2π). The statistics satisfy
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FIG. 1. (a) Gaussian, (b) rectangular, and (c) Lorentzian distributions for the molecular excitation frequencies E(A)
eg . The shade of gray indicates

the varying magnitudes of disorder σ/Ã0 relative to the collective coupling strength Ã0 (dark for weak disorder, light for strong disorder).

〈
⟨ξr|ξr′⟩

〉
ξ
= δrr′ , and

〈
· · ·

〉
ξ

indicates a classical arithmetic
average over the Nr random vectors {|ξr⟩}.

Density of States
Combining the Chebyshev expansion with the stochastic

trace, we can write down the approximate DOS for a Hamil-
tonian. The stochastic-Chebyshev approach to calculate the
DOS can then be compactly written as

DOS(E,γ) = Tr
[

δ (Ĥ −E)
]

≈ 1
Nr

Nr

∑
r
⟨ξr|e

− (Ĥ−E)2

2γ2 |ξr⟩

≈ 1
Nr

Nr

∑
r

NCheb

∑
l=0

cl(E,γ)⟨ξr|ξrl(
ˆ̃H)⟩ (14)

where NCheb is the number of polynomials in the truncated
Chebyshev expansion (treated as a convergence parameter).
This parameter scales as NCheb ∝

∆E
γ

, where ∆E is the energy
scale of the eigenvalues (Eq. 12) and γ is the finite-width δ -
broadening parameter (Eq. 7).

Transmission Spectrum
The stochastic-Chebyshev photon transmission spectrum

(TM), which is proportional to the photonic DOS, can be com-
puted similarly as

TM(E,γ) ∝ DOSph(E,γ) = Tr
[

P̂phδ (Ĥ −E)
]

≈ 1
Nr

Nr

∑
r

NCheb

∑
l=0

cl(E,γ)⟨ξr|P̂ph|ξrl(
ˆ̃H)⟩ (15)

where P̂ph = |g, · · · ,g,1⟩⟨g, · · · ,g,1| is the projection operator
which picks out the excited photon basis element. Eq. 15 com-
pactly represents the primary quantity used in this work [72].

IV. MODEL SYSTEMS AND COMPUTATIONAL DETAILS

In the experiment, the molecular DOFs always have some
form of intrinsic disorder (energetic disorder or orientation of

the dipole relative to the cavity field intensity or the transition
dipole strength). Molecular disorder can arise from various
phenomena, including both internal (e.g., vibrational modes
of the molecule) and external (e.g., interactions with a sol-
vent) DOFs. Furthermore, there are two main categories of
disorder: (I) Dynamic disorder (e.g., thermal fluctuations from
vibrations – internal and/or external), which manifests as a
broadening of the transition energy/spectrum. (II) Static disor-
der (e.g., molecular defects, reactant/product species, isomers,
inhomogeneous sizes of particles such as quantum dots or
nanoplatelets, varied external environments of the molecules,
multiple electronic states per molecule, etc.), which may pro-
vide multiple spectral peaks [73].

In the present work, we consider three distributions of
molecule excitation frequencies as shown in Fig. 1: (i) Gaus-
sian, (ii) Rectangular, and (iii) Lorentzian. Thus, we focus on
the role of strong disorder in the molecular sample. Specifi-
cally, we consider the probability distributions: Gaussian,

PG(E − Ē) =
1√

2π σ
e−

E−Ē
2σ2 , (16)

rectangular,

PR(E − Ē) =

{
1
σ
, |E − Ē| ≤ σ

2
0, Else

(17)

and Lorentzian,

PL(E − Ē) =
1
π

σ

(E − Ē)2 +σ2 . (18)

These disorder distributions were previously explored with
analytic linear response models under a large-N expansion in
Ref. [30]. The rectangular distribution can be considered as a
limiting case of a uniform static disorder where, for example,
inhomogeneous particle sizes (e.g., quantum dots) can lead
to equally distributed features in the frequency domain [73].
We expect that the Gaussian distribution, in the absence of
a priori static disorder, will be the most prevalent in the ex-
periment due to the random fluctuations (i.e. high-frequency,
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FIG. 2. Transmission spectra for N = 1 at varying magnitude of
energetic disorders (vertical axis) of the molecules with widths σ

with distribution (a) Gaussian, (b) rectangular, and (c) Lorentzian.
A0 = 0.01 a.u., ωc = 1.00 a.u., Nr = 50,000, Ncheb = 2500, γ = 0.001
a.u..

Markovian noise) of the solvent DOFs ubiquitous in most ex-
perimental conditions. Of course, the true shape of the ex-
citation spectra will also depend on the electronic structure
of the molecules themselves. Formally, the stochastic er-
ror scales as O(1/

√
NNr), where Nr is the number of random
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FIG. 3. Transmission spectra for N = 1 at varying Gaussian energetic
disorders (vertical axis) of the molecules with widths σ with distri-
bution (a) Gaussian, (b) rectangular, and (c) Lorentzian. A0 = 0.01
a.u., ωc = 1.00 a.u., Nr = 50,000, Ncheb = 2500, γ = 0.001 a.u.. Note
that the data shown here is identical to Fig. 2 except that the intensity
is on a log scale.

vectors used in the stochastic average and N is the dimension
of the Hamiltonian Ĥ (i.e., the number of molecules in the
current context). However, we find that the error in the par-
tial density of states scales unfavorably with the number of
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FIG. 4. Transmission spectra for N = 2 at varying magnitude of
energetic disorders (vertical axis) of the molecules with widths σ

with distribution (a) Gaussian, (b) rectangular, and (c) Lorentzian.
A0 = 0.01 a.u., ωc = 1.00 a.u., Nr = 50,000, Ncheb = 2500, γ = 0.001
a.u..

molecules due to the small dimension of the projection oper-
ator (dim[P̂ph]/dim[Ĥ] ∼ 1/N << 1) and due to the presence
of disorder removing beneficial symmetry from the Hamilto-
nian. Thus, in practice, we use Nr = 50,000 random vectors in
all calculations to ensure convergence and consistency. Unless
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FIG. 5. Transmission spectra for N = 2 at varying Gaussian energetic
disorders (vertical axis) of the molecules with widths σ with distri-
bution (a) Gaussian, (b) rectangular, and (c) Lorentzian. A0 = 0.01
a.u., ωc = 1.00 a.u., Nr = 50,000, Ncheb = 2500, γ = 0.001 a.u. Note
that the data shown here is identical to Fig. 4 except that the intensity
is on a log scale.

otherwise stated, we use γ = Ã0/10 = 0.001 a.u., ∆E = 0.640
a.u. and Ncheb = 2500 with a ratio ∆E

γ
= 640. Figs. 2-9

present the transmission spectra for each disorder type (pan-
els, Eqs. 16-18) as functions of the disorder in the molecu-
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lar transition frequencies σ (vertical axis) for (Fig. 2) N = 1,
(Figs. 4) N = 2, (Figs. 6) N = 100, and (Figs. 8) N = 1000
molecules. Figs. 3,5, 7, and 9 are the log-scale intensity ana-
logues to Figs. 2, 4, 6, and 8.

V. RESULTS AND DISCUSSION

Starting with N = 1 under Gaussian disorder in Fig. 2a, we
find that that the upper (UP) and lower polariton (LP) spectral
bands collapse (decrease in Rabi splitting, ΩR = EUP −ELP)
non-linearly with an increasing energetic disorder σE . Ini-
tially, at the range of low disorders, 0<σ/Ã0 < 2, the collapse
of Rabi splitting is fast, while at large disorders (2 < σ/Ã0 <
8), the collapse is slower. By σ/Ã0 = 10, the UP and LP are in-
distinguishable from one another, and ΩR → 0. At very weak
disorder (0 < σ/Ã0 < 1), it is evident that the transmission
spectrum is slightly broadened by the presence of the molec-
ular disorder before starting to collapse [30]. This is more
evident on the log-scale shown in Fig. 3a by the broad spec-
tral feature at σ/Ã0 = 1.0. This was also evident in a previous
analytical theory exploring such Gaussian-disordered molec-
ular energies [30]. Furthermore, we note that while the two
maxima in the transmission spectra corresponding to the UP
and LP spectral peaks are collapsing due to the presence of
disorder, the edge of the spectra (whose states are composed
of mostly matter character due to highly off-resonant molecu-
lar energies) continues to spread outward. This can be seen in
Fig. 2a, but is more obviously depicted on a log-scale shown
in Fig. 3a. Note that the log-intensity exhibits noise due to the
stochastic trace in the region of TM = 10−2 ∼ 10−3 region of
intensity.

For the rectangular distribution for N = 1 in Fig. 2b, we find
that the UP and LP spectral peaks converge with increasing
energetic disorder as expected, but the collapse is much slower
than for the Gaussian disorder. In fact, the UP and LP states do
not fully collapse within 16 σ/Ã0. Most likely, the peaks con-
verge asymptotically as σ/Ã0 increases. We note again that at
weak disorder 0 < σ/Ã0 < 2, the UP and LP spectral features
exhibit a broadening due to the presence of disorder [30]. Fur-
thermore, compared to the Gaussian-disordered case, the ini-
tial broadening of the UP and LP spectral bands appears to be
slower, as more clearly shown in Fig. 3a,b, maximizing the
Rabi splitting near σ/Ã0 ≈ 3.

For the last case of Lorentzian distribution for N = 1 in
Fig. 2c, the UP and LP collapse is nearly linear in the energy
disorder magnitude while both the Gaussian- and rectangular-
disorder cases were non-linear. Specifically, we are track-
ing the maximal peak location in the spectra as a function
of the disorder. Further, the collapse is much more rapid
compared to the other two cases, with LP and UP merging
around 2 ∼ 4 σ/Ã0 compared to 16+ σ/Ã0 for rectangular
and 10 σ/Ã0 for Gaussian. This could be due to the intrin-
sic long-tailed nature of the Lorentzian distribution compared
to the short-tail Gaussian and no-tail rectangular distributions.
This implies that for few-molecule spectroscopy, for exam-
ple, in plasmonic cavity designs [11], the emergence of UP
and LP spectral features may depend heavily on the shape and

magnitude of the molecular disorder. These features of the
molecular ensemble are dictated by the internal processes of
the molecules as well as by their local environment.

It is important to note that for N = 1, there are only two
polaritonic states present in the system, the UP and LP, for
a given stochastic configuration of the molecular transition
energies (one of the Nr = 50,000). Thus, there are no “dark
states”, even in the absence of molecular disorder. This is
evidenced by the lack of transmission intensity in the energy
range between the UP and LP spectral bands at any value of
disorder magnitude, most clearly seen in the log-scale rectan-
gular distribution at E−ωc = 0 (Fig. 3b, comparing to Fig. 5b
to be discussed below).

Fig. 4 presents similar data as Fig. 2, but now for the case
of N = 2. In this system, at perfect resonance between the
two molecular excitations and the cavity photon excitation and
at zero molecular disorder, there is one UP, one LP, and one
dark state (i.e., a polaritonic state with no photonic charac-
ter). At finite molecular disorder, we can immediately recog-
nize the emergence of intermediate/middle polaritonic states
within the spectra, hereafter denoted the middle polariton
(MP) spectral feature. This is seen most clearly for the Gaus-
sian (Fig. 4a) and rectangular (Fig. 4b) cases which emerges
at ∼ 2 σ/Ã0 and 3 ,σ/Ã0 respectively. This is more evident
in the log-scale analogues shown in Fig. 5a,b. The Lorentzian
case shows little-to-no MP formation since the collapse of the
UP and LP peaks occurs rapidly due to the long-tailed distri-
bution.

Notably, for the Gaussian-disordered case with N = 2
(Fig. 4a), the collapse of the UP and LP peaks becomes much
more linear until their collapse at ∼ 4 σ/Ã0 compared to the
slower collapse occurring at 10 σ/Ã0 for the single-molecule
case (Fig. 2a). Thus, moving from the single-molecule strong
coupling to the case of a few-molecule strong coupling, the
collapse of the UP and LP spectral features occurs much more
rapidly with increasing molecular disorder. This observation
can be explained by the fact that the two molecular transi-
tions can both cause a splitting with the photonic DOF but at a
weaker magnitude. Recall that for N = 2, the single-molecule
coupling strength is scaled down by 1/

√
2 to keep a fixed Rabi

splitting at zero disorder. Thus, in the presence of disorder, the
collapse of the UP and LP features occurs more rapidly due to
the weaker single-molecule coupling strength. As such, this
effect may already be evidenced by few-molecule plasmonic
experiments if the number of molecules can be rigorously con-
strained to one or a few (2-5) molecules. Additionally, the UP
and LP spectral features again exhibit a slight broadening at
weak disorder before the collapse.

For the rectangular-disordered case and N = 2 (Fig. 4b) the
emergence of the MP feature (near 3 σ/Ã0) is more evident
than in the Gaussian-disordered case (Fig. 4a) and retains its
identity for a larger range of disorder (3 < σ/Ã0 < 9) than
the Gaussian case. Further, the collapse of the UP and LP
occurs earlier than for the N = 1 case, now at σ/Ã0 ∼ 14.
The Lorentzian-disordered case, however, shows none of the
spectral changes, compared to the Gaussian and rectangular
cases, moving from one to two molecules. As we will see,
the Lorentzian case has negligible changes for any number of
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FIG. 6. Transmission spectra for N = 100 at varying magnitude of
energetic disorders (vertical axis) of the molecules with widths σ

with distribution (a) Gaussian, (b) rectangular, and (c) Lorentzian.
A0 = 0.01 a.u., ωc = 1.00 a.u., Nr = 50,000, Ncheb = 2500, γ = 0.001
a.u..

coupled molecules N.
Fig. 6 presents the data with N = 100. For the Gaussian

case (Fig. 6a), we observe the clearest evidence that at weak
disorder, the UP and LP spectral peaks increase their Rabi
splitting slightly before contracting [30, 63]. Of course, as
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FIG. 7. Transmission spectra for N = 100 at varying Gaussian
energetic disorders (vertical axis) of the molecules with widths σ

with distribution (a) Gaussian, (b) rectangular, and (c) Lorentzian.
A0 = 0.01 a.u., ωc = 1.00 a.u., Nr = 50,000, Ncheb = 2500, γ = 0.001
a.u. Note that the data shown here is identical to Fig. 6 except that
the intensity is on a log scale.

noted before, the eigenstates of the Hamiltonian still increase
their overall splitting with increased disorder, but the photonic
character becomes energetically localized to the resonance en-
ergy once the molecules have become sufficiently dispersed
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FIG. 8. Transmission spectra for N = 1000 at varying magnitude
of energetic disorders (vertical axis) of the molecules with widths
σ with distribution (a) Gaussian, (b) rectangular, and (c) Lorentzian.
A0 = 0.01 a.u., ωc = 1.00 a.u., Nr = 50,000, Ncheb = 2500, γ = 0.001
a.u..

and largely off-resonant. Recall that the single-molecule cou-
pling is now scaled down by 1/

√
100 compared to the N = 1

case (Fig. 2).
Interestingly, the rectangular distribution takes on a com-

pletely new character, now exhibiting outward-facing spectral
features at lower disorders (i.e., increasing the Rabi splitting
when 0 < σ/Ã0 < 5). Of the three distributions, the rectangu-
lar distribution contains the largest average probability den-
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FIG. 9. Transmission spectra for N = 1000 at varying Gaussian
energetic disorders (vertical axis) of the molecules with widths σ

with distribution (a) Gaussian, (b) rectangular, and (c) Lorentzian.
A0 = 0.01 a.u., ωc = 1.00 a.u., Nr = 50,000, Ncheb = 2500, γ = 0.001
a.u. Note that the data shown here is identical to Fig. 8 except that
the intensity is on a log scale.

sity, ⟨PR⟩E > ⟨PG⟩E ≈ ⟨PL⟩E (see Eq. 16-18). For the
case of N = 1 or N = 2, we hypothesize that the molecular
distribution for a given stochastic configuration cannot well-
enforce the hard boundaries at E = ωc ± σ

2 . While for N =
100, the hard boundaries are evident for most statistical sam-
ples in the average, allowing for the formation of polaritons
which also exhibit the features dictated by such hard bound-
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aries. Such features were also discussed in Ref. 30, where the
authors analyzed the same excitation frequency distributions
using a large-N expansion of the problem and extracting the
analytic molecular susceptibility χ(E). This is also discussed
in the recent work using perturbation theory analysis [74] and
response function based simulations [63] of the linear absorp-
tion spectra. Notably, our results at N = 100 match the fea-
tures predicted by the large-N analytical theory in Ref. 30.

We also find that the formation of unique MP features is
negligible for the Gaussian and Lorentzian cases in Fig. 7a,c.
Instead, a broad spectral activation is noted between the UP
and LP peaks, nearly equally intense at all points for the
Gaussian distribution and slightly curved for the Lorentzian
case. This drastically contrasts with the rectangular distribu-
tion which showcases a nearly linear broadening from a point
(E −ωc = 0) for the MP feature as a function of the disorder
magnitude (Fig. 7).

In the final case for N = 1000 (Fig. 8, 9), we find nearly
identical results as for the N = 100 case (Fig. 6, 7). Thus, in-
terestingly, the collective effects involved in linear transmis-
sion spectroscopy inside the cavity are converged with only
100 coupled molecules for the model system considered here.
This is likely due to the fact that the dynamics among the col-
lective states are only sensitive to collective quantities,

√
NA0,

as shown in recent theoretical works [64–66]. While the con-
verged simulation requires averaging over a statistical ensem-
ble of molecules, in the experiment, this is automatically ac-
counted for due to time-evolving thermal fluctuations of the
molecules.

VI. CONCLUSIONS

In this work, we use a stochastic-Chebyshev expansion
approach to simulated the linear spectroscopic signatures of
exciton-polariton under varying types of molecular frequency
disorder: (I) Gaussian, (II) rectangular, and (III) Lorentzian.
We find that the transmission spectra exhibit drastically var-
ied characteristics between different electronic disorder types
as well as, for a fixed type of disorder, between one-, two-
, and many-molecule systems. Specifically, for the Gaussian
and rectangular disorders, we found that the rate of collapse of
the upper and lower polariton spectral features increases with
an increasing number of molecules from N = 1 to 2. Further,
the spectral features at weak disorders are drastically chang-
ing with increasing numbers of coupled molecules in both the
Gaussian and rectangular disorders. At all numbers of cou-
pled molecules, N, both the Gaussian and rectangular disorder
types exhibit an increased Rabi splitting at weak disorder prior
to its collapse, which agrees with previous analytical work in
the large-N limit [30].

Contrary to Gaussian and rectangular disorder, the
Lorentzian disorder does not exhibit any changes with in-
creasing numbers of coupled molecules N. Additionally,
Lorentzian disorder does not exhibit strong middle-polariton
formation (i.e., the “brightening" of the dark states due to dis-
order) compared to other disorder types. The rectangular dis-
tribution exhibits the strongest MP formation.

Interestingly, and most importantly, we find that the num-

ber of molecules necessary to saturate the collective effects
for linear transmission spectroscopy to be N ∼ 100 or less, ir-
respective of the disorder type and magnitude.We emphasize
that this convergence is only with respect to the linear spec-
troscopic features and not with respect to any dynamical prop-
erties such as the non-radiative relaxation between polaritonic
states, which depends on the number of molecules (i.e.. the
number of intermediate polariton states) in the system. There-
fore, our results should be considered as the first step in under-
standing collective effects on linear spectroscopy as a whole.
On the other hand, our previous theoretical work [64–66] sug-
gests that if the relaxation are dictated by a “golden rule" type
of law, then even the dynamics are largely dictated by collec-
tive quantity

√
NA0.

In the future, we will extend this exploration in three direc-
tions: (i) non-linear response via a modification of the observ-
able in Eq. 15, (ii) the inclusion of multi-mode cavity struc-
tures [29] and (iii) dynamical effects through Chebyshev prop-
agation [63, 75], all with varied molecular distributions and
number of collectively coupled molecules. Further, the inclu-
sion of the dipole self-energy (DSE), while small, may yield
non-trivial results in the large-N limit due to the ∝ N scaling
of the DSE term compared to the ∝

√
N scaling of the bilinear

coupling term.
Thus, it is our hope that these works will give insight

into the collective nature of the exciton-polariton systems and
provide a sense of intuitive understanding of the number of
molecules necessary for the convergence of collective effects.
This deeper understanding will help to stimulate future exper-
iments and theoretical studies alike by finding the common
ground between the simple single- or few-molecule simula-
tions and, compared to the seemingly difficult single-molecule
experiments, many-molecule experiments.
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