
1 of 31Wiley Interdisciplinary Reviews: Computational Molecular Science, 2025; 15:e70039
https://doi.org/10.1002/wcms.70039

Wiley Interdisciplinary Reviews: Computational Molecular Science

FOCUS ARTICLE

Ab Initio Approaches to Simulate Molecular Polaritons 
and Quantum Dynamics
Braden M. Weight1,2  |  Pengfei Huo3,4,5

1Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA  |  2Department of Physics and Astronomy, University of Rochester, 
Rochester, New York, USA  |  3Department of Chemistry, University of Rochester, Rochester, New York, USA  |  4The Institute of Optics, Hajim School of 
Engineering, University of Rochester, Rochester, New York, USA  |  5Center for Coherence and Quantum Science, University of Rochester, Rochester, New 
York, USA

Correspondence: Braden M. Weight (braden.m.weight@lanl.gov)  |  Pengfei Huo (pengfei.huo@rochester.edu)

Received: 19 November 2024  |  Revised: 18 June 2025  |  Accepted: 27 June 2025

Associate Editor: Anna I. Krylov   |  Editor-in-Chief: Peter R. Schreiner 

Funding: Air Force Office of Scientific Research under AFOSR Award No. FA9550-23-1-0438; National Science Foundation Award under Grant No. 
CHE-2244683; National Science Foundation's Office of Advanced Cyber-infrastructure under Award OAC-2311442; National Science Foundation “Center 
for Quantum Electrodynamics for Selective Transformations (QuEST)” under the Grant number CHE-2124398; Research Corporation for Science 
Advancement: Cottrell Scholar Award.

Keywords: ab initio electronic structure | light-matter interaction | nonadiabatic dynamics | optical cavity | polariton

ABSTRACT
Molecular polaritons are hybrid states formed by the quantum mechanical interaction between light and matter. Recent exper-
iments have shown the ability to drastically modify chemical reactions in both the ground and excited states through the hy-
bridization of the electronic and photonic degrees of freedom. Ab initio simulations of molecular polaritons have demonstrated 
similar effects for simple ground and excited state reactions. However, the theoretical community has been limited in its ability 
to describe the complicated dynamical processes of many-molecule collective effects with a high-level treatment of all degrees 
of freedom within a rigorous Hamiltonian. In this review, we provide a general description and overall procedure for exploring 
molecular polaritons, leveraging standard many-body electronic structure calculations combined with the exact, non-relativistic 
quantum electrodynamics light-matter Hamiltonian.
This article is categorized under:
Electronic Structure Theory > Ab Initio Electronic Structure Methods
Software > Quantum Chemistry
Structure and Mechanism > Reaction Mechanisms and Catalysis

1   |   Introduction

Coupling matter (atoms, molecules, or solid-state materials) to 
the quantized electromagnetic field inside an optical cavity cre-
ates a set of new photon-matter hybrid states, so-called polariton 
states [1–3]. These polariton states have delocalized excitations 
among molecules and the cavity mode, which have been shown 
to facilitate new chemical reactivities [1, 3, 4]. Theoretical 

investigations play a crucial role in understanding new princi-
ples in this emerging field and have suggested interesting reac-
tion mechanisms enabled by cavity quantum electrodynamics 
(QED) [5–14].

Unlike traditional coherent control strategies [15, 16], polariton 
chemistry does not rely on fragile electronic coherence [15, 16] 
and is robust against decoherence [10]. Compared to the classical 
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laser-matter interactions, which operate with a large number of 
photons, cavity QED enables the hybrid system to initiate chem-
ical reactions even without photons initially present in the cav-
ity [3]. Thus, polariton chemistry provides a new strategy for 
controlling chemical reactivity in a general way by tuning the 
fundamental properties of photons and provides a new para-
digm for enabling chemical transformations that can profoundly 
impact catalysis, energy production, and the field of chemistry 
at large [17–19]. There are two main regimes for polariton chem-
istry: one is related to electronic (excitonic) strong coupling and 
photochemistry [3, 20], operating under an external laser field 
to initiate photochemistry, and the other is vibrational strong 
coupling [4, 21–23] and the change of ground-state reactivities, 
operating under the “dark condition” without any external laser 
pumping. We will mainly focus on the theoretical approaches 
developed for ESC and briefly discuss theoretical methods for 
VSC at the end of this review.

Despite the encouraging progress, recent experimental demon-
strations [1, 3, 4, 24, 25] of modifications of chemical reactivity 
are not well understood and, in some cases, not reproducible 
[26, 27]. Since these polaritonic systems often require a quan-
tum mechanical description of the photonic modes, existing 
physical chemistry theories for chemical reactions are no lon-
ger directly applicable to these hybrid systems, requiring a more 
exact QED approach. While the fundamental theories of QED 
has been known for decades, directly translating this knowl-
edge to explain measurements of polariton chemistry remains 
a major challenge in both theoretical chemistry and quantum 
optics. Namely, the mechanism behind the strong coupling of 
a mesoscopic ensemble of molecules to a single optical cavity 
is still not fully understood. The basic theory for describing the 
modes in different types of cavity is also briefly discussed in 
Sections 2 and 5.3.

Additionally, simulating the time-dependent polariton quan-
tum dynamics of the hybrid matter-field systems is often a 
necessary and essential task, as these polariton photochemical 
reactions often involve a complex dynamical interplay among 
the electronic, nuclear, and photonic degrees of freedom 
(DOFs). However, accurately simulating polaritonic quantum 
dynamics remains a challenging task and is beyond the par-
adigm of traditional photochemistry, which does not include 
quantized photons, and quantum optics, which does not have 
a well-defined theory to include the influence of nuclear de-
grees of freedom to describe reactivity, nor properly account 
for molecular structures [28]. Over the past years, enormous 
progress has been made to address this interdisciplinary chal-
lenge. We have witnessed how electronic structure theory 
(Section 3.2) and non-adiabatic quantum dynamics (Section 4) 
communities have actively participated in the progress of this 
exciting field.

In Section  2, we discuss the rigorous theoretical background 
of molecular cavity QED. We first review the basic theory of 
the molecular Hamiltonian (Section  2.1) and introduce the 
necessary formalism for molecular quantum electrodynamics 
(Section 2.2). Section 3 focuses on solving the polaritonic eigen-
value equation using various approaches from direct diagonal-
ization in the adiabatic-Fock basis (Section 3.1.1) and polarized 
Fock basis (Section 3.1.2) as well as the self-consistent solution 

at the mean-field (Section 3.2.2) and correlated (Section 3.2.3) 
levels of theory. Using the tools put forth in the previous two 
sections, Section  4 explores the rich quantum dynamics of 
strongly coupled light-matter systems, laying out common ap-
proaches toward simulating exact (Section  4.1) and realistic 
(Sections  4.2.1–4.2.3) molecules in the extended Hilbert space 
of the coupled electron-photon system as well as motivating 
the need for an accurate description and efficient calculation 
of the nuclear gradients (Section  4.3) used in the exact Pauli-
Fierz Hamiltonian. Finally, in Section 5, we provide three direc-
tions toward a more complete picture of the molecular polariton 
picture in experiments, including machine learning polariton 
gradients (Section 5.1), the simulation and effects of cavity loss 
(Section  5.2), and the extension to many molecules and many 
cavity modes (Section 5.3).

The purpose of this review is to introduce and outline state-of-
the-art techniques toward the simulation of realistic, ab  initio 
molecular polaritons for the readers in the emergent field of 
polariton chemistry. This review captures much of the recent 
work, but not all, toward the description of polaritonic states and 
properties, as well as their quantum dynamics. Specifically, this 
work focuses on the methods and approaches needed for one to 
explore these complicated problems in more depth and does not 
primarily focus on connecting theory to experiment. While this 
connection is intrinsic to the answers one seeks from simula-
tion, the discussion of experimental progress and its setbacks is 
beyond the scope of this review aimed at ab initio computational 
approaches. We hope that this work allows readers of all kinds to 
become acquainted with the simulation of molecular polaritons 
to explore the many unknown possibilities this novel tool has 
in order to manipulate chemical reactions as well as physical 
phenomena, and to help the community address the many open 
questions.

2   |   QED Theoretical Background

2.1   |   Molecular Hamiltonian

The molecular Hamiltonian ĤM can be written in terms of 
the nuclear kinetic energy operator T̂R and the electronic 
Hamiltonian Ĥel as,

where T̂r is the electronic kinetic energy operator and 
V̂ (R) = V̂NN + V̂ eN + V̂ ee is the electronic potential includ-
ing the nuclear-nuclear V̂NN, electron-nuclear V̂ eN, and elec-
tron–electron V̂ ee interactions. The electronic Hamiltonian 
Ĥel = ĤM − T̂R is routinely diagonalized via standard elec-
tronic structure packages, which attempt to solve the following 
eigenvalue problem,

which defines the adiabatic electronic states ∣ ��(R)⟩ and poten-
tial energy surfaces E�(R) for the �th state. Note that both the 
eigenvalues and eigenfunctions are parameterized by the nu-
clear positions in the Born-Oppenheimer approximation. In this 
basis, the molecular Hamiltonian ĤM can be written as,

(1)ĤM = T̂R + Ĥel = T̂R + T̂r + V̂

(2)Ĥel ∣ ��(R)⟩ = E�(R) ∣ ��(R)⟩
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where P̂ is the nuclear momentum operator, M is the tensor of 
nuclear masses, and ∇R is the nuclear gradient. Note that we have 
used the shorthand notation ∣ �� ⟩ ≡ ∣ ��(R)⟩. Additionally, d�� 
is the derivative coupling, expressed as

and D�� (R) is the second-derivative coupling, expressed as,

The coupling between light and matter, as we will see later, is medi-
ated via the molecular dipole operator �̂ =

∑
iziR̂i −

∑
k r̂k and the 

quantized electric field of the optical cavity Ê. The matrix elements 
of the dipole operator in the adiabatic basis can be written as,

For large systems with many electrons, the maximum number 
of electronic states becomes impractically large for standard 
electronic structure calculations, even considering only the sin-
gle excitation manifold. Further, for single-reference methods, 
such as linear response time-dependent density functionally 
theory (LR-TD-DFT), the efficient and accurate calculation of 
high-energy excited states is not always trustworthy, so in prac-
tice we employ a smaller Hilbert space than that implied by the 
total molecular Hamiltonian ĤM in Equation (3), which can be 
defined through the following projection operator,

where el is the number of included adiabatic electronic states 
(ordered by increasing energy). The identity operator for the 
total Hilbert space can be written as ℐ̂el = ̂ + ̂, where ̂ is 
composed of all non-included states. The projected molecular 
Hamiltonian can be written as,

For the remainder of this work, it will be assumed that all 
Hamiltonians and operators reside in the truncated Hilbert 
space ̂ĤM̂ → ĤM. The dipole operator can also be written in 
the truncated Hilbert space as,

Later, in Section 3.1.2, we will examine an entangled basis for 
the electron and photon degrees of freedom, which we call the 
polarized Fock state (PFS) basis. In order to construct this basis, 
we require a unitary transformation of the electronic states such 
that the dipole operator in the truncated Hilbert space is diago-
nal. In this way, we can define the dipole operator as,

where ∣ �� ⟩ is the eigenstate of the projected dipole operator 
̂�̂̂ with

and c�
�
= ⟨�����⟩. These states are commonly referred to as 

Mulliken-Hush (MH) states. Under this basis, the electronic 
Hamiltonian rotates to an off-diagonal matrix as,

2.2   |   Pauli-Fierz Hamiltonian

Often, for finite molecular systems, the Pauli-Fierz (PF) 
Hamiltonian ĤPF is chosen to model the interactions between 
the molecular and photonic degrees of freedom inside an opti-
cal or plasmonic cavity. We will first introduce the single-mode, 
single-molecule description. Later in Section 2.3, we will gener-
alize to the collective many-mode, many-molecule Hamiltonian 
needed to describe experimental conditions. At this level, the PF 
Hamiltonian can be written as,

where �c is the cavity frequency and â† (â) is the creation (anni-
hilation) ladder operator for the photon field. The Hamiltonian 
can be factored into the form of a shifted harmonic oscillator 
via the definition of the canonical coordinates (i.e., the operators 
of positions and momentum) of the quantum harmonic oscilla-
tor: �qc =

√
ℏ

2𝜔c

(
�a
†
+ �a

)
 and �pc =

√
ℏ𝜔c

2

(
�a
†
− �a

)
. Here � is the 

light-matter coupling strength commonly used in the literature. 
Another common choice is the transverse vector potential of the 
photonic field A0, related to � as

where  is the quantization volume of the photon field, � is 
the electric permittivity, and ê is the unit vector of the elec-
tric field polarization. Equation  (13) is composed of four 

(3)

�HM=
�
𝛼

E𝛼(R) ∣𝜓𝛼⟩
�
𝜓𝛼� − ℏ2

2M

�
𝛼𝛽

�
∇2
R
𝛿𝛼𝛽 +2d𝛼𝛽 (R) ⋅∇R+D𝛼𝛽(R)

��𝜓𝛼

�
⟨𝜓𝛽 ∣

(4)d�� (R) =
⟨
��|∇R|��

⟩
=

⟨
��|∇RĤel|��

⟩

E� − E�

(5)D�� (R) =
⟨
��|∇R ⋅ ∇R|��

⟩
=
⟨
��|∇2

R
|��

⟩

(6)�̃�� (R) =
⟨
��| ̂̃�|��

⟩

(7)̂ =

el − 1�
�= 0

∣ �� ⟩ ⟨�� ∣

(8)

� �HM
� =

el−1�
𝛼=0

E𝛼 ∣𝜓𝛼⟩
�
𝜓𝛼� − ℏ2

2M
⋅

el−1�
𝛼𝛽=0

�
∇2
R
𝛿𝛼𝛽 +2d𝛼,𝛽 ⋅∇R+D𝛼𝛽

��𝜓𝛼

�
⟨𝜓𝛽 ∣

(9)̂�̂̂ =

el − 1�
�,� = 0

��� ∣ �� ⟩ ⟨�� ∣

(10)̂�̂̂ =

el − 1�
� = 0

��� ∣ �� ⟩ ⟨�� ∣

(11)∣ �� ⟩ =

el − 1�
�= 0

c�
�
(R) ∣ ��(R)⟩

(12)Ĥel =

el − 1�
��

V��(R) ∣ ��(R)⟩ ⟨��(R) ∣

(13)

�HPF= �HM+ �Hph+ �Hel−ph+ �HDSE= �HM + ℏ𝜔c

�
�a
†
�a+

1

2

�

+

�
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2
� ⋅��
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†
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main elements: the molecular Hamiltonian ĤM, the pho-
tonic Hamiltonian Ĥph , the light-matter interaction Ĥel−ph

, and the dipole self-energy ĤDSE. Similarly to the molecular 
Hamiltonian, we wish to solve an eigenvalue problem with-
out the nuclear kinetic energy operator T̂R, which we define 
the polaritonic Hamiltonian Ĥpl (analogously to the electronic 
Hamiltonian Ĥel) as,

whose eigenvalue equation can be written as,

where ℰj(R) are the Born-Oppenheimer polaritonic potential 
energy surfaces and ∣ ℰj(R)⟩ are the adiabatic polaritonic states. 
The focus of Section  3 will be to explore solving such eigen-
value problems in various choices of basis states and to calculate 
chemically and physically relevant properties from such polari-
tonic wavefunctions.

2.3   |   Collective Hamiltonian

Although many successful single-molecule experiments 
[29, 30] and theoretical [10, 31, 32] work have been instru-
mental in probing the basic physics of polaritonics, most ex-
periments are constructed such that a large ensemble (often 
∼ 108 or more) of molecules is coupled simultaneously to many 
modes of the cavity [3, 33–35]. These many coupled DOFs gen-
erate collective upper and lower polaritonic states [9, 33, 36] 
as well as the dense manifold of “dark states” which contain 
minuscule amounts of photonic character and negligible tran-
sition dipole [33].

The direct generalization of Equation (13) for many molecules 
mol and cavity modes mode, including both parallel kx (quasi-
continuous) and perpendicular kz (discrete) modes, can be writ-
ten as,

Here, xA denotes the center-of-mass position of molecule A 
and RA denotes the nuclear coordinates of molecule A. For 
typical Fabry-Perot cavities, the photon energy required to 
excite the cavity mode with the wavevector, k =

⟨
kx , kz

⟩
, is 

Eph(𝜃) =
ℏ

nc
c
�
k2z + k2x =

ℏ

nc
ckz

√
1 + tan2 𝜃, which depends on 

the angle � (tan � = kx ∕kz) of the external probe. Here, c is the 
speed of light in vacuum, nc is the refractive index inside the cav-
ity, and ℏk is the momentum of the photon. While the collective 
Hamiltonian (Equation 17) is an extremely important physical 
object to describe experimental conditions, we will focus the 
majority of our discussion on the single-molecule, single-mode 

case (Equation 13) and return to the collective case in Section 5 
where we will describe extensions toward the realistic modeling 
of polaritonic states and their dynamics.

3   |   Obtaining Polariton Eigenstates and Their 
Properties

3.1   |   Direct Diagonalization

Diagonalizing Hamiltonians is the main task of all of quantum 
mechanics. If one can achieve the exact diagonalization of the 
Hamiltonian for all DOFs, the exact answer is returned, given a 
complete basis set. In reality, one is unable to achieve this due to 
the basis set limitations and/or the complexity of the many-body 
problem itself. As such, one seeks to find the best alternative to-
ward providing approximate solutions to the many-body problem 
that returns the correct physics. For the electronic Hamiltonian, 
the community at large has spent nearly 90 years working on this 
problem, providing methods such as Hartree-Fock theory (HF), 
density functional theory (DFT), configuration interaction (CI), 
coupled cluster (CC), among others, including their excited state 
analogues like time-dependent DFT (TD-DFT). Each of these 
methods returns, to varying degrees of computational expense 
and accuracy, the solutions to the electronic Hamiltonian.

Considering the photonic part of the light-matter hybrid sys-
tem, we know these DOFs are explicitly harmonic (i.e., their 
bare Hamiltonian Ĥph is simply the quantum harmonic oscil-
lator), and their exact eigenstates are known to be the Fock (or 
number) states of the quantized field. In this way, we already 
know the solutions to the unperturbed parts of the light-matter 
Hamiltonian exactly for the photons and approximately for 
the electrons. If one can directly diagonalize the light-matter 
Hamiltonian (Equation 15), then one additionally receives the 
exact correlation between these DOFs.

In contract to a direct diagonalization, many recent works have 
shown that one can reconstruct the self-consistent schemes used 
in the many-electron problem and solve the many-electron and 
many-photon problem simultaneously. In this sense, the basis 
states are optimized (or are allowed to respond to interactions 
with the photonic DOFs) to achieve a minimization of the energy, 
subject to the underlying approximations of the theory (e.g., den-
sity functional theory). Further, the electron–electron, electron-
photon, and photon-photon correlations are forced to be described 
on the same footing. In the following, we will focus our description 
on direct diagonalization techniques to achieve the exact electron-
photon correlation, making use of standard electronic structure 
packages that have been thoroughly tested and are both freely and 
commercially available. In the last section (Section 3.2), we will 
briefly motivate cases where a self-consistent approach would be 
advantageous and outline the idea behind such schemes.

3.1.1   |   Adiabatic-Fock Basis

In the adiabatic electronic basis ∣ �� ⟩ (eigenstates of Ĥel) paired 
with the Fock (or number) basis for the photonic DOFs ∣ n⟩ (ei-
genstates of �Hph = (ℏ𝜔c�a

†
�a + 1

2
)), the matrix elements of the po-

laritonic Hamiltonian can be written as.

(15)Ĥpl = ĤPF − T̂R = Ĥel + Ĥph + Ĥel−ph + ĤDSE

(16)Ĥpl ∣ ℰj(R)⟩ = ℰj(R) ∣ ℰj(R)⟩

(17)

�HG
PF=

�HM+

mode∑
k

∑
p

[ℏ𝜔k

(
�a†
k
�ak+

1

2

)

+

mol∑
A

√
𝜔k

2
�k,p ⋅��A

(
RA

)(
�ake

ikx ⋅xA +�a†
k
e−ikx ⋅xA

)

+

mol∑
A,B

1

2ℏ

(
�k,p ⋅��A

(
RA

))(
�k,p ⋅��B

(
RB

))
e−ikx ⋅(xA−xB)]
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where {�, �, �} label the electronic adiabatic states (in 
the subspace defined by the el lowest-energy states), 
{n,m} label the photonic Fock states (in the subspace de-
fined by the F lowest-energy states), ê is the polariza-
tion unit vector of the electric field, 𝜀𝛼,n = E𝛼 + ℏ𝜔c

(
n +

1

2

)
 , 

�̃�� =
√

�c

2
�
(
ê ⋅ �̃��

)
, �nm =

�√
n�n,m−1 +

√
n + 1�n,m+1

�
, and 

𝛼𝛽 =
1

2ℏ
𝜆2

∑
𝛾

�
�𝜇𝛼𝛾 ⋅ �e

��
�𝜇𝛾𝛽 ⋅ �e

�
. Here, from the perspective of 

electronic structure, only the electronically adiabatic state ener-
gies E� and dipole matrix elements ��� are required as input. Note 
that in the last line of Equation (18), we have explicitly inserted the 
dependence on the nuclear positions R for clarity, but in general we 
choose to neglect writing such dependence for the sake of concise-
ness. The photonic basis is in principle infinite, since the harmonic 
oscillator has infinite eigenstates, so, similar to the electronic sub-
space which is truncated at el (Equation 7), we also introduce a 
truncation of the photonic Hilbert space including only the lowest 
F Fock states. The polaritonic Hamiltonian can be easily con-
structed via Kronecker products (e.g., �𝜇 ⊗ �a) of the sub-space op-
erators; however, it is worth noting the extreme sparsity afforded 
by the Fock basis. To make this clear from a visual perspective, the 
block-like nature of the matrix in this basis can be written as,

A few important properties of this matrix are as follows: (I) The 
F block diagonals Mn are composed of the diagonal energies 
and diagonal DSE elements ��,n +�� in addition to the off-
diagonal DSE elements ��. (II) The super- and sub-diagonal 
blocks are composed only of the matter dipole operator matrix 
elements �̃�� weighted by the photon number of the larger di-
agonal Fock state label n. Note here that for clarity, we have 
neglected the zero-point energy of the photonic mode and 
R dependence. One can easily see from the right-most side of 

Equation (19) that this matrix is extremely sparse, especially for 
larger number of included Fock basis states (needed for conver-
gence), so many approximate diagonalization schemes can be 
used which rely on the properties of sparse matrices, such as 
the Lanczos and Krylov subspace techniques [37–39], are able 
to return the lowest eigenvalues and eigenvectors without loss of 
physics but with a large computational speed-up.

Upon diagonalization of Equation (19), the polaritonic states are rep-
resented as linear combinations of the adiabatic-Fock basis states 
(with contracted notation ∣ 𝜓𝛼(R)⟩ ⊗ ∣ n⟩ = ∣ 𝜓𝛼(R),n⟩) as,

where Cj
�n =

⟨
��(R),n|Φj(R)

⟩
. Here, el and F are treated as 

convergence parameters such that the polaritonic observables 
are adequately converged (see more details in Section 3.1.3). The 
obvious first choice is the convergence of the lowest-energy ei-
genvalues of Equation (19). In our experience with realistic ab in-
itio systems, the convergence with respect to the number of Fock 
states is rapid, only requiring F ∼ 5 to obtain ~10 meV accuracy. 
However, due to the complicated and highly off-diagonal dipole 
matrix [40] in real molecules, the convergence with respect to elec-
tronic states is slow, possibly requiring el ∼ 100 or more states to 
achieve ~10 meV accuracy [41, 42]. In Section 3.2, we will briefly 
address other approaches, namely self-consistent schemes, to con-
verge complicated systems which contain many strongly dipole-
connected states as well as systems with large light-matter coupling 
that necessitate a more advanced and rigorous approach toward 
obtaining the polaritonic eigenstates in a self-consistent way.

Figure 1a–d presents excited state potential energy surfaces of 
formaldehyde as a function of the C  O bond length, showing 
the two lowest-energy excited states with ground-to-excited 
transition dipole along the C  O bond direction (which is 
parallel to the cavity polarization direction, ê). The bare elec-
tronic states (Figure 1a) show two local minima in the lower-
energy excited state as well as an avoided crossing (see inset). 
Upon coupling to the cavity, the local minima near C  O bond 
length of 1.50 Å can be removed with a negatively detuned 
cavity (�c = 6.5 eV, Figure 1b, color bar indicates the average 
photonic character ⟨ â†â⟩). Alternatively, the avoided crossing 
can be systematically reduced via a positively detuned cavity 
(�c = 9.5 eV, Figure 1c, see inset). An important feature of this 
change in the avoided crossing is that the character of both 
states involved is retained (i.e., mainly electronic excitation 
character) where both states exhibit negligible amounts of 
photonic contributions. Direct control over the relative energy 
of electronic states while maintaining their original char-
acter is a useful concept and design principle in processes 
controlled by non-adiabatic coupling between the excited elec-
tronic states.

Figure  1d presents the matter-projected polaritonic transition 
density in real space.

(18)
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where the photonic DOFs have been traced out, leaving only the 
electronic contributions. Here, �M

��
(r) = �∗

�
(r)��(r) is the ��th 

electronic transition density in real space r and ̂�0j = ∣ Φj ⟩ ⟨Φ0 ∣ 
is the 0jth polaritonic density operator. More details on calculat-
ing observables can be found in Section 3.1.3. The light-matter 
hybridization leads to superpositions between photon-dressed 
electronic states, which leads to various electronic transition den-
sities mixing through the polaritonic expansion coefficients in 
the adiabatic-Fock basis (see Equation 20). The matter-projected 
polaritonic transition density [41, 43] is only one of many ways to 
examine the character of the molecular part of the polaritonic ex-
citation. Other examples of matter-projected polaritonic observ-
ables are the difference density [44, 45], the natural transition 
orbitals [41], the transition density matrix [41], and others yet to 
be applied for the polaritonic case.

The changes of the polaritonic transition density are presented 
as a function of the coupling strength A0 (varied along the hor-
izontal axis of panel d) for the upper and lower polaritons, with 
a C  O bond length of 1.22 Å and at cavity energy �c = 7.92 eV. 
Under this configuration, the cavity is nearly resonant with 
the molecular adiabatic transition from the ground state to the 
�
A1

1
 state at the Franck-Condon points. Through the coupling-

dependent mixing of the various electronic transition densities, 
the polaritonic transition density is modified for each coupling 
strength, and the results showcase how tuning the cavity pa-
rameters can modify the local electronic properties to facilitate 
chemical reactions or photophysical changes.

Figure  1e–h shows the excitonic spectra of a (6, 5) single-
walled carbon nanotube (SWCNT) system inside an optical 
cavity for cavity frequencies �c = (e) 1

2
E11, (f) 3

4
E11, (g) E11, 

and (h) 5
4
E11, where E11 is the lowest energy bright transition 

in the pristine SWCNT. This system has been the subject of 
recent exploration by the polaritonic community and has 
yielded many interesting results [46–51]. It is well known that 
pristine SWCNTs are relatively dark to emission due to low-
lying, optically inactive electronic transitions. Here (panel e), 
the ∣ �0, 2⟩ photon-dressed ground state is in resonance with 
the bright ∣ E11 ⟩ ≡ ∣ �6, 0⟩ state. At resonance (panel g), the 
bright character of the E11 state is split nearly symmetrically 
as a function of the light-matter coupling strength, A0. For the 
negatively detuned cavity (panels e, f), the bright character 
is blueshifted. For a positively detuned cavity (panel h), the 
bright character is redshifted to below the manifold of low-
lying dark states, effectively brightening the emission of the 
SWCNT system without the need for chemical functionaliza-
tion [52–59] or solvent doping [60, 61].

3.1.2   |   Polarized Fock State Basis

In Section 3.1.1, we have described one possible basis for the rep-
resentation of the PF Hamiltonian (Equation 13). However, this 
is not the only choice. In fact, the adiabatic-Fock representation 
is useful in the weak coupling limit, since the basis is simply the 
basis that diagonalizes the unperturbed electronic (Ĥel) and pho-
tonic (Ĥph) Hamiltonians. In this sense, when the contributions 
of the interaction (Ĥe−ph) or dipole self-energy (ĤDSE) become 
large, the many adiabatic and Fock states will be needed in the 
description of the polaritonic wavefunctions. Other choices exist 
for the description of the photonic DOFs, such as the grid basis, 
which diagonalizes q̂c ∝ â

†
+ â and has been extensively used 

[5, 62–64].

FIGURE 1    |    (a) Adiabatic potential energy surface of the formaldehyde molecule's A1-symmetry excited states as a function of the C  O bond 
length, RCO. The inset presents the avoided crossing between the two adiabatic states. (b, c) Polariton excited state energy ℰj

(
RCO

)
−MIN

[
ℰ0

(
RCO

)]
 

of the formaldehyde-cavity hybrid system, with the coupling strength of A0 = 0.04 a.u., and a cavity frequency (b) �c = 6.5 eV and (c) �c = 9.5 eV. The 
cavity polarization is parallel to the C  O bond. For panels (b, c), the color map indicates the photonic character, and the cavity-free electronic states 
are shown as thick gray lines. The inset in panel c shows the reduction of the avoided crossing from 75 to 9 meV. (d) Polaritonic transition density 
�M
0j (r) of the upper (UP) and lower (LP) polaritons for A0 = 0, 0.01, 0.04, and 0.05 a.u. at �c = 7.92 eV with a C  O bond length of 1.22 Å. (e, h) Excitonic 

absorption spectra of a (6, 5) single-walled carbon nanotube (SWCNT) coupled to an optical cavity plotted as a function of the transition energy and 
coupling strength A0. The Lorentzian energy-broadening parameter is � = 0.1 eV. The cavity frequency is taken to be (e) �c = 1.0 eV (half-resonance), 
(f) �c = 1.5 eV, (g) �c = 2.0 eV (resonant with bright molecular transition, E11), and (h) �c = 2.5 eV. (Above) The polaritonic transition density at 
A0 = 0.0 a.u. is shown above the spectra for the ground-to-bright E11 transition. Panels (a)-(h) were taken from Reference [41].
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The choice of basis can significantly enhance computational 
efficiency or reduce the conceptual complexity of a problem, 
depending on the light-matter coupling strength and cavity 
frequency parameters. One such basis, aimed for use in the 
strong light-matter coupling regime, is the recently proposed 
polarized Fock State (PFS) basis introduced in Reference 
[65]. Here, the Pauli-Fierz Hamiltonian is rewritten using 
an entangled electronic-photonic basis, where the electronic 
states are represented by the eigenstates of the dipole operator ∑

�̂ �̂̂ = ���(R) ∣ �� ⟩ ⟨�� ∣ and is referred to as the Mulliken-
Hush (MH) representation (Equation  11). The polaritonic 
Hamiltonian (see Equation 13) in the MH basis can be writ-
ten as,

where q0
�
(R) = −

�

�c

⋅ ���(R). Considering the Hamiltonian of 
the bare photonic field, Ĥph =

1

2

(
p̂
2
c + �2

c q̂
2
c

)
, one may notice 

that the QED Hamiltonian is simply shifted in the position co-
ordinate q̂c by the value − q0

�
(R) and is hence a shifted harmonic 

oscillator (or “polarized Fock state” since the field is polarized 
by the molecular electric multipole), unique for each MH elec-
tronic state (∣ �� ⟩). At zero light-matter coupling or infinitely 
large cavity frequency, the original MH and un-shifted (or “vac-
uum”) Fock states are returned. The light-matter Hamiltonian 
(Equation  22) can be now block-diagonalized using the PFS 
basis 

��n�(R)⟩
�
 for each MH state ∣ �� ⟩, which is defined as,

where b̂
†

�
 (b̂�) is the creation (annihilation) ladder operator for 

the shifted harmonic oscillator specific to the �th MH state. 
Defining the total basis as the tensor product of the MH states 
and the PFS basis, ∣ 𝜙𝜈(R)⟩ ⊗ ∣ n𝜈(R)⟩ ≡ ∣ 𝜙𝜈(R),n𝜈(R)⟩, 
which is an entangled light-matter basis since the molecular 
dipole appears in the definition of the shifted Fock state, the 
matrix elements of the light-matter Hamiltonian can be ex-
pressed as

Note here that we have dropped the explicit dependence on the 
nuclear position R for clarity. In this basis, the diagonal matrix 
elements are the diagonal MH energies V�� (Equation  12) and 
PFS harmonic oscillator eigenvalues �c

(
n� +

1

2

)
, while the off-

diagonal contributions are now the MH coupling elements V�≠� 
reduced in magnitude by the overlaps ⟨n��m�⟩ ∈ [ − 1, 1] be-
tween two PFS harmonic oscillator states with n� photons and 
m� photons associated with two different electronic MH states 
�� and ��. In this compact basis, the light-matter coupling and 
dipole self-energy are all neatly housed in the MH coupling and 
PFS overlaps, 

⟨
n�|m�

⟩
V��, and thus all interactions between 

light and matter DOFs are carried through this single term. Note 
also that the calculation of the PFS overlaps is analytic and can 
be written as,

where Lg is the associated Laguerre polynomial and 
� =

�
q0
�
− q0

�

�
∕
√
2�c with q0

�
=

�

�c

⋅ ���. This basis is expected 
(and has been explicitly shown for model systems [65]) to effi-
ciently converge the photonic basis, especially when the per-
manent dipoles ��� in the MH basis are large. For additional 
discussion on the PFS basis, see Reference [65]. Further, a 
similar basis has been used in quantum optics and recently in 
the polariton communities, which is referred to as the gener-
alized coherent state (GCS) basis [45, 66–68], which also relies 
on the molecular dipole information to define a new photonic 
basis. The polaritonic Hamiltonian in the PFS basis is, in gen-
eral, not as sparse as that of the adiabatic-Fock matrix (see 
Equation  19) since all shifted Fock states between different 
MH electronic states �� are connected via their shifted har-
monic oscillator overlaps, so sparse matrix techniques cannot 
be as readily applied. The main advantage of the PFS basis is 
that many of the overlaps will be near zero due to the widely 
varying magnitudes of the molecular dipole ��� elements. In 
this way, the PFS basis, in principle, will allow one to use 
many fewer shifted Fock states as a basis than the vacuum 
Fock states used in the adiabatic-Fock basis (see Section 3.1.1) 
and therefore may perform more efficiently in many cases. 
More rigorous testing is required for real, ab initio molecular 
systems where the dipole matrices are extremely non-diagonal 
in the many-state adiabatic basis compared to many of the 
tested model systems, such as the harmonic oscillator or the 
double-well potentials, where the dipole matrix is nearly diag-
onal, hence the adiabatic states are already almost equal to the 
MH states themselves. In our experience, the photonic basis 
is more easily converged in ab  initio systems compared to 
the convergence of the electronic basis, which often requires 
many states to provide a useful convergence (see Section 3.2 
for additional discussion).

Figure 2 presents the polariton potential energy surfaces predicted 
by various quantum optics model Hamiltonians for the model LiF 
molecule shown in Figure 2a,b (the details of the model can be 
found in Reference [65]). Here, only two diabatic states were con-
sidered, which are denoted as the ionic state ∣ I⟩, and covalent state 
∣ C⟩. These two diabatic states are coupled through a diabatic cou-
pling VIC(R) (dotted yellow line in Figure 2a) that causes a splitting 
(avoided crossing) near the anti-crossing of the diabatic potentials 
VC(R) and VI(R) (solid red and blue line in Figure 2a, respectively). 
The adiabatic electronic states, ground ∣ G(R)⟩ and excited ∣ E(R)⟩ 
states can be obtained by diagonalizing the electronic Hamiltonian 
Ĥel = VI(R) ∣ I⟩⟨I� + VC(R)�C⟩⟨C ∣ + VIC(R)( ∣ I⟩⟨C� + �C⟩⟨ I ∣ ) 
at each R (see Equation 12).

The electronic dipole matrix at each R is diagonal in this dia-
batic representation. This is because the diabatic states ∣ I⟩ and 
∣ C⟩, also referred to as the Mulliken-Hush diabatic states, are 
by definition the eigenstates of the electronic transition dipole 

(22)̂pl= ̂el+
p̂
2
c

2
+
�
�

�2
c

2
[q̂c+q

0
�
(R) ∣��⟩⟨�� ∣ ]

2

1

2

�
�p
2
c+𝜔2

c

�
�qc+q

0
𝜈
(R)

�2�
∣n𝜈(R)⟩ ≡

�
�b
†

𝜈
�b𝜈+

1

2

�
ℏ𝜔c ∣n𝜈(R)⟩

=
�
n𝜈+

1

2

�
ℏ𝜔c ∣n𝜈(R)⟩

(23)

(
�pl

)
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=
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+
⟨
n𝜇|m𝜈

⟩
V𝜈𝜇

(
1−𝛿𝜈𝜇𝛿n𝜈m𝜇

)

(24)

⟨n𝜀�m𝜈⟩=(−2𝜉)n−me−2𝜉
2

�
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∗Lg

�
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�
, for m<n
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operator (see discussion around Equation  10). Figure  2b pres-
ents the matrix elements of �̂ in both the diabatic (solid lines) 
and the adiabatic (dashed lines) representations. As expected, 
the permanent dipole for the ionic state ∣ I⟩ (corresponding to 
Li+F−) �I(R) linearly increases, while the permanent dipole for 
the ∣ C⟩ state (corresponding to covalently bonded Li  F) �C(R) 
remains nearly zero with increasing interatomic separation 
R. The adiabatic states switch their characters around R ≈ 13.5 
a.u., as a result, the adiabatic permanent dipole switches in that 
region, and �eg(R) peaks at R ≈ 13.5 a.u.

Figure 2c shows the polaritonic potential energy surfaces for a 
cavity frequency �c = 1.5 eV and light-matter coupling strength 
A0 = 0.127 a.u. The coloring indicates the average photon num-
ber of the polaritonic state. Given an initial excitation from 
∣ G(R), 0⟩ → ∣ E(R), 0⟩ (vertical black arrow) at the ground state 
minimum (outside the cavity's influence), the time-dependent 
average photon number was calculated (see Reference [65] 
for more details) and shown in Figure  2d. Thus, through nu-
clear motion and light-matter coupling, excited photons can be 
generated.

3.1.3   |   Calculating Relevant Polaritonic Properties

Exciton-polaritons have many characteristic features, such as 
the Rabi splitting observed in linear spectroscopy when the cav-
ity frequency is in resonance with a well-separated electronic 
transition (e.g., historically found in single-atom spectroscopy). 
Of course, there are many spectroscopic footprints of polariton 
formation that are of interest to the community for finding and 
exploring the physics of such quasi-particles; however, the spec-
troscopic results available experimentally may not be the most 

informative for probing local phenomena such as chemical re-
actions, charge transfer, or exciton diffusion. In these examples, 
the main features are stored in the excitonic part of the polari-
ton, which is usually not directly visible in most experimental 
configurations due to the fast photon loss mechanisms and mir-
ror absorption. However, examining the photonic contribution 
to the spectroscopy will give indirect information regarding the 
changes to the excitonic part of the polaritonic wavefunctions. 
In this section, we will outline the necessary steps to compute 
observables of polaritonic states using the direct diagonalization 
approach already discussed. We will focus on the local excitonic 
changes due to the formation of hybrid light-matter states, which 
are directly relevant to the local chemical reactivity, excited-state 
charge transfer, and exciton diffusion processes.

Any polaritonic observable Ô can be described with any basis of 
light and matter, for example, adiabatic-Fock (Section 3.1.1), PFS 
(Section 3.1.2), or any other. Note that this is a more general case 
than was done in Equation (21). Here, we will choose the adiabatic-
Fock basis for conceptual simplicity, but all of the main points are 
easily transferable to another basis by unitary transformation. The 
matrix elements of the polaritonic observable Ô can be expanded 
in the adiabatic-Fock basis (Equation 20) as,

where Ck
�m

=
⟨
�� ,m|Φk

⟩
. Note here that since the polari-

tonic Hamiltonian, Equation  (15), is real-valued, then the 

(25)

⟨
Φj| Ô|Φk

⟩
=

el∑
��

F∑
nm

Cj
�nC

k
�m

⟨
�� ,n| Ô|�� ,m

⟩

=

el∑
��

F∑
nm

Cj
�nC

k
�m

⟨
��| Âel|��

⟩⟨
n| B̂ph|m

⟩

FIGURE 2    |    (a) Diabatic Mulliken-Hush (MH) potentials VI (R) (red) and VC (R) (blue), with diabatic coupling VIC (gold line). (b) Matrix elements 
of �̂ in the adiabatic representation (dashed curves) �gg (pink), �ee (cyan), and �eg (gold), as well as in the diabatic representation (solid lines) �II (red) 
and �CC (blue). Here �II = �I (red) and �CC = �C in the MH representation since no off-diagonal dipole elements are present in the dipole operator. 
(c) Polaritonic potentials color-coded according to the number of photons with four relevant avoided crossings labeled as R0, R1, R2, and R3. The black 
solid vertical arrow indicates the initial photoexcitation, and the dashed lines illustrate the dynamics of the hybrid system. (d) Time-dependent pho-
ton populations. For panels (c, d), the light-matter coupling strength is set to A0 = 0.127 a.u. with a cavity frequency of �c = 1.5 eV. Panels (a)-(d) were 
taken from Reference [65].
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expansion coefficients in the adiabatic-Fock or PFS basis will 
also be real-valued, that is, 

(
Ck
�m

)∗

= Ck
�m

. In general, any po-
laritonic observable, even restricting to ground-to-excited ele-
ments, are linear combinations of all matrix elements present 
in the electronic and photonic subs-systems. As such, highly 
non-trivial mixing of matrix elements can appear when the 
light-matter coupling becomes large. Here �O = �Ael ⊗ �Bph are 
factorized electronic and photonic operators, respectively, 
which is not a requirement of Ô but is often the case for sim-
ple, non-entangled observables, such as the average photon 
number �O = �ℐel ⊗�a

†
�a [69]. Another example is linear spec-

troscopy where the polaritonic dipole matrix elements can be 
expressed as ��𝜇pol ∼ ��𝜇el ⊗ �ℐph + �ℐel ⊗�qc. In experiment, the 
relative magnitudes of the excitonic and photonic contribu-
tions are highly dependent on the experimental configuration 
and are usually understood to be dominated by the photonic 
contributions (i.e., keeping only the ̂qc term in ̂̃�pol ) and is often 
called the “visibility spectrum” or “transmission spectrum.” 
[70] In this case, the local information regarding the excitonic 
spectrum is present only in an indirect sense. However, often 
one is interested in examining the changes to the excitonic 
subsystem for purposes of exploring electronic reorganization 
through the mixing of electronic adiabatic states via hybrid-
ization with light [17, 41, 43, 44, 67, 71–74]. As such, to achieve 
an observable that will give direct information on the exci-
tonic subsystem, we will ignore the second term in the polari-
tonic dipole operator to exclude photonic contribution, and in 
this way, we have traced out the photonic DOFs. An arbitrary 
matter-projected polaritonic operator can now be written as,

where we have made use of the orthogonality of the vacuum Fock 
states, ⟨n�m⟩ = �nm. For example, one may be interested in the 
polaritonic transition density [41, 43, 75] �M

0j
(r) (see Equation 21) 

or the polaritonic difference density [17, 44, 45] Δ�(r) = �M
jj
− �jj 

of the molecule inside the cavity.

With the pQED approach, chemical reactions can be explored. 
Several theoretical studies have recently shown [17, 19] that the 
cavity can completely switch selectivity of well-known chemical 
reactions. If successful, cavity QED could revolutionize funda-
mental knowledge of organic chemistry [72] by understanding 
the cavity-induced modifications of electronic degrees of free-
dom and their interactions inside the cavity [76, 77]. One such 
reaction is the electrophilic bromination of nitrobenzene [17] 
shown in Figure 3a. This is a textbook reaction [78, 79], where 
only the meta-substitution product is possible, and the ortho-
substituted (or para-substituted) product is not observed experi-
mentally. This has been well-explained due to the stability of the 
catatonic active complex PhNO2-Br+, for example, using the res-
onance structure or using ab initio calculations. By coupling this 
reaction to an optical cavity which mixes the character of the 
ground and excited electronic states, it was observed that one 
can fundamentally change the selectivity of this reaction, mak-
ing the ortho-substituted product possible. Figure  3b presents 

the relative energy difference between the meta-substituted 
and the ortho-substituted catatonic active complex PhNO2-Br+, 
where the blue region of the figure indicates where the meta-
substitution is more stable, and red region of the figure indi-
cates where the ortho-substitution is more stable. Figure  3c,d 
presents the ground state density difference (Δ�(r), defined 
below Equation 26 using Equation 21) for the meta- and ortho-
substituted intermediate coupled inside the cavity and outside 
the cavity. This density difference aids in the understanding of 
the cavity QED effects on modified relative energies of the in-
termediate species. This observable has a close connection with 
the intuitive resonance structure arguments, since the differ-
ence density shows how the electronic distribution is modified 
by the presence of the cavity [17]. As such, coupling to the cavity 
enables ortho-substituted nitro-benzene, thus making impossi-
ble reactions possible. Additionally, Reference [17] predicts that 
the experimental condition for this change requires the cavity 
frequency of �c = 1.8 eV and the field intensity of 2 − 10 V/nm, 
both of which can be accomplished with the state-of-the-art 
plasmonic cavity designs [29, 30, 80].

3.2   |   Iterative Approaches

In the previously discussed QED approach, one is required to 
compute the many-body electronic states 

���� ⟩
�
 for use in a di-

rect diagonalization procedure of the Pauli-Fierz Hamiltonian 
(Equation  18) coupled with some basis for the photonic DOFs 
(e.g., Fock/number states, polarized Fock states) to arrive at a 
description of the polaritonic states in these choices of basis. 
This method, in the infinite basis limit, provides the exact re-
sults for the polaritonic states, capturing the exact correlation 
between the electronic and photonic DOFs. The primary limita-
tion of this approach is that the electronic basis converges very 
slowly for strong light-matter coupling strengths, requiring the 
calculation of highly excited electronic states (~100) to converge 
even the lowest polaritonic energies [41, 42]. Contrary to this, 
the photonic basis only requires a relatively small number of 
basis states to converge for realistic, ab initio systems [17, 41].

Due to this limitation of the direct diagonalization approach, the 
community seeks other approximations in line with previous 
electronic structure approaches that now include the photonic 
interactions to some degree to arrive at a self-consistent de-
scription of the problem. In principle, this approach will require 
many fewer basis states than a single, direct diagonalization, 
but with similar approximations for the electron-photon and 
photon-photon interactions that are intrinsic to the many-body 
method of choice. In this way, these approaches will be able 
to capture the cases where strong light-matter coupling is too 
strong to utilize the direct diagonalization approach with a fro-
zen basis. We define these self-consistent analogues to the com-
monly used electronic structure approaches as scQED-X, where 
X can be any of the standard approaches, such as Hartree-Fock 
theory (HF) [45, 67, 68, 72, 81], density functional theory (DFT), 
linear response time-dependent DFT (LR-TD-DFT) [43, 82, 83], 
coupled cluster (CC) [44, 45, 68, 71], configuration interaction 
(CI) [67, 84], full configuration interaction (FCI) [85], second-
order Møller–Plesset perturbation theory (MP2) [86], quantum 
Monte Carlo (QMC) approaches [87–89], and density matrix 
renormalization group (DMRG) [90].

(26)

�O
M

jk =
⟨
Φj| �Ael ⊗ �ℐph|Φk

⟩
=

el∑
𝛼𝛽

F∑
n

Cj
𝛼nC

k
𝛽n

⟨
𝜓𝛼| �Ael|𝜓𝛽

⟩
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3.2.1   |   Generalized Coherent State Transformation

In a similar manner as done in the construction of the polar-
ized Fock states in Section 3.1.2, the generalized coherent state 
(GCS) transformation is a specific instance of polarizing the 
photonic basis by a parameter proportional to the molecular 
dipole moment. The GCS basis has been used in many recent 
works exploring the self-consistent solution to the ground po-
laritonic state [44, 45, 68, 72]. The unitary transformation can 
be written as,

where the GCS shift parameter  is chosen to be,

where 
⟨
�̂
⟩
GS

 is the expectation value of the molecular dipole in 
the ground state. For this choice of GCS parameter, one can re-
write the Pauli-Fierz Hamiltonian, Û

†

GCSĤplÛGCS = Ĥ
GCS

pl ,

in terms of the deviation of the molecular dipole from its expec-
tation value in the ground state Δ�̂ = �̂ −

⟨
�̂
⟩
GS

 and its variance (
Δ�̂

)2. In the following section (Section 3.2.2), we will see that ⟨
Δ�̂

⟩
SD

= 0 for many-body methods that employ only a single-
determinant (SD) wavefunction, such as Hartree-Fock (SD → HF) 
or density functional theories (SD → DFT), allowing for a drastic 
simplification of the coupled electron-photon Hamiltonian. Note 
that contributions from the dipole self-energy (DSE, final term in 
Equation 29) survive, since 

⟨(
Δ�̂

)2⟩
SD

=
⟨
�̂
2
⟩
SD

−
⟨
�̂
⟩2
SD

≠ 0, 
even for a single-determinant approach.

It is important to note that simply using the GSC transfor-
mation does not yield a fully origin invariant Fock matrix or 
single-particle orbital energies. Reference [72] discusses such 
drawbacks and proposes the so-called strong coupling variant of 
the Hartree-Fock theory (SC-QED-HF), which transforms the 
Pauli-Fierz Hamiltonian in a similar way as the GSC rotation 
but now contains orbital specific rotations, similar to the polar-
ized Fock state basis (see Section  3.1.2). Since the orbitals are 
involved and the transformation depends on the dipole operator, 
the single-particle Hamiltonian is first rotated to the dipole basis 
(similar to Equation 12 but for single-particle molecular orbitals 
instead of many-body states).

Furthermore, one should note that this choice of  
(Equation 28) or the case of SC-QED-HF in Reference [72] only 
applies in the limit of infinite light-matter coupling. Recent 

(27)ÛGCS = eâ†−∗â

(28) = −
� ⋅

�
�̂
�
GS√

2�c

(29)

�H
GCS

pl = �Hel + ℏ𝜔c

(
�a
†
�a +

1

2

)
+

√
𝜔c

2

(
� ⋅ Δ��

)(
�a
†
+ �a

)
+

1

2ℏ

(
� ⋅Δ��

)2

FIGURE 3    |    (a) Schematic of possible reaction pathways of the electrophilic bromination of nitrobenzene. (b) Relative energy of the polaritonic 
ground states between ortho-PhNO2-Br+ and meta-PhNO2-Br+ intermediates with various cavity polarization directions. Ground state density dif-
ference between coupling to the cavity and outside the cavity case, for (c) the meta-cationic intermediate and (d) the ortho-cationic. Panels (a)-(d) 
were taken from Reference [17].
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works have performed a variational optimization procedure 
on the shift parameter , for example, choosing OPT under 
the condition �ℰ(R)

� = 0, which further minimizes the energy of 
the ground state [86, 91]. This minimization is done on top of 
the self-consistent iterations and can be interpreted as an ad-
ditional DOF for the self-consistent procedure. Given this ro-
tation of the Hamiltonian, both the DSE as well as the bilinear 
interaction term would remain, even for single-determinant 
approaches, but would be scaled (or partially shifted away) by 
some optimal factor proportional to Δ� = � −OPT and (Δ�)2, 
respectively. This partial transformation can be interpreted as 
a rotation that pushes the maximal amount of complicated 
many-body electron-photon and photon-mediated electron–
electron correlations into the mean-field solution of the QED 
problem.

3.2.2   |   Single-Determinant Ground Polaritonic States

Assuming a single-reference (i.e., single-determinant) wave-
function for the electronic DOFs ∣ HF⟩ (taken as Hartree-Fock 
determinant) for the polaritonic ground state in the GCS basis 
(see Section 3.2.1), then the deviation in the molecular dipole 
Δ�̂ = �̂ −

⟨
�̂
⟩
GS=HF

= 0 since 
⟨
HF| �̂|HF⟩ =

⟨
�̂
⟩
GS=HF

, effec-
tively removing the bilinear coupling term in the GCS light-
matter Hamiltonian (Equation  29). However, the DSE term 
remains since 

⟨(
Δ�̂

)2⟩
HF

≠ 0 even for the single-determinant 
approximation. To be clear, for approaches with multiple de-
terminants (i.e., the use of excited Slater determinants in a 
CIS-like expansion), the direct coupling term will survive. For 
a single-reference ground state, Equation (29) can then be sim-
plified to,

where the only photonic operator that appears is that of the pho-
tonic Hamiltonian �Hph = ℏ𝜔c

(
�a
†
�a + 1

2

)
 whose eigenstates are 

the vacuum Fock states ∣ ñ⟩ in the rotated GCS basis (which have 
the same frequency but with a shift in position qc by  compared 
to the vacuum Fock states). One should note that the Pauli-Fierz 
Fock states can be re-obtained by applying the reverse unitary 
coherent state transformation ̂UGCS (Equation 27) to the resulting 
Fock states after the self-consistent solution (discussed below) of 
Equation (30) has been achieved, whose average photon number 
will depend on the self-consistent solution of the dipole moment ⟨
�̂
⟩
HF

= 0. suggesting that molecules with strong ground-state 
dipole moments will exhibit stronger polaritonic effects [44, 92].

The ground polaritonic state can be defined as the ∣ HF, 0̃⟩ 
wavefunction. Neglecting the photonic zero-point energy (i.e., ⟨
�0| �Hph|�0

⟩
=

ℏ𝜔c

2
), the electron-photon Fock matrix can be writ-

ten as,

where o, v, and (p, q) are occupied, virtual, and any molecu-
lar orbitals, respectively. Noting that the solution to the bare 

molecular Fock matrix is achieved if ℱHF
ov = 0, the scQED-HF 

energy can be written as [45],

which is then variationally minimized in a self-consistent way, 
updating the coherent shift  at each iteration. More details on 
the scQED-HF scheme in varying complexity can be found in 
References [45, 67, 72].

Following a similar procedure, the single-determinant nature 
of density functional theory can be used to simplify the Pauli-
Fierz Hamiltonian to that of the GSC representation without 
the direct coupling term. However, due to the ad hoc nature 
of density functional theory, there are many ways to approxi-
mate the exchange-correlation kernel to arrive at various levels 
of corrections to the electron–electron, electron-photon, and 
photon-photon correlations. In fact, the simplest choice (al-
beit the least motivated) is to ignore the electron-photon and 
photon-photon terms in the exchange-correlation kernel. In 
this case, the only responses of the single-particle orbitals {p, q} 
are those induced by the dipole self-energy contributions (the 
last term in Equation 31). This is the simplest approach since 
no novel exchange-correlation functionals need to be used/
created, and one can rely on the already-developed, high-level 
functionals for the complicated electron–electron correlation, 
such as CAM-B3LYP [93], �B97XD [94, 95], and SCAN [96, 97]. 
Recently, novel exchange-correlation functionals for electronic 
and photonic DOFs have been constructed based on a variety 
of frameworks, such as the optimized effective potential (OEP) 
approach [98, 99], photon-free effective Hamiltonians [100], 
and the fluctuation-dissipation theorem approach [101]. In any 
case, the ground state energy can be loosely written as

where the last two terms (or more specifically, the exchange-
correlation functionals of the density E[�]), in addition to the 
first term for standard DFT, are not known explicitly and must 
be approximated [102]. Note that a fraction of Hartree-Fock 
exchange can still be included in the electron–electron ex-
change term within EDFT. For more details, we refer the reader 
to the original references regarding density functional theory, 
References [99–101], and, as well as others who have explored 
and utilized similar Hartree-Fock [44, 45, 67, 68, 72, 103] and 
density functional theories for electron-photon systems [43, 
62, 75, 82, 98, 101, 104–114].

3.2.3   |   Addressing Correlations and Excited States

Capturing higher-order correlations between electrons has a well-
defined procedure using post-HF approaches, such as configura-
tion interaction (CI) or coupled cluster (CC) expansions in the basis 
of excited Slater determinants. The polaritonic community has 
also used such wavefunction approaches for computing the polari-
tonic electronic-bosonic states [40, 44, 45, 67, 68, 71, 73, 74, 91, 115] 
in addition to other approaches such as time-dependent DFT 

(30)�H
GCS

pl = �Hel + ℏ𝜔c

(
�a
†
�a +

1

2

)
+

1

2ℏ

(
� ⋅Δ��

)2

(31)

pq=HF
pq +

1

2ℏ

[
Nocc∑
o

(
� ⋅�po

)(
� ⋅�oq

)
−

Nvir∑
v

(
� ⋅�pv

)(
� ⋅�vq

)]

(32)

EQED−HF = EHF +
1

2ℏ

⟨(
� ⋅Δ��

)2⟩
HF

= EHF +
1

ℏ

∑
ov

(
� ⋅�ov

)2

(33)EQED−DFT = EDFT + Eel−phex−corr + Eph−phex−corr
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(TD-DFT) [43, 74, 75, 82, 92, 99, 107, 109], reduced density ma-
trix (RDM) theory [116], quantum Monte Carlo [87, 88], Møller-
Plesset Theory (MP-n) [86], and density matrix renormalization 
group (DMRG) [90, 117–119]. While mean-field approaches (e.g., 
HF, DFT) yield useful ground state information, even in the ab-
sence of correlation, it is not yet clear to what extent the correlated 
excitations of the matter and photonic DOFs will impact the re-
sults, even in the ground polaritonic state. Further, the need for 
polaritonic excited states is ubiquitous in the photophysics and 
photochemistry of excited polaritons. Additionally, the determina-
tion of the light-matter coupling strength is often predicated on the 
magnitude of the Rabi splitting between the light and matter exci-
tations at resonance. While our goal is not to outline all possible 
many-body approaches that go beyond mean-field, we will briefly 
outline and discuss QED coupled cluster theory (QED-CCSD) 
since in the electronic structure community coupled cluster theory 
is one of the most widely used approximations for capturing elec-
tronic correlation in a wide variety of molecules.

The CC ansatz for the ground-state polaritonic wavefunction is 
[45, 85]

where ∣ HF
0

⟩ is the polaritonic ground state calculated at the un-
correlated HF level (see Equation 32) and ∣ �HF ⟩ is the uncorrelated 
HF electronic ground state. Here, ∣ 0⟩ is the photon vacuum state 
in the rotated coherent state representation with ∣ 0⟩ = Û ∣ 0⟩ 
(see Equation 27) at the optimal coherent state parameter  after 
the HF self-consistent procedure. ̂  is the cluster operator (not to be 
confused with the kinetic energy operator T̂R or T̂r in Equation 1). 
This cluster operator involves a sum of electronic, photonic, and 
mixed electron-photon excitations as follows

where �̂� represents creation and annihilation operators for an 
�th-order electronic excitation. For example, with � = 1 (sin-
gle electronic excitation), �̂ai = ĉ

†

aĉi excites an electron from 
an occupied orbital i to an unoccupied orbital a. Similarly, 
� = 2 implies �̂abij = ĉ

†

aĉ
†

bĉiĉj which will excite two electrons 
i→ a and j→ b, respectively. The photon excitation operator 
is commonly written as the standard photonic ladder opera-
tor �̂n =

(
â
†
)n

 [44, 45]. It should be noted that this is not the 
only way to define the bosonic excitations. The authors of 
Reference [85] defined an idempotent form of the excitation 
operator as �̂n = ∣ n⟩ ⟨0 ∣ for a finite number of Fock states 
{�n⟩} = �� 0⟩ , � 1⟩ , … , �NF ⟩

�
. However, the two cases are not 

formally equivalent, and a rigorous comparison of the quality 
of the results has not been performed. In a similar manner, 
the coupled electron-photon excitation operator �̂ �̃ñ can be 
written, for example, as ĉ†aĉi

(
â
†
)n

 for a one-electron electronic 
excitation coupled to an nth-level photonic excitation while 
ĉ
†

aĉ
†

bĉiĉj

(
â
†
)n

 will provide the two-electron and nth-level pho-
tonic coupled excitations. Each of these excitation operators is 
connected with a unique cluster amplitude 

{
t� , tn, t�̃,ñ

}
.

The amplitudes t�, tn, and t�̃ñ can be solved by projec-
tion (Equation  36). This requires the evaluation of the 

similarity-transformed Hamiltonian operator ĤPF = e−̂ ĤPFe
̂ , 

where ĤPF is expressed in Equation (13) and is usually rotated 
to the coherent state basis (see Section 3.2.1). This leads to the 
ground state coupled cluster energy CC

0
 as a solution to the fol-

lowing set of equations,

with ∣ {Γ} ⟩ = �̂{Γ} ∣ HF0 ⟩, where {Γ} =
{
�,n, �̃ñ

}
 is the set of 

possible excitations in the cluster operator ̂  (Equation  35) 
leading to the set of projection equations 

{Γ

}
. These projec-

tions lead to the equations for the excitation amplitudes t{Γ} 
and are usually solved in a self-consistent manner. A similar 
CC projection formalism can be found in any electronic struc-
ture textbook [120].

There are many different notations for the methods developed 
by changing the highest level of excitation for each term in the 
cluster operator. The most straightforward notation is CCSD-
jm-n, which implies that the electronic DOFs are treated up to 
double (SD) excitations in the cluster operator, the photonic ex-
citation is limited to n levels, and the mixed excitation is set to 
j electronic and m photonic. As per usual CC theory, the cutoff 
value of the excitation levels leads to effects that include even 
higher excitations through the exponential treatment of the clus-
ter operator ̂ , thus effectively outperforming similar methods 
such as CI with the same excitation level cutoff. However, due to 
the (N6∗mode

F

)
 scaling (with N electrons/basis functions and 

modes cavity modes each with F Fock states) of the scQED-CC 
method in general, including more than two Fock states has been 
a challenge even for small molecular systems [18, 44, 45, 121], and 
limited study has been performed including up to 10 Fock states 
for a half-filled four-site Hubbard model with direct comparison 
to the full configuration interaction result [85]. This will have un-
favorable scaling on multi-mode cavities with quasi-continuous 
dispersion relations (where Nmode > 10). Nevertheless, QED-
CCSD remains one of the most accurate [85, 87, 88] approaches 
for simulating ab initio polaritons.

4   |   Polariton Quantum Dynamics

In this section, we address and outline various approaches to 
simulate the quantum dynamics of polaritons at various levels of 
theory. The essential task is trying to solve the time-dependent 
Schrödinger equation (TDSE)

where ∣ Ψ(t)⟩ is the total quantum state of the electronic-
nuclear-photonic hybrid system. The time-evolution of such a 
system is governed by the Pauli-Fierz QED Hamiltonian ĤPF 
(Equation  13). Depending on this complexity of the molecular 
system, one may perform the dynamics exactly as dictated by the 
TDSE (which may be prohibitively expensive for more than a few 
nuclear DOFs) or resort to various approximations, such as mixed 
quantum-classical (MQC) approaches, semi-classical approaches, 
various approximate master equation approaches (e.g., Lindblad, 

(34)∣CC0 ⟩= e� ∣HF0 ⟩= e� ��𝜓HF⟩⊗� 0⟩
�

(35)̂ =
∑
�

t��̂� +
∑
n

tn�̂n + �̃, ñ
∑̃

t�̃ñ�̂ �̃ñ

(36)
⟨0| Ĥ| 0

⟩
=CC0 ,

{Γ

}
=
⟨{}| Ĥ| 0

⟩
=0

(37)iℏ
𝜕

𝜕t
∣ Ψ(t)⟩ = �HPF ∣ Ψ(t)⟩
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Redfield, etc.), or approximate wavefunction approaches (e.g., 
multi-configurational Hartree-Fock). In the following discus-
sion, we will briefly introduce an exact method for solving po-
lariton quantum dynamics (Section 4.1) as well as a few popular 
mixed quantum-classical approaches (Section 4.2). Additionally, 
we will address the calculation of the exact nuclear gradients and 
their effects on the quantum dynamics (Section 4.3).

4.1   |   Exact Polaritonic Quantum Dynamics

We begin by briefly discussing how to solve Equation (37) ex-
actly, thus giving an exact solution to the polaritonic quantum 
dynamics. There are, in principle, many possible strategies for 
exact quantum dynamics propagation, and we only outline one 
of the most commonly used strategies based on the Born-Huang 
expansion [122] and subsequent propagation in the energy 
basis. We describe the total wavefunction of the electron-
photon-nuclear DOFs using the adiabatic-Fock basis as,

where 𝜒𝛼n

�
R𝜉

�
=
�
R𝜉 ,𝜓𝛼 ,n�Ψ

�
= (⟨R𝜉 ∣ ⊗ ⟨𝜓𝛼

�
R𝜉

�
∣ ⊗ ⟨n� )�Ψ⟩ is the 

��nth expansion coefficient and G is the number of grid points 
for the nuclear basis set in a grid or spectral basis (e.g., discrete 
variable representation) [123]. Here 

����(R)⟩
�
 are the elec-

tronic adiabatic states at nuclear configuration R, {�n⟩} are the 
photonic Fock states, and 

��R� ⟩
�
 are the basis functions of the 

grid describing the nuclear DOFs.

Within this representation, the matrix elements of the total 
light-matter Hamiltonian ĤPF = T̂R + Ĥpl are written as,

where the individual terms in Ĥpl (i.e., ̃���, �nm, and �� ) were defined 
previously in Equation (18). Additionally, da

��

(
R�

)
=
⟨
��|∇a|��

⟩
 

is the non-adiabatic coupling and Da
��

(
R�

)
=
⟨
��|∇2

a|��

⟩
 is the 

second-derivative coupling, which were defined in Equations (4) 
and (5), respectively. NR is the number of nuclear DOFs in the sys-
tem. We refer the reader to References [123, 124] for evaluating 
quantities (e.g., the nuclear kinetic energy) using the grid or spec-
tral basis for the nuclear DOFs.

Upon diagonalization of this Hamiltonian ĤPF = T̂R + Ĥpl 
(Equation  39), the electronic-nuclear-photonic eigenstates can 
be obtained as,

The electronic-nuclear-photonic wavefunction can then be prop-
agated in time as,

where ℰp is the pth eigenvalue and cp is the projection onto initial 
total wavefunction onto the pth eigenstate ∣ ℰp ⟩,

where ∣ Ψ(t = 0)⟩ is an arbitrary initial condition (in the same 
form as Equation 38). Additional details on the exact propaga-
tion can be found in References [63, 125, 126].

There are many ways in which to evaluate the exact (or ap-
proximately exact) dynamics of a quantum mechanical sys-
tem in addition to the one outlined above, which may be one 
of the simplest to write down. However, other approaches 
exist,  such as the Multi-configuration time-dependent 
Hartree  (MCTDH) [64, 127–130], the exact factorization 
(XF) [11, 131], the hierarchical equation of motion (HEOM) 
[132, 133], and so forth, which have been already used for 
exploration in polaritonic systems. Additionally, ab  initio 
multiple spawning (AIMS) [134, 135], Ehrenfest multiple 
cloning (EMC) [73, 136], and their variants [137–139] could 
also be adapted for polaritonic dynamics to give nearly exact 
results.

4.2   |   Trajectory-Based Approaches

In lieu of an exact propagation of the total wavefunction, 
including electron, photon, and nuclear DOFs as quantum 
mechanical DOFs, we now move to a discussion of Mixed 
Quantum-Classical (MQC) and Semi-classical approaches. 
These methods are trajectory-based schemes of varying 
complexity and accuracy in the sense that the nuclear (and 
in some cases photonic) distribution is now composed of an 
ensemble of trajectories in order to compute observables over 
the entire nuclear (and/or photonic) initial distribution as en-
semble averages. Further, usually the trajectories are taken 
to be completely independent of one another, aside from the 
initial nuclear distribution, with some recent exceptions of 
the coupled-trajectory approaches and quasi-coupled tra-
jectory approaches stemming from the exact factorization 
scheme [140–143].

Two schemes exist for applying the MQC approach: (I) treating 
the nuclear and photon DOFs classically or (II) treating only the 
nuclear DOFs classically. While both approaches will yield in-
teresting results, we will focus on scheme (II) where the photon 
is treated fully quantum mechanically. In the following two sec-
tions, we will briefly outline two approaches commonly used in 
quantum dynamics, namely the mean-field Ehrenfest and few-
est switches surface hopping.

(38)∣ Ψ⟩ =

G�
𝜉

el�
𝛼

F�
n

𝜒𝛼n

�
R𝜉

�
∣ R𝜉 ⟩ ⊗ ∣ 𝜓𝛼

�
R𝜉

�⟩ ⊗ ∣ n⟩

(39)
(
T̂R+Ĥpl

)
��� ,��,nm

=
(
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)
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(̂pl

)
��,nm

(
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)
����

(40)

(
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)
��� ,��

= −
1

2

NR∑
a

1
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[⟨
R�|∇2

a|R��
⟩
��� +2d

a
��

(
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⋅
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R�|∇a|R��

⟩
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(
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)
����

]

(41)

(
�pl

)
𝛼𝛽,nm

(
R𝜉
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(
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)
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+�𝜇𝛼𝛽

(
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)
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(
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(42)ĤPF ∣ ℰp ⟩ =
�
T̂R + Ĥpl

�
∣ ℰp ⟩ = ℰp ∣ ℰp ⟩

(43)∣ Ψ(t)⟩ = e−iĤPFt ∣ Ψ(t = 0)⟩ =
�
p

cpe
−iℰpt ∣ ℰp ⟩

(44)cp =
⟨
ℰp|Ψ(t = 0)

⟩
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4.2.1   |   Mean-Field Ehrenfest

Ehrenfest (EH) dynamics is an MQC approach for propagating 
the coupled electron-photon-nuclear dynamics [136, 144, 145]. We 
choose to treat the electronic and photonic DOFs as fully quantum 
mechanical while treating the nuclear DOFs as classical ones. In 
this way, one can write the total wavefunction for the quantum 
sub-system (Equation 38) in an approximate form, including only 
the electronic and photonic DOFs explicitly as follows

where c�n(t) = ⟨��(R(t)),n�Ψ(t)⟩ is the �nth time-dependent, 
adiabatic-Fock expansion coefficient, ∣ ��(R(t))⟩ is the 
�th electronic adiabatic wavefunction parameterized by 
the nuclear positions at time t , R(t), and ∣ n⟩ is the time-
independent photonic Fock state. The time-dependent 
electronic-photonic wavefunction ∣ Φ(t)⟩ is evolved by approx-
imating the time-dependent Schrödinger equation (TDSE), 
i �
�t
∣ Ψ(t)⟩ = ĤPF ∣ Ψ(t)⟩ (see Equations 13 and 18), as the fol-

lowing set of differential equations for the expansion coeffi-
cients in the adiabatic-Fock basis,

Here, d�� (R(t)) =
⟨
��(R(t))|∇R|Ψ� (R(t))

⟩
 is the derivative cou-

pling (Equation 4) and dR(t)
dt

 is the classical nuclear velocity. The 
matrix elements ��,n, �̃��, �nm, and �� were defined previously 
in Equation (18). To achieve this expression, one assumes that 
the second-derivative couplings are vanishingly small and that 
the nuclear distribution is sharply peaked around its average 
position. Additionally, we have made use of the orthogonality 
of the vacuum Fock states, ⟨n�m⟩ = �nm as well as noting that 
the nuclear gradient does not act on the photonic basis states 
(i.e., ⟨n�∇R�m⟩ = 0) since they do not depend on the nuclear 
positions R. This non-dependency of the photonic basis states 
leads to a large amount of sparsity in the matrices, and as noted 
earlier in Section  3.1.1, sparse matrix methods could be em-
ployed to achieve more efficient calculations. Note that this is 
not true, for example, when employing the PFS photonic basis 
(Section 3.1.2), where the definition of the photonic basis states 
relies on the nuclear positions through the use of the molecular 
dipole operator [65].

In order to propagate the classical nuclear DOFs, the classical-
like force is simply the sum of all contributions from the ele-
ments of the reduced density matrix, ��n,�m(t) = c∗

�,n(t)c�,m(t). In 
this way, the force can be written as,

where the nuclear gradients on the Hamiltonian ∇RĤpl will be 
discussed in detail in Section  4.3. For a similar description in 
terms of the polaritonic basis, see Reference [40].

4.2.2   |   Linearized Spin-Mapping

In the fully linearized spin-mapping framework [146–149], any 
electronic-only, two-operator correlation function can be written as,

where AW (FW) is the Stratonovich-Weyl (SW) transform of op-
erator Â (B̂). The measurement of an arbitrary operator at time 
t  can be written as,

The SW kernel can be written as,

in a diabatic basis for the pol polaritonic states. The SW kernel 
is evaluated as a function of the complex-valued, time-evolved 
mapping variables Z =

{
Z1,Z2, … ,Zpol

}
 with a fixed zero-

point energy parameter �W =
2

pol

(√pol + 1 − 1
)

. It should 
be noted that the approach outlined here is one of many reali-
zations for spin-mapping dynamics. In this work, we focus on 
the so-called spin-mapping dynamics confined to the W-sphere, 
which shows the most accurate results for the widest variety of 
systems [146, 147, 150–152].

The correlation function for the time-evolved density matrix 
��n,�m, given an initial excitation to state arbitrary state �l (i.e., 
Â = ∣ �l⟩ ⟨�l ∣ in Equation 48) is evaluated using focused ini-
tial conditions such that,

where �b(R,P) is the Wigner distribution for the nuclear DOFs, and 
�
(�l)
W

 is the initially focused distribution for the mapping variables,

For a given initial state �l, the mapping variables Z are initial-
ized as,

with {�} randomly sampled between 0 and 2 �, independently 
from one another.

(45)∣ Ψ(t)⟩ =

el�
�

F�
n

c�n(t) ∣ ��(R(t)),n⟩

(46)

ċ�n(t)= − i��,nc�n(t)−

el∑
�

[
dR(t)

dt
⋅d�� (R(t))− i��

]
c�n(t)

− i

el∑
�

F∑
m

�̃�� �nm c�m(t)

(47)

F(t) = −
⟨
Ψ(R(t))|∇RĤpl|Ψ(R(t))

⟩

= −

el∑
��

F∑
nm

��n,�m(t)
⟨
��(R(t)),n|∇RĤpl|Ψ� (R(t)),m

⟩

(48)CAB(t) = ⟨ AW(Z(0)) BW(Z(t)) ⟩spin−LSC

(49)
[
B̂
]
W
(Z, t) ≡ BW(Z(t)) = Tr

[
B̂ �̂W(Z(t))

]

(50)
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1
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�
Z�n(t)Z
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�
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(52)�
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�
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(53)
Z�l=

√
2+�W ei��l (Initially focused state)
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√
�W ei��n , �n≠�l
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The propagation of the mapping and nuclear variables can be 
done identically to Equation  (47) with the state-dependent 
forces Fe(R,Z),

with

For more details on the linearized spin mapping approach, we 
refer the reader to References [146, 147, 149]. We also want to 
point out extensions of the spin mapping approach to partially 
linearized methods [149, 153–155] as well as a recently developed 
surface hopping-inspired spin mapping formalism [156–158].

4.2.3   |   Surface Hopping

We now move to an alternative description of mixed quantum 
classical treatment of the dynamics known as Fewest Switches 
Surface Hopping (FSSH), which is one of many variants of sur-
face hopping [159, 160]. This method approaches the problem 
in a more classical way, propagating the nuclei on a single adi-
abatic surface until a discontinuous hop is performed. Once a 
hop is achieved, which must satisfy energy conservation through 
a rescaling of the classical nuclear velocities, then the nuclear 
forces are now derived from the new adiabatic state. The elec-
tronic DOFs are propagated according to the Schrodinger equa-
tion, and the probabilities for hopping between adiabatic states 
are proportional to the first-order non-adiabatic couplings d�� 
between adiabatic states. This approach has also been recently 
used to simulate polariton chemistry [31, 32, 84, 125, 161–163].

It is well-known that surface hopping approaches perform better 
when the propagation is done in the adiabatic (i.e., polariton) 
basis. However, many “tricks” exist to propagate the quantum 
mechanical DOFs in a locally diabatic basis for higher accuracy 
and to work around the sharply peaked non-adiabatic couplings 
throughout the nuclear dynamics. The total wavefunction for 
the quantum mechanical DOFs (i.e., the electrons and photons) 
can be written as,

where cj(t) =
⟨
Ψ(t)|Φj(R(t))

⟩
 is the time-dependent expansion 

coefficient for polaritonic state j and pol is the number of po-
laritonic states. During the nuclear dynamics, the active polari-
tonic state S dictates the nuclear forces, which can be written as,

At each nuclear time-step Δt, the probability to hop from the 
current active polaritonic state S to any other polaritonic state j 
is computed as,

with,

Here, dSj(R(t)) is the non-adiabatic coupling between polari-
tonic states, dR(t)

dt
= Ṙ(t) are the classical nuclear velocities, and 

�Sj(t) = c∗
S
(t)cj(t) is the reduced density matrix in the polaritonic 

basis. Between nuclear time-steps, the electronic DOFs are up-
dated via direct propagation of the time-dependent Schrodinger 
equation as,

It is well known [160] that FSSH suffers from producing overly 
coherent results (or, equivalently, a lack of proper decoherence 
between quantum states) within the expansion of electronic 
coefficients and will subsequently be problematic for the po-
laritonic coefficients [160]. Many ad hoc corrections exist 
to modify the expansion coefficients in FSSH to account for 
decoherence, such as the instantaneous decoherence correc-
tion (IDC) [136, 164], the energy-based decoherence correction 
(EDC) [165], and so forth, as well as other forms of the surface 
hopping scheme, such as the augmented surface hopping (A-
FSSH) [166], the decoherence-induced surface hopping (DISH) 
[167], and the global flux surface hopping [168] schemes. More 
recently, a spin-mapping [146–154, 169] analogue of the sur-
face hopping approach was constructed and mitigates much of 
the shortcomings of the standard FSSH procedure without ad 
hoc adjustments [156, 157].

A major simplicity afforded by the FSSH method is that the 
derivative coupling vectors djk(R(t)) are not explicitly re-
quired, as the nuclear forces (unlike in the mean-field MQC 
methods) do not require this quantity for time-evolution of 
the electronic or nuclear DOFs, except at the hops for the 
nuclear velocity rescaling. To be clear, the electronic propa-
gation only requires the scalar non-adiabatic coupling terms 
djk(R(t)) ⋅ Ṙ(t) =

⟨
Ψj| d

dt
|Ψk

⟩
, which can be easily obtained 

via finite difference wavefunction overlaps of the polaritonic 
states throughout the trajectory [170, 171]. This procedure is 
drastically cheaper than the direct computation of the non-
adiabatic coupling vectors themselves, as one only needs to 
compute the non-adiabatic coupling vectors to rescale the 
nuclei at the moment of a hop [164]. Further, one can ignore 
the asymmetric nuclear velocity rescaling altogether and per-
form uniform energy-based rescaling, which is known to pro-
vide slightly worse dynamics but alleviates the computation 
of the vector non-adiabatic couplings altogether, providing a 
substantial speed-up in ab initio simulations. It is also worth 
mentioning that the first-order non-adiabatic couplings of the 
electronic subsystem d�� (R(t)) can be approximated using 
the scalar non-adiabatic coupling and the diagonal gradients 
[172, 173].

(54)Fe(R,Z) = −
1

2

el∑
��

F∑
nm

��n,�m

⟨
�� ,n|∇RĤpl(R)|�� ,m

⟩

(55)��n,�m =
1

2

(
Z∗
�,n(t)Z�,m(t) − �W����nm

)

(56)∣ Ψ(t)⟩ =

pol�
j

cj(t) ∣ Φj(R(t))⟩

(57)F(t) = −
⟨
ΦS(R(t))|∇RĤpl|ΦS(R(t))

⟩
= − ∇RℰS(R(t))

(58)S→j(t) =MAX

[
−

�Sj(t)

�SS(t)
, 0

]

(59)�Sj(t) = 2Re
[
�Sj(t)

]dR(t)
dt

⋅ dSj(R(t))

(60)ċj(t) = − iEj(R(t))cj(t) −

pol∑
k

ck(t) Ṙ(t) ⋅ djk(R(t))
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4.3   |   Exact QED Nuclear Gradients

In the aforementioned mean-field, MQC Ehrenfest approach 
as well as other mean-field approaches not discussed here 
[147, 149, 153, 174, 175], the nuclear force is written as a weighted 
average over the reduced density matrix involving both the diag-
onal gradients of the adiabatic states as well as the off-diagonal 
non-adiabatic couplings (see Equation 47). Here, ∇RĤpl is,

Note here that the matrix elements of ∇RĤph are zero in the 
adiabatic-Fock basis and that the matrix elements of ∇RĤel 
will lead to the usual electronic gradient of the adiabatic 
PESs, ∇RE�(R), as well as the non-adiabatic couplings, d�� (R) 
(Equation 4). Additional terms arise in the nuclear force that are 
proportional to the gradient on the molecular dipole matrix el-
ements ∇R�̂, and these terms may contribute large amounts to 
the nuclear force in regions of large light-matter coupling �.

Using the chain rule [125], the matrix elements of the nuclear 
gradient operator for the ath nuclear DOF acting on the polari-
tonic Hamiltonian can be written as,

where 
[
∇aĤpl

]
, 
[
Ĥpl

]
 and 

[
da
]
 are the matrix representations (in 

the adiabatic-Fock basis) of ∇aĤpl, Ĥpl, and the non-adiabatic 
coupling operators, respectively, along the ath nuclear DOF, and 
we have defined the matrix

Note that 
[
d̂
a]

 is the same as that of Equation (4) but in the full 
electron-photon Hilbert space as �d⊗ �ℐph. As a concrete exam-
ple, for a polaritonic system composed of two electronic adiabatic 
states {� g⟩ , � e⟩} and two photonic Fock states {� 0⟩ , � 1⟩}, the 
4 × 4 gradient matrices can be written explicitly, with the ∇a

[
Ĥpl

]
 

expressed as,

and [Xa] as,

Note that ̃��� ≡ �cA0

(
ê ⋅ ���

)
 and �� = �cA0

∑el

�

�
ê ⋅ ���

��
ê ⋅ ���

�
, 

where el is the number of electronic adiabatic states (i.e., el = 2 
in this example), as defined in Equation  (18). For additional 
details regarding the nuclear gradients, we refer to interested 
reader to References [125, 163]. These nuclear gradients have 
been the hardest hurdle to overcome in performing on-the-fly 
simulations with realistic, ab  initio systems, since the nuclear 
gradients on the molecular dipole are not widely available an-
alytically [176]. However, some recent work has been done in 
achieving MQC dynamics at the Jaynes-Cummings level (i.e., 
without the dipole self-energy term and ignoring the highly 
oscillatory terms in the light-matter interaction Hamiltonian) 
through iterative schemes [32] or through the approximation of 
the gradient via a Taylor expansion [177]. However, for further 
theoretical advancement, the community requires work toward 
the efficient and analytic evaluation of these nuclear gradients 
to enable another theoretical leap in the simulation of polariton 
dynamics for realistic systems.

Figure 4 presents an example of the effects of the nuclear gradi-
ents on the quantum dynamics of the system [125]. As before, the 
one-electron Shin-Metiu model is used and provides access to a 
realistic ab  initio system, albeit simplified. Figure 4a–c shows 
the bare electronic properties, lowest two potential energy sur-
faces E�(R), the non-adiabatic coupling dge(R) (Equation 4), and 
the molecular dipole matrix elements ��� (R). Figure 4d extends 
Figure 4a to include the quantized cavity photon in the four-state 
basis of ∣ g, 0⟩, ∣ e, 0⟩, ∣ g, 1⟩, and ∣ e, 1⟩. The colorbar indicates the 
average photon number 

⟨
â
†
â
⟩

. The gradients in this basis take 
the form of Equation (62). Figure 4e shows only a few of these 
matrix elements as a function of the nuclear coordinate. For ex-
ample, the ∇[V ]e0,g1 ≡ ∇

[
Hpl

]
e0,g1

 is the off-diagonal gradient of 
the Hamiltonian shown in Equation (64), and the other elements 
are of the quantity X =

[
d
][
Hpl

]
−
[
Hpl

][
d
]
 which relates to the 

cavity-mediated non-adiabatic couplings. Due to the light-matter 
couplings, the ∣ g, 0⟩ and ∣ g, 1⟩ are coupled through the gradi-
ent on the permanent dipole moment �gg as well as through the 
non-adiabatic coupling multiplied by the transition dipole mo-
ment �ge, in total, proportional to ∇�gg(R) + 2dge(R)�ge(R). This 
can be seen directly in the Xg0,g1 curve in Figure 4e given that 
the permanent dipole moment �gg has a constant gradient near 
R = 0.0 and thus provides a plateau for Xg0,g1 in the same region. 
Most importantly, the redistribution of dge among all the basis 
states allows for a complex and interesting non-adiabatic events 
that would be absent without the light-matter coupling. Finally, 
Figure  4e shows the quantum dynamics simulation using the 
exact nuclear gradients (solid curves, Equation 62) in addition 
to showing the approximate population dynamics using the ap-
proximate gradients of the Jaynes-Cummings Hamiltonian in 
the ∣ e, 0⟩, ∣ g, 1⟩ subspace (dashed curves, see Ref. [125] for more 
details). Clearly, additional states beyond the JC subspace will 
be explored by the quantum dynamics of the hybrid system due 

(61)∇RĤpl = ∇RĤel +

√
�c

2
�
(
â
†
+ â

)
∇R�̂ +

�2

2
∇R�̂

2

(62)

[
∇aĤpl

]
= ∇a

[
Ĥpl

]
−
[
Ĥpl

][
d̂
a]

+
[
d̂
a][

Ĥpl

] ≡ ∇a
[
Ĥpl

]
+ Xa

(63)Xa ≡ [
d̂
a][

Ĥpl

]
−
[
Ĥpl

][
d̂
a]

(64)

∇a
�
Ĥpl

�
=

⎡⎢⎢⎢⎢⎢⎣

∇a
�
Eg+gg

�
∇age ∇a�̃gg ∇a�̃ge

∇aeg ∇a
�
Ee+ee

�
∇a�̃eg ∇a�̃ee

∇a�̃gg ∇a�̃ge ∇a
�
Eg+gg

�
∇age

∇a�̃eg ∇a�̃ee ∇aeg ∇a
�
Ee+ee

�

⎤⎥⎥⎥⎥⎥⎦

(65)
�
Xa

�
=

⎡
⎢⎢⎢⎢⎢⎢⎣

2dageeg dage
�
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�
2dage�̃ge dage

�
�̃ee− �̃gg

�

dage
�
Ee−Eg+ee−gg

�
2daegeg dage

�
�̃ee− �̃gg

�
2daeg�̃ge

2dage�̃ge dage
�
�̃ee− �̃gg

�
2dageDeg dage

�
Ee−Eg+ee−gg

�
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�
�̃ee− �̃gg

�
2daeg�̃ge dage

�
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�
2daegeg
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 17590884, 2025, 4, D
ow

nloaded from
 https://w

ires.onlinelibrary.w
iley.com

/doi/10.1111/w
cm

s.70039 by U
niversity O

f R
ochester, W

iley O
nline L

ibrary on [10/08/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



17 of 31

to the NACs among these states. The population of the ∣ e1⟩ state 
is mainly contributed from the population transfer from the 
∣ e0⟩ state due to the light-matter coupling originating from the 
permanent dipole �ee. In addition, the population transition be-
tween ∣ e0⟩ and ∣ g1⟩ is mediated by the cavity-induced coupling 
near R = 0.0, where the PES exhibits a strong mixing between 
these two states as shown in Figure 4d.

As a concrete example of the above-mentioned MQC dynam-
ics applied to a “realistic ab  initio” system, the authors of 
Reference [163] explore the one-electron Shin-Metiu model 
system (shown in Figure 5a). This model system is composed 
of four charged particles: two heavy ions with fixed positions 
in space (red and blue) with unit positive charge, as well as 
a mobile proton (black) and a quantum mechanical electron 
(green). Below the system, Figure 5a shows the potential en-
ergy of the proton (black curve) as well as that of the electron 
(green curve) as a function of the proton coordinate R. For 
a detailed explanation of the parameters of this asymmetric 
Shin-Metiu model, we refer the interested reader to Reference 
[163]. The two lowest energy Born-Oppenheimer potential 
energy surfaces (i.e., the ground and first excited adiabatic 
states), Eg and Ee, are shown in Figure  5b, which exhibit an 
avoided crossing near R = 2.0 a.u.

Using these two electronic states as well as two photon num-
ber states, ∣ 0⟩ and ∣ 1⟩, as a basis, the four polaritonic Born-
Oppenheimer surfaces were constructed at a light-matter 
coupling strength A0 = 0.01 (Figure 5c) with the curves colored 
by their average photon number, 

⟨
â
†
â
⟩

 (see colorbar). The cav-
ity frequency is �c = 0.1 a.u. After vertical excitation from the 
R = − 4.0 a.u. to the ∣ e, 0⟩ basis state (i.e., a linear combination 
of polaritonic states), the quantum dynamics of the system was 
performed using the (Figure  5d) MQC spin-LSC, (Figure  5e) 
MQC Ehrenfest, and (Figure 5f) MQC FSSH approaches [163]. 
The MQC results are shown in circles while the exact results are 
shown as solid curves. For these MQC simulations, the exact 

nuclear gradient was implemented (as discussed in the previous 
section, Section  4.3) in order to compute the exact polaritonic 
nuclear force. At short times (< 20 fs), the nuclear wavepacket 
starts in and quickly leaves the region of strong light-matter cou-
pling, showcasing a fast decay in coherent oscillations from the 
light-matter coupling. At ~20 fs, the nuclear wavepacket crosses 
the electronic non-adiabatic region near R = 2.0 a.u. where much 
of the population decays to the total ground state, ∣ g, 0⟩, before 
the simulation ends. In this example, spin-LSC MQC dynam-
ics performs better than either Ehrenfest or FSSH. It should be 
noted here that FSSH can generally be improved by using var-
ious decoherence corrections [165]. Specifically, spin-LSC is 
able to capture the weak population of the ∣ e, 1⟩ state (green) 
while Ehrenfest (and to a lesser extent FSSH) dramatically over-
populates this state. Furthermore, Ehrenfest and FSSH do not 
accurately predict the electronic non-adiabtic crossing time, in-
stead showing a delay of 5–10 fs.

5   |   Toward Realistic Polaritons

5.1   |   Machine Learning

As pointed out in previous sections (e.g., Section 4), performing 
trajectory-based ab  initio polaritonic dynamics requires mul-
tiple properties of the molecular system, including the energy 
matrix, 

(
Ĥ
)
��

, transition dipole matrix, 
(
�̂
)
��

, and the nuclear 
gradients of both 

(
∇RĤ

)
��

 and 
(
∇R�̂

)
��

. The gradient on the 
energy leads to the usual state gradients ∇RE� as well as the 
first-order non-adiabatic couplings ∇Rd�� (Equation  4). These 
non-adiabatic couplings may be analytically available in some 
electronic structure software, such as QCHEM [178], MOLPRO 
[179, 180], NEXMD [164], and so forth but not all, and largely 
depend on the level of electronic structure itself. Further, the 
nuclear gradients of the transition dipole matrix elements, to 
our knowledge, is not implemented in an analytical form in any 
common electronic structure software.

FIGURE 4    |    (a) Two-state, one-dimensional Shin-Metiu (SM) model along with the (b) non-adiabatic coupling matrix element dge element and (c) 
dipole matrix elements �gg, �ge, �ee as functions of the nuclear coordinate R (d) SM model coupled to an optical cavity of frequency �c = 0.1 a.u. and 
coupling strength A0 = 0.05 a.u. using a highly truncated basis of two electronic states { ∣ g ⟩, ∣ e ⟩} and two photonic Fock states { ∣ 0 ⟩, ∣ 1 ⟩} The aver-
age photon number in the length gauge ⟨ â†â ⟩ is shown with the colorbar, where ⟨ â†â ⟩ = 0.0 represents purely electronic character. (e) Various con-
tributions to the nuclear gradient as functions of nuclear position R. (f) Exact quantum solution for the population dynamics using the approximate 
(dashed curves) gradient at the Jaynes-Cummings level (i.e., with completely uncoupled ∣ g, 0 ⟩ and basis ∣ e, 1 ⟩ states) and the Pauli-Fierz gradient 
(solid curves). Panels (a)-(f) were taken from Reference [125].
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With this current limitation in obtaining the exact polaritonic 
gradient (see Section 4.3), we turn toward the use of machine 
learning, which will allow one to train the molecular dipole as 
a function of the nuclear coordinates. Then the nuclear gradi-
ent can be obtained analytically from the gradient of the trained 
dipole function. One of the many possible techniques is the ker-
nel ridge regression (KRR) scheme, which relies on supervised 
learning of the molecular dipole matrix and has been used in 
several recent works [181–183]. In this approach, the molecular 
property, �xk

��
(R) (the ��th matrix element of the transition dipole 

moment in the xth
k

 spatial direction), is trained based on a func-
tion of the nuclear coordinates which are represented by a mo-
lecular descriptor m such that,

where m(s) is the molecular descriptor for the sth nuclear configu-
ration (with t total training configurations), K is the Gaussian 
kernel function with ws as the regression coefficient and � as 
the width. This choice of kernel function is a radial basis func-
tion and only depends on the absolute distance between m and 
ms with a single parameter �. The coefficients ws are trained by 
minimizing a cost function C defined as,

Here �ref
��
(R) is the reference molecular property value (often 

calculated numerically by finite-difference methods), � is 
a Lagrange multiplier, and W is the matrix of regression 

coefficients. The choice of molecular descriptor m for the nuclear 
geometry can be one of many, but one of the simplest choices is 
the Coulomb matrix, mRa≠Rb

= ZRaZRb ∕ ∣ Rb − Ra ∣ where Ra is 
the spatial coordinates of nucleus a and Za its nuclear charge. 
Once the dipole matrix elements are trained as a function of mo-
lecular descriptor, �xk

��
(m), the nuclear gradient can be obtained 

by the chain rule as,

Here ml is an element of the molecular descriptor and Rxja  are the 
coordinated of nucleus a in the direction xj. For additional de-
tails on using the KRR method for molecular properties in po-
laritonics, we refer the reader to Reference [184].

Figure 6 presents recent work [184] by Hu and Huo using the 
KRR approach to parameterize the transition and permanent 
dipoles of the azomethane molecule (Figure 6a), which exhib-
its a conical intersection between the ground S0 and excited S1 
electronic states as a function of the dihedral angle. Inside the 
cavity (Figure 6b), the ground and excited states hybridize (black 
box) to form exciton-polaritons 

{j} with mixed electronic (pri-
marily S0 and S1) and well as photonic character (primarily n = 0 
and 1 vacuum Fock states). To perform the quantum dynamics 
simulations, the molecular dipole and its gradient were trained 
based on the KRR approach to yield the analytic dipole matrix 
elements, shown in Figure 6c against the exact results using the 
CASSCF electronic structure method as the training/exact data. 
The total polaritonic gradient of the first ∇R1 and second ∇R2 
excited polaritonic states is shown in Figure 6d (see Equation 64). 
Using these learned values, the quantum dynamics simulation 

(66)�
xk
��
(m) =

t∑
s

wsK
(
m,m(s)

)
, K

(
m,m(s)

)
= e−

|m−m(s)|2
2�2

(67)C ≡
t∑
s

[
�
xk
��

(
m(s)

)
−�ref

��
(R)

]2
+ �WTKW

(68)
��

xk
��
(m)

�R
xj
a

=
∑
l

��
xk
��
(m)

�ml

�ml

�R
xj
a

FIGURE 5    |    (a, top) Depiction of the one-electron Shin-Metiu model system, with two fixed nuclei (red and blue) of unit positive charge, one proton 
at position R (black), and one electron (green) at position r. (a, bottom) The potential energy of the proton Vp (black) and of the electron Ve (green). 
(b) The ground and first electronic states of the Shin-Metiu model system as functions of the proton position R, showcasing an avoided crossing 
near R = 2.0 a.u. (c) Polaritonic potential energy surfaces as a function of the proton coordinate R for two choices of light-matter coupling strength 
A0 = 0.01 a.u. (d–f) Population dynamics for various MQC methods (d) spin-LSC, (e) Ehrenfest, and (f) FSSH. The initial conditions are ∣ e, 0 ⟩ at the 
proton position R = − 4 and for the same choice of light-matter coupling strength as panel (c). The exact results are shown in solid curves whereas 
the approximate MQC results are shown as circles. All polaritonic states were described in a truncated basis of two electronic states ∣ g ⟩ and ∣ e ⟩ and 
two photon vacuum states ∣ 0 ⟩ and ∣ 1 ⟩. Panels (a)-(f) were taken from Reference [163].
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of the photoisomerization of azomethane results are shown 
in  Figure  6e. Inside the cavity, at a small coupling strength of 
A0 = 0.05 a.u., the avoided crossing between the first and second 
excited polaritonic states (black box in Figure  6b) reduces the 
amount of product formed by the photo-reaction by bifurcating 
the wavepacket before reaching the conical intersection. At an in-
creased coupling strength (A0 = 0.50 a.u.), this effect is increased, 
reducing the overall population of the trans-product to less than 
40% from the original product yield of 60% by increasing the pop-
ulation transfer at the polaritonic avoided crossing region.

5.2   |   Simulating Cavity Loss With Trajectory 
Methods

Lindblad decay theory can be used to simulate the effects of pho-
tonic loss channels in semi-classical dynamics methods. The most 
general Markovian description of a dissipative environment (i.e., 
modes external to the cavity) interacting with the electron-photon 
subsystem �̂(t) of interest that is both norm-preserving and always 
provides a positive-valued population is the Lindblad master equa-
tion. For the current problem, this can be written as,

where �̂ is the reduced density operator of the quantum subsys-
tem including the electronic and photonic DOFs, Ĥ is the po-
laritonic Hamiltonian including the non-adiabatic terms, L̂ is 
a Lindblad jump operator that mediates the dissipation due to 
an effective environment (i.e., loss channel), Γ is the dissipation 

rate, 
{
Â, B̂

}
= ÂB̂ + B̂Â is the anti-commutator of matrices Â 

and B̂ and 
[
Â, B̂

]
= ÂB̂ − B̂Â is the commutator. Coh. and Diss. 

are super-operators in Liouville space which describe the quan-
tum mechanical evolution of the electron-photon subsystem 

under the Hermitian Hamiltonian Ĥ which governs the coher-
ent evolution of the system and L̂ which governs the dissipation 
(i.e., incoherent evolution). Lindblad dynamics ensure the con-
servation of the total population of the system. The Lindblad 
jump operator that governs the photon dissipation channel in 
Fabry-Perot cavities is defined as,

where â is the photonic annihilation operator and ̂el is the iden-
tity operator for the electronic subspace. This jump operator L̂ 
facilitates population transfer from one photonic Fock state to 
the one below (∣ n⟩ → ∣ n − 1⟩) while also creating decoherence 
between the original state (∣ n⟩) and all other states (∣ m ≠ n⟩).

The evolution of the reduced density matrix �̂ in the Liouville 
space can be written as,

where a short-time evolution by dt can be approximated to first-
order by the symmetric, factorized product of individual expo-
nentiated Liouville operators. This leads to a time-reversible and 
symplectic propagation for the simulated cavity loss, at a similar 
level to a velocity-Verlet-like scheme. The time-evolution can 
then be obtained as a step-wise propagation using the following 
equations of motion,

We can expand the equations of motion in the adiabatic-Fock 
basis (Section  3.1.1). We define the matrix elements of the 

(69)
d�𝜌

dt
= −

i

ℏ

[
�H ,�𝜌

]
+Γ

(
�L�𝜌�L

†
−
1

2

{
�L
†
�L,�𝜌

})

=Coh.

[
�𝜌
]
+Diss.

[
�𝜌
]

(70)�L= �el⊗�a= �el⊗
F�
n

√
n ∣n−1⟩⟨n ∣

(71)�̂(t+dt)=e(Coh.+Diss.)dt
[
�̂(t)

]
≈e

1

2
Diss.dteCoh.dte

1

2
Diss.dt

[
�̂(t)

]

(72)
𝜌̇(t)=

Γ

2

(
�L�𝜌(t)�L

†
−
1

2
{�L

†
�L,�𝜌(t)}

)
, 𝜌̇(t)= −

i

ℏ

[
�H ,�𝜌(t)

]
,

𝜌̇(t)=
Γ

2

(
�L�𝜌(t)�L

†
−
1

2
{�L

†
�L,�𝜌(t)}

)

FIGURE 6    |    (a) Ground and first excited potential energy surface of bare azomethane as computed by CASSCF along its CNNC dihedral angle 
coordinate, showcasing a conical intersection (CI). (b) Polaritonic potential energy surfaces at light-matter coupling strength A0 = 0.05 a.u. (solid 
curves) and A0 = 0.5 a.u. (circles). (c) Dipole matrix elements along the CNNC dihedral coordinate and projected along the Y-axis of the molecule 
(perpendicular to the molecular plane) computed by CASSCF (solid curves) and the machine learning framework (open circles). (d) The nuclear gra-
dient on the polariton potential energy surfaces. (e) Population dynamics at varying coupling strengths A0 = 0.05 a.u. (red solid curve, middle) and 
A0 = 0.5 a.u. (open circles, bottom) as well as outside the cavity (green, top). Panels (a)-(d) were taken from Reference [185]. Panels (e)-(f) were taken 
from Reference [184].
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polaritonic Hamiltonian including the first-order non-adiabatic 
couplings as H𝛼n,𝛽m =

(
Hpl

)
𝛼n,𝛽m

− iℏ d𝛼𝛽 ⋅ Ṙ𝛿nm, where we have 
used the fact that the Fock states have no dependence on the nu-
clear coordinates d�n,�m = d���nm and that Ṙ is the classical ve-
locity of the nuclei. Further, the matrix elements of the Lindblad 
jump operator can be written as L�n,�m =

√
m�n,m−1���, which 

has no effect on the electronic states. Figure 7 presents results 
of the computational method by combining (Figure  7a–d) 
Ehrenfest and (Figure 7e,f) surface hopping dynamics with a 
stochastic extension to the previously outlined Lindblad decay. 
For details pertaining to the stochastic analogue to the afore-
mentioned Lindblad loss approach, see Reference [185]. This 
approach stochastically maps the dynamics in Liouville space 
to dynamics in the Hilbert space. We refer to this method as 
the ℒ-MFE approach. The convergence of this approach [185] 
with respect to the number of trajectories is similar to any 
mixed quantum-classical method; thus, the addition of the sto-
chastic cavity loss does not increase the computational cost. 
This is a general scheme that can be easily incorporated into 
any trajectory-based dynamics approaches, such as Ehrenfest, 
FSSH, or mapping approaches, or additionally to any trajectory-
guided wavepacket-based methods, such as ab  initio multiple 
spawning or ab initio multiple cloning.

The model system [13] portrays an isomerization reaction 
containing two electronic states ∣ g⟩ and ∣ e⟩ and two photonic 
Fock states ∣ 0⟩ and ∣ 1⟩ with a spin-boson bath for the nuclear 
DOFs to mediate electronic transitions. Due to the use of the 
Jaynes-Cummings Hamiltonian in the single-excited sub-
space, the ground state is “uncoupled” from the excited states 

via direct light-matter interaction; however, due to the cavity 
loss, the Lindblad decay mediates population transfer from 
∣ g, 1⟩ → ∣ g, 0⟩ with a rate of Γ.

Figure  7a,b shows the potential energy surfaces of the three 
states with light-matter coupling A0 set to 0.0 eV (Figure 7a) and 
0.136 eV (Figure  7b) with a cavity frequency of �c = 1.632 eV. 
Figure  7c,d presents the polariton population dynamics in the 
adiabatic-Fock basis with loss rates of Γ = 0 meV (Figure  7c) 
and Γ = 1 meV (Figure  7d). The numerically exact results are 
obtained using the discrete variable representation (DVR) basis 
[123] for the nuclear DOF and Fock states for the photonic basis. 
As shown in Figure 7c, the ℒ-MFE dynamics (dotted line) cap-
ture the essential physics of the problem but deviate from the 
exact simulations (solid) at a longer time, which is a known prob-
lem of the mean-field Ehrenfest approach and is not the main 
point of this discussion. The dynamics portrayed with a loss rate 
of Γ = 0.0 meV (Figure 7c) reduce exactly to the dynamics of a 
closed quantum system with zero population residing in the un-
coupled ground state, at any time t . At increased cavity loss of Γ 
= 1 meV (Figure 7d), the system slowly populates the ground po-
laritonic states by funneling population from ∣ g, 1⟩ to ∣ g, 0⟩. This 
gives rise to plateaus in the ground state population curve when 
the majority of the population is present in the ∣ e, 1⟩ state during 
the coherent population transfer processes, most pronounced at 
short times t < 1.0 ps.

Figure  7e,f provides a direct application of this method to an 
ab initio on-the-fly dynamics study of the isomerization of azo-
methane (a direct extension to the results shown in Figure  6) 

FIGURE 7    |    Potential energy surfaces (PESs) and population dynamics of the model isomerization reaction coupled to the cavity. Panel (a) pres-
ents the diabatic PESs where the dark blue line is the ∣ g, 0 ⟩ PES, the cyan line is the ∣ e, 0 ⟩ PES, and the magenta line is the ∣ g, 1 ⟩ PES. Panel (b) pres-
ents the adiabatic PESs where the dark blue line is the uncoupled ground state ∣ g, 0 ⟩ PES, the middle line (labeled ∣ LP ⟩) is the lower polariton PES, 
and the upper line (labeled ∣ UP ⟩) is the upper polariton PES. The colors along the adiabatic PESs represent the diabatic character at each nuclear 
position. Panels (c, d) present the polaritonic population dynamics with a decay rate of (c) Γ = 0 and (d) Γ = 1 meV. The solid lines are exact Lindblad 
dynamics, while the dotted lines are the approximate L-MFE method. The colors of the curves represent the population of various adiabatic-Fock ba-
sis states: ∣ g, 0 ⟩ (dark blue), ∣ e, 0 ⟩ (cyan), and ∣ g, 1 ⟩ (magenta). For the same on-the-fly ab initio isomerization as shown in Figure 6, panels (e, f) show 
the trans isomer population dynamics for various cavity loss rates Γ = 0, 2, 4, 8, 16, 32, and 64 meV (colors, top to bottom) at light-matter coupling 
strengths of A0 = (e) 0.05 a.u. and (f) 0.5 a.u. The results outside the cavity are shown as a solid black curve. Panels (a)-(d) were taken from Reference 
[185]. Panels (e)-(f) were taken from Reference [184].
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[184]. The polaritonic potential energy surfaces can be found in 
Figure  6b. The loss rate Γ was varied (colors) from Γ = 0.0 to 
64 meV for a light-matter coupling strengths A0 = (Figure  7e) 
0.05 a.u. and (Figure  7f) 0.5 a.u. At low coupling strength, the 
effects of the cavity loss are minimal. The dynamics at increased 
coupling strength allow for additional population to transfer to 
∣ g, 1⟩, leading to fast decay into the cis-ground state ∣ g, 0⟩ with-
out allowing enough time for the nuclear rearrangement to the 
trans-isomer before relaxing. This almost completely removes 
the isomerization pathway previously available to the system, 
effectively turning off the isomerization process for increased 
cavity loss rate.

In the present cases, the effects of cavity loss provide an addi-
tional factor when considering cavity-modified reaction rates—
in the present ab initio case, the cavity loss coincides with the 
effects of the light-matter coupling strength, which decreases 
the reaction yield. Overall, explicitly including cavity loss in re-
alistic polaritonic dynamics is required for a rigorous and con-
sistent comparison to experiment, where the cavity loss rates are 
substantial enough to cause dramatic effects on the population 
dynamics and subsequent photo-reaction pathways accessible to 
the system.

5.3   |   Extending to Many-Molecule and Many-Mode 
Simulations

In reality, optical cavities are composed of many photonic 
modes/wavevectors (i.e., cavity dispersion relations) whose form 
depends on the type of cavity. For example, in typical Fabry-Perot 
(parallel mirror cavities, Figure 8a), the dispersion relation can 
be written as Eph(𝜃) =

ℏ

nc
c
�
k2z + k2x =

ℏ

nc
ckz

√
1 + tan2 𝜃, which 

depends on the angle of the external probe, � = tan−1
(
kx ∕kz

)
. 

Here c is the speed of light in vacuum, nc is the refractive index in-
side the cavity, and ℏk is the momentum of the photon. It should 
be noted that there are many other cavity designs, most notably 
the plasmonic cavity, which contain many varied geometrical 
arrangements of nanoparticles-on-metal surfaces, which lead 
to a wide variety of cavity dispersion relations [187]. As shown 
in Figure 8a, the total wavevector k =

⟨
kx , kz

⟩
 is related to the 

quasi-continuous parallel kx and strictly quantized perpendicu-
lar kz modes. Additionally, there may be many molecules mol 
collectively coupled to these cavity modes mode, The scaling of 
such a Hilbert space (given by the Hamiltonian in Equation 17) 
can be written as dim

[
Ĥ
]
∝mol

el
×mode

F
, which is exponen-

tial in both the number of molecules as well as the number of 
photon modes. While not the focus of this review, for extended 
systems (i.e., solids), the incorporation of k-points raises further 
issues regarding the conservation of momentum between the 
electron and photon systems. This has been discussed in a few 
recent works [188, 189]. In any case, making the long wavelength 
approximation nullifies any mismatch between the electron and 
photon momenta.

To overcome this unfeasible scaling, many works have shown 
that excited polaritonic states at weak-to-moderate light-matter 
coupling strengths can be simulated in the so-called first-
excited subspace of the total Hamiltonian (Equation  17). In 
singly excited subspace, the overall scaling can be written as 
dim

[
Ĥ
]
∝elmolFmode, which is now linear scaling in all 

quantities. The zeroth 0 and singly excited 1 subspaces can be 
explicitly written as,

(73)∣ 0 ⟩ =
mol

⊗
A

∣ g⟩ (A) ⊗ mode

⊗
M

∣ 0⟩ (M)

FIGURE 8    |    (a) Schematics of N molecules coupled to a FP cavity. (b) Polariton Eigenspectrum predicted by the Tavis-Cummings (TC) model. 
(c) Polariton Eigenspectrum predicted by the Jaynes-Cummings (JC) model. (d) Time-dependent polaritonic energies are colored by (left) photonic 
character and (right) non-adiabatic coupling from a representative trajectory. (e) Time-dependent polaritonic populations of the ground state (gray), 
upper polariton states (red), lower polariton states (blue), as well as the total population of the dark states (black). Panels (d, e) were taken from 
Reference [186].
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where we assumed only a single molecular ground and ex-
cited state per molecule {� g⟩ , � e⟩} and a single excited photon 
{� 0⟩ , � 1⟩} per mode, which is already a major approximation for 
most molecules with many nearby excited states. Higher-order 
subspaces have also been explored [190], but even including 
the second excited subspace produces highly unfavorable scal-
ing with a realistic number of molecules mol ∼ 106. Figure  9 
presents the numerical scaling (i.e., the number of possible con-
figurations/basis states) as solid curves as well as the required 
memory to store the Hamiltonian (dashed curves) as a function 
of the number of molecules. Here, we assume only two electronic 
states per molecule, a single photonic mode with two Fock states, 
and a real-valued Hamiltonian (i.e., complex would simply dou-
ble the memory requirements). The thick gray line represents 
100 GB of memory, a typical node on a typical high-performance 
computing cluster. In the 1 subspace (black), the 100-GB line 
is reached with a little over 105 molecules, while for the second 
excited subspace 2 (red), this line is reached with a little less 
than 1000 molecules. The third subspace 3 (green) only allows 
for 100 molecules. The full Hilbert space scales exponentially 
(blue). This exemplifies the need for the truncation of the total 
Hilbert space in order to perform meaningful theoretical explo-
rations with realistic cavity designs and environments.

Upon the diagonalization of the many-molecule, many-mode 
Hamiltonian (Equation  17) in the singly excited subspace 1, 
polariton eigenenergies and eigenstates are obtained, as shown 
in Figure 8b for a collection of quasi-continuous parallel cavity 

modes and Figure 8c for a single resonant mode. Here, the forma-
tion of the upper and lower polariton branches P+/− (Figure 8b) 
or states ∣ + ∕ − ⟩ (Figure  8c) can be observed. Furthermore, 
due to the presence of the other molecules (which are all degen-
erate with the cavity frequency), many degenerate polaritonic 
states can be found at the same energy as the bare molecular 
transition. These states are referred to as “dark states” 

{
Di

}
 since 

they contain no transition dipole moment between the polari-
tonic ground state, nor do they contain any photonic character 
(in the absence of molecular disorder). The Rabi splitting in this 
case famously scales as ΩR ∝

√mol [29, 40]. In the presence of 
molecular fluctuations (e.g., thermal fluctuations), the photonic 
character becomes distributed among the “dark states.”

Figure 8d shows the time-dependence of the polariton eigenen-

ergies colored by the (left) photonic character 
⟨
� j| â†â|� j

⟩
 and 

(right) non-adiabatic coupling �j =
∑

k

�
� j� d

dt
��k

�
 for each po-

laritonic state j (both on log colorbar scales). The exchange of 
character mediates population dynamics between such polariton 
states (i.e., cavity-mediated non-adiabatic couplings). Figure 8e 
presents mixed quantum-classical mapping approach to surface 
hopping (MASH) [156, 157] dynamics where a LASER drives 
population from the collective ground state ∣ G⟩ to the upper po-
lariton ∣ + ⟩ (left) without and (right) with cavity loss. The dy-
namics suggest that the dark states quickly accumulate much of 
the population at initial times. Without cavity loss, the polari-
tonic states reach equilibrium by 3.0 ps, while with cavity loss, 
none of the states retain significant population due to the rapid 
transfer to the ground state and the ongoing polariton-polariton 
non-adiabatic couplings.

As discussed above in Figure 9, the explicit inclusion of many mol-
ecules yields unfavorable conditions for the direct diagonalization 
(Section 3.1) of the Hamiltonian. In the case of self-consistent 
approaches (Section  3.2), one encounters a similar bottleneck 
where the inclusion of many sets of one-molecule single-particle 
orbitals Nsp = Nocc × Nvir leads to a many-molecule ground state 
density matrix of dim

[
�̂
]
∝ Nsp ×mol. The off-diagonal blocks 

of which will include the long-range Coulomb, short-range ex-
change, and intermolecular DSE interactions. In recent work 
[191], it was argued that the off-diagonal blocks of the total den-
sity matrix can be decoupled in the cavity Born-Oppenheimer 
(BO) approximation [62] in which the cavity photon is treated as 
a parameter (similar to the nuclear BO approximation). Thus, the 
diagonal blocks of the density matrix and treated as effectively 
independent, reducing the memory cost of the self-consistent 
treatment back to dim

[
�̂
]
∝ Nsp but with mol such matrices. 

However, without approximations, such as cavity BO, treating 
many molecules coupled to many cavity modes is still beyond the 
reach of direct simulation. Relying on efficient semi-empirical 
or tight-binding approaches [192–195] may provide the most di-
rect route toward the direct simulation of many molecule QED, 
including both ground and excited states, and has already been 
used to simulate plasmonic systems [196–198].

5.4   |   Intermolecular Interactions

In experiment, often the molecules are spatially confined in 
a polymer matrix (e.g., Poly(methyl methacrylate), PMMA). 

(74)

∣1⟩=
mol�
A

�mol

⊗
B<A

� g⟩(B)⊗� e⟩(A)⊗mol

⊗
B>A

� g⟩(B)
�
⊗ ∣0⟩

+
mol

⊗
A

∣0⟩(A)⊗
mode�
M

�
N−1

⊗
M<N

� 0⟩(M)⊗� 1⟩(N)⊗
mode

⊗
M>N

� 0⟩(M)

�

FIGURE 9    |    Numerical scaling of the Pauli-Fierz Hamiltonian in 
various subspaces: 1 (black), 2 (red), 3 (green) as well as the full 
Hilbert space FULL (blue) as a function of the number of molecules. The 
number of configurations/basis states is shown as solid curves, and the 
required memory to store the Hamiltonian is shown as dashed curves. 
The thin, dashed gray line represents 100 GB of memory. Here, we as-
sume only two electronic states per molecule, a single photonic mode 
with two Fock states, and a real-valued Hamiltonian (i.e., the complex-
valued Hamiltonian would simply double the memory requirements).
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In such cases, the molecules are often close enough to exhibit 
strong dipolar interactions with one another. Alternatively, 
molecular aggregates can be formed directly [199]. In these 
cases, from the perspective of polaritonic structure theory, the 
inclusion of molecular interactions must be considered care-
fully. The most rigorous approach is to consider all molecules 
simultaneously in a self-consistent sense (Section  3.2), which 
will naturally capture all molecule-molecule interactions, in-
cluding those at or beyond dipole, such as the entire Coulomb 
and exchange interactions. Additionally, the cavity itself pro-
vides intermolecular interactions through the DSE term in the 
Hamiltonian and thus provides a competition between bare 
molecular interactions and cavity-mediated molecular inter-
actions. These cavity-induced effects on non-bonded interac-
tions (i.e., van der Waals, hydrogen bonding, etc.) were directly 
explored with the high-level scQED-CCSD approach for two 
molecules [68]. Though, for the extension to many-molecules, 
including all molecules in the self-consistency, is difficult and 
scales poorly with the number of molecules. Hence, one should 
turn toward an approximate model which captures the leading-
order physics, in the same sense as the parameterized QED ap-
proach aims to do (see Section 3.1).

Intermolecular interactions have been well-studied for 
molecules in the absence of a cavity [200], including ef-
fects beyond the bare Coulomb interactions [201]. Here, we 
will focus only on the direct Coulomb interactions at the di-
pole level for brevity. Such interactions can be written as 
ĤAgg = Ĥel + Ĵ , where

where Ĥel is the bare electronic Hamiltonian (diagonal in the 
adiabatic representation) and Ĵ  is the dipole–dipole interaction 
term [54]. RA is the location of molecule A, and êA is the unit 
vector of molecule A (not to be confused with the unit vector of 
the cavity polarization e). Adding the interaction term Ĵ  to the 
many-molecule Hamiltonian in Equation (17) will lead to addi-
tional physics and direct competition between the intermolecu-
lar DSE terms and the direct Coulomb interactions. These two 
interactions were shown to cancel each other when there is no 
electron density overlap (i.e., in the absence of exchange cou-
plings) [108, 202]. However, this textbook result [202] has, to 
our knowledge, never been explicitly investigated in molecular 
cavity QED. Thus, in this modified light-matter Hamiltonian, 
the molecules now communicate between one another through 
both the light-matter and Coulomb interactions, and each 
molecule's electronic structure can be evaluated individually 
with massively parallelized electronic structure calculations 
[36, 177, 203].

6   |   Summary

6.1   |   Capabilities and Limitations of Methods

Throughout this review, we introduced many computational ap-
proaches aimed at a high-level, ab initio description of exciton-
polaritons. However, due to the wide variety of approaches, it is 

useful to establish an understanding of the strengths and weak-
nesses of each approach. We will very briefly discuss when to 
use each method by comparing their costs and scaling in various 
situations.

For the self-consistent polaritonic structure approaches, for exam-
ple, scQED-HF, scQED-CC, the correlations achieved by each are 
well-known from standard electronic structure theory. Recently, 
scQED-HF has been shown to overestimate the QED effects (i.e., 
electron-photon correlations) [87, 89] compared to methods that 
include higher-level correlations, such as QED-CC. This is be-
cause the mean-field contribution in the standard dipole-gauge 
PF Hamiltonian only includes contributions from the DSE term, 
which is positive definite. scQED-CC, for example, partially ad-
dresses the bilinear term, which acts oppositely to the DSE con-
tribution by including excitations in both the electron and photon 
degrees of freedom. However, one can perform variational uni-
tary transformations on the PF Hamiltonian [72, 91, 204] to move 
the majority of the electron-photon correlations (and introduce 
electron-photon entanglement) into the mean-field part. These 
transformations allow for the use of post-HF methods with a 
better reference, which already includes much of the electron-
photon and QED-mediated electron–electron correlations.

Next, we will address the applicability of self-consistent QED 
(scQED) and parameterized QED (pQED) approaches. Simply, 
the scQED approaches are exceptionally useful for exploring 
the coupled electron-photon ground state since only a ground 
state many-body approach is required, for example, scQED-HF 
or scQED-CC. pQED relies on the knowledge of excited states 
to build the polaritonic Hamiltonian, thus requiring at least 
the ability to compute the energies and transition dipole ma-
trix in some representation (often TDDFT energies and di-
poles), thus proving to be more expensive than simply using 
a ground state approach. Further, the ground state QED ef-
fects are dominated by the DSE term, which is proportional to 
the square of the transition dipole matrix �̂2. This term relies 
on highly off-resonant terms in the Hamiltonian and leads to 
difficult-to-converge situations where the number of excited 
states needed from TDDFT can reach Nel ∼ 100 − 1000 and is 
necessary for strict convergence of the ground state energy 
[17, 41].

Both pQED and scQED approaches can be readily applied to 
explore excited states in which a single molecule is coupled to 
a photon mode, since both require an excited state approach, 
for example, TDDFT for pQED and scQED-TDDFT, and in-
cluding the photonic component does not significantly impact 
the computational cost. However, the more experimentally 
relevant case is when many molecules Nmol > 1000 Nmode are 
coupled with many photon modes Nmode > 1000, for example, 
within a Fabry-Perót optical cavity. In this case, the number 
of degrees of freedom becomes intractably large, and one al-
ready needs to resort to the singly excited subspace. As an 
example, the scQED-CIS scales as ∼

(
NmolNAO+NFockNmode

)4 
while the near-equivalent pQED calculation scales as 
NmolN

4
AO

+
(
NmolNel+NFockNmode

)3 (performing Nmol electronic 
structure calculations plus the diagonalization of the polari-
tonic Hamiltonian of dimension NmolNel + NFockNmode). Not 
only is the scaling reduced, but the number of atomic orbit-
als per molecule could be NAO ∼ 500 for a reasonably large 

Ĵ =
�̂A ⋅ �̂B − 3

(
�̂A ⋅ êA

)(
�̂B ⋅ êB

)
||RA−RB

||3
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molecule, while Nel ∼ 50 for the same molecule, yielding an-
other order of magnitude difference in scaling. Further, the 
pQED simulation can be trivially parallelized by calculating 
each molecule on a different core or node before constructing 
and diagonalizing the Hamiltonian. In this case, the pQED 
approach is expected to drastically outperform the equivalent 
scQED approach.

Finally, we will comment on the use of various methods com-
bined with non-adiabatic approaches. As is well-known in the 
non-adiabatic community, the need for analytic expressions 
for non-adiabatic couplings [205] is paramount for combining 
an electronic structure method with on-the-fly dynamics effi-
ciently. In addition, the efficient calculation of wavefunction 
overlaps at adjacent nuclear configurations [171] is often useful 
for electronic propagation via local or quasi-diabatization. The 
need for these quantities carries over into the electron-photon 
problem with an additional caveat: the nuclear gradients on 
the molecular dipole ∇R�̂ are also required. In principle, if 
all ingredients are available [176], then any quantum dynam-
ics method can be combined to simulate polaritonic systems 
on-the-fly.

Before we move to the conclusion, we also want to briefly men-
tion recently developed theoretical approaches for simulating 
vibrational strong coupling (VSC) and vibrational polaritons. 
There has been exciting progress in the past few years toward 
simulating VSC and understanding how cavity modes are cou-
pled to the molecular vibrations and lead to changes in the mod-
ifications to rate constants. Among them, CavMD [206] is one 
of the most popular approaches that treats the Hamiltonian in 
Equation (22) classically, including the cavity mode q̂c → qc and 
molecular vibrations. CavMD has successfully produced polar-
iton linear spectra under VSC, providing valuable insights into 
how cavity modes redistribute vibrational energy and facilitate 
vibrational energy transfer [207], which enables the commu-
nity to begin to shed light on VSC-modified chemistry [208]. 
A related work using ab initio on-the-fly simulations to evolve 
molecular systems in the ground polaritonic state, while treat-
ing vibrational DOFs and cavity mode classically, while includ-
ing some photon-induced electron–electron correlations to the 
ground state via the QEDFT approach [209].

Vibrational polaritons may also require approaches that con-
sider the quantum nature of nuclei. This is because the quantum 
state description is essential to accurately provide the frequency 
of the optical transition [133, 210] and reliably give rise to the 
resonant features in VSC experiments [210–212]. For a model 
system, one could choose the vibrational state descriptions (ei-
ther the adiabatic or localized diabatic vibrational states) [210]. 
For atomistic systems, the Nuclear-Electronic Orbital (NEO) 
approach [213] can reliably treat the nuclear wavefunction on 
consistent equal footing as the electronic wavefunction and has 
been recently used in VSC applications [213]. However, other 
choices are available: for example, one can use an imaginary 
path integral-based approach to quantize nuclei or photonic 
DOFs in the extended phase space (often referred to as a ring 
polymer), for example, path-integral MD (PIMD) and the ring-
polymer MD (RPMD), both of which have been applied to VSC 
problems recently [214].

6.2   |   Conclusions

As the experimental demonstrations of molecular cavity QED in 
the strong and ultrastrong coupling regimes become more fre-
quent and accessible to the broader community, there is a need 
for the development of new theoretical tools that can accurately 
and efficiently describe such complex light-matter interactions 
found in experiments. This review summarizes some of these 
exciting theoretical advances in polariton chemistry, showcas-
ing methods ranging from improvements in the fundamental 
framework and description of these hybrid systems to the com-
putational challenges, techniques, and applications spanning 
from modifying reactivity in the ground state to understanding 
spectral signatures of excited-state photochemistry.

In Section 2, we discussed the rigorous theoretical background 
of molecular cavity QED. We first reviewed the basic theory of 
the molecular Hamiltonian (Section  2.1) and introduced the 
necessary formalism for molecular quantum electrodynamics 
(Section 2.2). Section 3 focused on solving the polaritonic eigen-
value equation using various approaches from direct diagonal-
ization in the adiabatic-Fock basis (Section 3.1.1) and polarized 
Fock basis (Section 3.1.2) as well as the self-consistent solution 
at the mean-field (Section 3.2.2) and correlated (Section 3.2.3) 
levels of theory. Using the tools put forth in the previous two 
sections, Section 4 explored the rich quantum dynamics of the 
strongly coupled light-matter systems, laying out common ap-
proaches toward simulating exact (Section  4.1) and realistic 
(Sections  4.2.1–4.2.3) molecules in the extended Hilbert space 
of the coupled electron-photon system as well as motivating 
the need for an accurate description and efficient calculation of 
the nuclear gradients (Section 4.3) used in the exact Pauli-Fierz 
Hamiltonian. Finally, in Section 5, we provide three directions 
toward a more complete picture of the molecular polariton pic-
ture in experiment, including machine learning polariton gra-
dients (Section  5.1), the simulation and effects of cavity loss 
(Section  5.2), and the extension to many molecules and many 
cavity modes (Section 5.3).

Overall, with the recent new capabilities demonstrated in exper-
iments, there has been a recent push to rigorously simulate po-
lariton systems in the strong coupling regime. This has led to a 
number of theoretical innovations that start to explain and pre-
dict these experimental results. However, there are still many 
mysteries to solve as the systems get increasingly more complex 
with more molecules and cavity modes. From the theoretical 
perspective, the single-molecule case has made significant prog-
ress due to the relative numerical simplicity of the simulations 
compared to highly expensive many-mode and many-molecule 
(with many electronic levels) simulations that have yet to be fully 
explored. From the experimental perspective, single-molecule 
spectroscopy in plasmonic cavities is extremely challenging and 
has not been widely achieved; however, the results stemming 
from such simple hybrid systems will afford a much greater leap 
forward in understanding.

The purpose of this review was to introduce and outline state-
of-the-art techniques toward the simulation of realistic, ab initio 
molecular polaritons for readers in the emergent field of polar-
iton chemistry. This review captures much of the recent work, 
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but not all, toward the description of polaritonic states and 
properties as well as their quantum dynamics. Specifically, this 
work focused on the methods and approaches needed for one to 
explore these complicated problems in more depth and did not 
focus on connecting theory to experiment. While this connec-
tion is intrinsic to the answers one seeks from simulation, the 
discussion of experimental progress and its setbacks is well be-
yond the scope of this review. We hope this work allows readers 
of all kinds to dive into the simulation of molecular polaritons 
to explore the many unknown features of this novel tool to ma-
nipulate chemical reactions as well as physical phenomena, and 
to help the community address the many open questions still 
unexplored by theory and simulation.
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