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Molecular polaritons are hybrid states formed by the quan-
tum mechanical interaction between light and matter. Re-
cent experiments have shown the ability to drastically mod-
ify chemical reactions in both the ground and excited states
through the hybridization of the electronic and photonic de-
grees of freedom. Ab initio simulations of molecular polari-
tons have demonstrated similar effects for simple ground
and excited state reactions. However, the theoretical com-
munity has been limited in its ability to describe the com-
plicated dynamical processes of many-molecule collective
effects with high-level treatment of all degrees of freedom
within a rigorous Hamiltonian. In this review, we provide
a general description and overall procedure for exploring
molecular polaritons, leveraging standard many-body elec-
tronic structure calculations combined with the exact, non-
relativistic quantum electrodynamics light-matter Hamilto-
nian.
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1 | INTRODUCTION

Coupling matter (atoms, molecules, or solid-state materials) to the quantized electromagnetic field inside an optical
cavity creates a set of new photon-matter hybrid states, so-called polariton states.1;2;3 These polariton states have de-
localized excitations amongmolecules and the cavity mode, which have been shown to facilitate new chemical reactiv-
ities.3;4;1 Theoretical investigations play a crucial role in understanding new principles in this emerging field and have
suggested interesting reaction mechanisms enabled by cavity quantum electrodynamics (QED).5;6;7;8;9;10;11;12;13;14

Unlike traditional coherent control strategies15;16, polariton chemistry does not rely on fragile electronic coher-
ence15;16 and is robust against decoherence10. Compared to the classical laser-matter interactions which operate
with a large number of photons, cavity QED enables the hybrid system to initiate chemical reactions even without
photons initially present in the cavity3. Thus, polariton chemistry provides a new strategy for controlling chemical
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reactivity in a general way by tuning the fundamental properties of photons and provides a new paradigm for en-
abling chemical transformations that can profoundly impact catalysis, energy production, and the field of chemistry
at large.17;18;19

However, recent experimental demonstrations3;20;4;1;21 of this modification of chemical reactivity are not well
understood and, in some cases, not reproducible22;23. Since these polaritonic systems often require a quantum me-
chanical description of the photonic modes, existing physical chemistry theories for chemical reactions are no longer
directly applicable to these hybrid systems, requiring a more exact QED approach. While the fundamental theories of
QED has been known for decades, directly translating this knowledge to explain measurements of polariton chemistry
remains as a major challenge in both theoretical chemistry and quantum optics. Namely, the mechanism behind the
strong coupling of a mesoscopic ensemble of molecules to a single optical cavity is still not fully understood. The basic
theory for describing the modes in different types of cavity is also briefly discussed in Sec. 2 and 5.3.

Additionally, simulating the time-dependent polariton quantum dynamics of the hybrid matter-field systems is
often a necessary and essential task, as these polariton photochemical reactions often involve a complex dynamical
interplay among the electronic, nuclear, and photonic degrees of freedom (DOFs). However, accurately simulating
polaritonic quantum dynamics remains a challenging task and is beyond the paradigm of traditional photochemistry,
which does not include quantized photons, and quantum optics which does not have a well-defined theory to include
the influence of nuclear degrees of freedom to describe reactivity nor properly account for molecular structures.24

Over the past years, enormous progress has beenmade to address this interdisciplinary challenge. We havewitnessed
how electronic structure theory (Sec. 3.2) and non-adiabatic quantum dynamics (Sec. 4) have actively participated in
this progressing this exciting field.

In Sec. 2, we discuss the rigorous theoretical background of molecular cavity QED. We first review the basic
theory of the molecular Hamiltonian (Sec. 2.1) and introduce the necessary formalism for molecular quantum elec-
trodynamics (Sec. 2.2). Sec.3 focuses on solving the polaritonic eigenvalue equation using various approaches from
direct diagonalization in the adiabatic-Fock basis (Sec. 3.1.1) and polarized Fock basis (Sec. 3.1.2) as well as the self-
consistent solution at themean-field (Sec. 3.2.2) and correlated (Sec. 3.2.3) levels of theory. Using the tools put forth in
the previous two sections, Sec. 4 explores the rich quantum dynamics of strongly coupled light-matter systems, laying
out common approaches toward simulating exact (Sec. 4.1) and realistic (Sec. 4.2.1-4.2.3) molecules in the extended
Hilbert space of the coupled electron-photon system as well as motivating the need for an accurate description and
efficient calculation of the nuclear gradients (Sec. 4.3) used in the exact Pauli-Fierz Hamiltonian. Finally, in Sec. 5, we
provide three directions toward a more complete picture of the molecular polariton picture in experiments, including
machine learning polariton gradients (Sec. 5.1), the simulation and effects of cavity loss (Sec. 5.2), and the extension
to many molecule and many cavity modes (Sec. 5.3).

The purpose of this review is to introduce and outline state-of-the-art techniques toward the simulation of real-
istic, ab initio molecular polaritons for the readers in the emergent field of polariton chemistry. This review captures
much of the recent work, but not all, toward the description of polaritonic states and properties, as well as their
quantum dynamics. Specifically, this work focuses on the methods and approaches needed for one to explore these
complicated problems in more depth and does not primarily focus on connecting theory to experiment. While this
connection is intrinsic to the answers one seeks from simulation, the discussion of experimental progress and its set-
backs is beyond the scope of this review aimed at ab initio computational approaches. We hope that this work allows
readers of all kinds to becomes acquainted with the simulation of molecular polaritons to explore the the many un-
known possibilities this novel tool has in order to manipulate chemical reactions as well as physical phenomena and
to help the community to address the many open questions still unexplored by theory and simulation.
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2 | QED THEORETICAL BACKGROUND

2.1 | Molecular Hamiltonian

The molecular Hamiltonian ĤM can be written in terms of the nuclear kinetic energy operator T̂R and the electronic
Hamiltonian Ĥel as,

ĤM = T̂R + Ĥel = T̂R + T̂r + V̂ , (1)

where T̂r is the electronic kinetic energy operator and V̂ (R) = V̂NN +V̂eN +V̂ee is the electronic potential including the
nuclear-nuclear V̂NN, electron-nuclear V̂eN, and electron-electron V̂ee interactions. The electronic Hamiltonian Ĥel =

ĤM − T̂R is routinely diagonalized via standard electronic structure packages, which attempt to solve the following
eigenvalue problem,

Ĥel |ψα (R) ⟩ = Eα (R) |ψα (R) ⟩, (2)

which defines the adiabatic electronic states |ψα (R) ⟩ and potential energy surfaces Eα (R) for the αth state. Note
that both the eigenvalues and eigenfunctions are parameterized by the nuclear positions in the Born-Oppenheimer
approximation. In this basis, the molecular Hamiltonian ĤM can be written as,

ĤM =
∑
α

Eα (R) |ψα ⟩⟨ψα | −
ħ2

2M
∑
αβ

[
+2
Rδαβ + 2dαβ (R) · +R + Dαβ (R)

]
|ψα ⟩⟨ψβ | (3)

where P̂ is the nuclear momentum operator,M is the tensor of nuclear masses, and +R is the nuclear gradient. Note
that we have used the shorthand notation |ψα ⟩ ≡ |ψα (R) ⟩. Additionally, dαβ is the derivative coupling, expressed as

dαβ (R) = ⟨ψα |+R |ψβ ⟩ =
⟨ψα |+RĤel |ψβ ⟩

Eβ − Eα
. (4)

and Dαβ (R) is the second-derivative coupling, expressed as,

Dαβ (R) = ⟨ψα |+R · +R |ψβ ⟩ = ⟨ψα |+2
R |ψβ ⟩. (5)

The coupling between light andmatter, as wewill see later, is mediated via themolecular dipole operator µ̂ =
∑
i zi R̂i −∑

k r̂k and the quantized electric field of the optical cavity Ê. Thematrix elements of the dipole operator in the adiabatic
basis can be written as,

µ̃αβ (R) = ⟨ψα | ˆ̃µ |ψβ ⟩. (6)

For large systems with many electrons, the maximum number of electronic states becomes impractically large for
standard electronic structure calculations, even considering only the single excitation manifold. Further, for single-
reference methods, such as linear response time-dependent density functionally theory (LR-TD-DFT), the efficient
and accurate calculation of high-energy excited states is not always trustworthy, so in practice we employ a smaller
Hilbert space than that implied by the total molecular Hamiltonian ĤM in Eq. 3, which can be defined through the
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following projection operator,

P̂ =

Nel−1∑
α=0

|ψα ⟩⟨ψα |, (7)

where Nel is the number of included adiabatic electronic states (ordered by increasing energy). The identity operator
for the total Hilbert space can bewritten as Îel = P̂+Q̂, where Q̂ is composed of all non-included states. The projected
molecular Hamiltonian can be written as,

P̂ĤM P̂ =

Nel−1∑
α=0

Eα |ψα ⟩⟨ψα | −
ħ2

2M ·
Nel−1∑
αβ=0

[
+2
Rδαβ + 2dα ,β · +R + Dαβ

]
|ψα ⟩⟨ψβ | . (8)

For the remainder of this work, it will be assumed that all Hamiltonians and operators reside in the truncated Hilbert
space P̂ĤM P̂ → ĤM. The dipole operator can also be written in the truncated Hilbert space as,

P̂µ̂P̂ =

Nel−1∑
α ,β=0

µαβ |ψα ⟩⟨ψβ | . (9)

Later, in Sec. 3.1.2, we will examine an entangled basis for the electron and photon degrees of freedom which we
call the polarized Fock state (PFS) basis. In order to construct this basis, we require a unitary transformation of the
electronic states such that the dipole operator in the truncated Hilbert space is diagonal. In this way, we can define
the dipole operator as,

P̂µ̂P̂ =

Nel−1∑
ν=0

µνν |φν ⟩⟨φν | . (10)

where |φν ⟩ is the eigenstate of the projected dipole operator P̂µ̂P̂ with

|φν ⟩ =
Nel−1∑
α=0

cνα (R) |ψα (R) ⟩, (11)

and cνα = ⟨ψα |φν ⟩. These states are commonly referred to as Mulliken-Hush (MH) states. In this basis, the electronic
Hamiltonian rotates to an off-diagonal matrix as,

Ĥel =
Nel−1∑
νµ

Vνµ (R) |φν (R) ⟩⟨φµ (R) | . (12)

2.2 | Pauli-Fierz Hamiltonian

Often, for finite molecular systems, the Pauli-Fierz (PF) Hamiltonian ĤPF is chosen to model the interactions between
the molecular and photonic degrees of freedom inside an optical or plasmonic cavity. We will first introduce the
single-mode, single-molecular description; although, later in Section 2.3, we will generalize to the collective many-
mode, many-molecule Hamiltonian needed to describe experimental conditions. At this level, the PF Hamiltonian can
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be written as,

ĤPF = ĤM + Ĥph + Ĥel−ph + ĤDSE

= ĤM + ħωc ( â† â +
1

2
) +

√
ωc
2
λ · µ̂( â† + â ) + 1

2ħ
(λ · µ̂)2 (13)

= ĤM + 1

2
p̂2c +

1

2
ω2
c

(
q̂c +

λ

ωc
√
ħ
· µ̂

)2
,

where ωc is the cavity frequency and â† (â) is creation (annihilation) ladder operator for the photon field. The Hamil-
tonian can be factored into the form of a shifted harmonic oscillator via the definition of the canonical coordinates
(i.e. the operators of positions and momentum) of the quantum harmonic oscillator: q̂c =

√
ħ

2ωc ( â
† + â ) and p̂c =√

ħωc
2 ( â† − â ) . Here λ is the light-matter coupling strength commonly used in the literature. Another common choice

is the transverse vector potential of the photonic field A0, related to λ as

λ =

√
ħ

εV ê and A0 =

√
ħ

2ωcεV
ê =

√
1

2ωc
λ, (14)

where V is the quantization volume of the photon field, ε is the electric permittivity, and ê is the unit vector of the
electric field polarization. Eq. 13 is composed of four main elements: the molecular Hamiltonian ĤM, the photonic
Hamiltonian Ĥph, the light-matter interaction Ĥel−ph, and the dipole self-energy ĤDSE. Similarly to the molecular
Hamiltonian, we wish to solve an eigenvalue problem without the nuclear kinetic energy operator T̂R , which we
define the polaritonic Hamiltonian Ĥpl (analogously to the electronic Hamiltonian Ĥel) as,

Ĥpl = ĤPF − T̂R = Ĥel + Ĥph + Ĥel−ph + ĤDSE, (15)

whose eigenvalue equation can be written as,

Ĥpl | Ej (R) ⟩ = Ej (R) | Ej (R) ⟩, (16)

where Ej (R) are the Born-Oppenheimer polaritonic potential energy surfaces and | Ej (R) ⟩ are the adiabatic polari-
tonic states. The focus of Section 3 will be to explore solving such eigenvalue problems in various choices of basis
states and to calculate chemically and physically relevant properties from such polaritonic wavefunctions.

2.3 | Collective Hamiltonian

Although many successful single-molecule experiments25;26 and theoretical10;27;28 work have been instrumental in
probing the basic physics of polaritonics, most experiments are constructed such that a large ensemble (often ∼ 108

or more) of molecules is coupled simultaneously to many modes of the cavity.29;30;31;3;30 These many coupled DOFs
generate collective upper and lower polaritonic states29;32;9 as well as the dense manifold of “dark states” which
contain minuscule amounts of photonic character and negligible transition dipole.29

The direct generalization of Eq. 13 for many molecules Nmol and cavity modes Nmode, including both parallel kx
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(quasi-continuous) and perpendicular kz (discrete) modes, can be written as,

ĤG
PF = ĤM +

Nmode∑
k

∑
p

(
ħωk ( â†k âk + 1

2
) +

Nmol∑
A

√
ωk
2
λk,p · µ̂A (RA ) ( âke ikx ·xA + â†

k
e−ikx ·xA ) (17)

+
Nmol∑
A,B

1

2ħ
(λk,p · µ̂A (RA ) ) (λk,p · µ̂B (RB ) )e−ikx · (xA−xB )

)
.

Here, xA denotes the center-of-mass position of molecule A and RA denotes the nuclear coordinates of molecule
A. For typical Fabry-Perot cavities, the photon energy required to excite the cavity mode with the wavevector, k =

⟨kx , kz ⟩, is Eph (θ ) = ħ
nc c

√
k 2z + k 2x = ħ

nc ckz
√
1 + tan2 θ, which depends on the angle θ (tan θ = kx /kz ) of the external

probe. Here, c is the speed of light in vacuum, nc is the refractive index inside the cavity, and ħk is themomentumof the
photon. While the collective Hamiltonian (Eq. 17) is an extremely important physical object to describe experimental
conditions, we will focus the majority of our discussion on the single-molecule, single-mode case (Eq. 13) and return
to the collective case in Sec. 5 where we will describe extensions toward the realistic modeling of polaritonic states
and their dynamics.

3 | OBTAINING POLARITON EIGENSTATES AND THEIR PROPERTIES

3.1 | Direct Diagonalization

Diagonalizing Hamiltonians is the main task of all quantum mechanics. If one can achieve the exact diagonalization
of the Hamiltonian for all DOFs, the exact answer is returned, given a complete basis set. In reality, one is unable to
achieve this due to the basis set limitations and/or the complexity of themany-body problem itself. As such, one seeks
to find the best alternative toward providing approximate solutions to themany-body problem that returns the correct
physics. For the electronic Hamiltonian, the community at large has spent nearly 90 years working on this problem
providing methods such as Hartree-Fock theory (HF), density functional theory (DFT), configuration interaction (CI),
coupled cluster (CC), among others including their excited state analogues like time-dependent DFT (TD-DFT). Each
of these methods returns, to varying degrees of computational expense and accuracy, the solutions to the electronic
Hamiltonian.

Considering the photonic part of the light-matter hybrid system, we know these DOFs are explicitly harmonic
(i.e., their bare Hamiltonian Ĥph is simply the quantum harmonic oscillator), and their exact eigenstates are known to
be the Fock (or number) states of the quantized field. In this way, we already know the solutions to the unperturbed
parts of the light-matter Hamiltonian exactly for the photons and approximately for the electrons. If one can directly
diagonalize the light-matter Hamiltonian (Eq. 15), then one additionally receives the exact correlation between these
DOFs.

In contract to a direct diagonalization, many recent works have shown that one can reconstruct the self-consistent
schemes used in the many-electron problem and solve the many-electron and many-photon problem simultaneously.
In this sense, the basis states are optimized (or are allowed to respond to interactions with the photon DOFs) to
achieve a minimization of the energy, subject to the underlying approximations of the theory (e.g. density functional
theory). Further, the electron-electron, electron-photon, and photon-photon correlations are forced to be described
on the same footing. In the following, we will focus our description to direct diagonalization techniques to achieve the
exact electron-photon correlation, making use of standard electronic structure packages that have been thoroughly
tested and are both freely and commercially available. In the last section (Sec. 3.2), we will briefly motivate cases
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where a self-consistent approach would be advantageous and outline the idea behind such schemes.

3.1.1 | Adiabatic-Fock Basis

In the adiabatic electronic basis |ψα ⟩ (eigenstates of Ĥel) paired with the Fock (or number) basis for the photonic DOFs
|n ⟩ (eigenstates of Ĥph = ħωc ( â† â + 1

2 )), the matrix elements of the polaritonic Hamiltonian can be written as.

(Ĥpl )αβ ,nm (R) =
[
Eα + ħωc (n +

1

2
)
]
δαβ δnm +

√
ωc
2
λ (µ̃αβ · ê) (

√
nδn,m−1 +

√
n + 1δn,m+1 )

+ 1

2ħ
λ2

Nel−1∑
γ=0

(µ̃αγ · ê) (µ̃γβ · ê)δnm (18)

= ϵα ,n (R)δαβ δnm + µ̃αβ (R)ηnm + Dαβ (R)δnm ,

where {α , β , γ} label the electronic adiabatic states (in the subspace defined by the Nel lowest-energy states), {n,m }
label the photonic Fock states (in the subspace defined by the NF lowest-energy states), ê is the polarization unit
vector of the electric field, ϵα ,n = Eα + ħωc (n + 1

2 ) , µ̃αβ =
√
ωc
2 λ (ê · µ̃αβ ) , ηnm = (

√
nδn,m−1 +

√
n + 1δn,m+1 ) , and

Dαβ = 1
2ħλ

2 ∑
γ (µ̃αγ · ê) (µ̃γβ · ê) . Here, from the perspective of electronic structure, only the electronically adiabatic

state energies Eα and dipole matrix elements µαβ are required as input. Note that in the last line of Eq. 18, we
have explicitly inserted the dependence on the nuclear positions R for clarity, but in general we choose to neglect
writing such dependence for the sake of clarity. The photonic basis is in principle infinite, since the harmonic oscillator
has infinite eigenstates, so, similar to the electronic subspace which is truncated at Nel (Eq. 7), we also introduce a
truncation of the photonic Hilbert space including only the lowest NF Fock states. The polaritonic Hamiltonian can
be easily constructed via Kronecker products (e.g., µ̂ ⊗ â) of the sub-space operators; however, it is worth noting the
extreme sparsity afforded by the Fock basis. To make this clear from a visual perspective, the block-like nature of the
matrix in this basis can be written as,

Ĥpl =



E0 + D00 D01 · · · µ̃00 µ̃01 · · ·
D01 E1 + D11 · · · µ̃01 µ̃11 · · ·
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.

µ̃00 µ̃01 · · · E0 + ωc + D00 D01 · · ·
µ̃01 µ̃11 · · · D01 E1 + ωc + D11 · · ·
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

. . .


=



M0 µ̃ 0 0 · · · 0

µ̃ M1

√
2µ̃ 0 · · · 0

0
√
2µ̃ M2

√
3µ̃ · · · 0

0 0
√
3µ̃

. . .
. . .

.

.

.

.

.

.
.
.
.

.

.

.
. . .

. . .
√
NFµ̃

0 0 0 · · ·
√
NFµ̃ MNF


. (19)

A few important properties of this matrix are as follows: (I) The NF block diagonalsMn are composed of the diagonal
energies and diagonal DSE elements ϵα ,n + Dαα in addition to the off-diagonal DSE elements Dαβ . (II) The super- and
sub-diagonal blocks are composed only of the matter dipole operator matrix elements µ̃αβ weighted by the photon
number of the larger diagonal Fock state label n . Note here that for clarity, we have neglected the zero-point energy
of the photonic mode and R dependence. One can easily see from the right-most side of Eq. 19 that this matrix
is extremely sparse, especially for larger number of included Fock basis states (needed for convergence), so many
approximate diagonalization schemes can be usedwhich rely on the properties of sparsematrices, such as the Lanczos
and Krylov subspace techniques,33;34;35 and are able to return the lowest eigenvalues and eigenvectors without loss
of physics but with a large computational speed-up.

Upon diagonalization of Eq. 19, the polaritonic states are represented as linear combinations of the adiabatic-Fock
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F IGURE 1 (a) Adiabatic potential energy surface of the formaldehyde molecule’s A1-symmetry excited states as
a function of the C-O bond length, RCO. The inset presents the avoided crossing between the two adiabatic states.
(b)-(c): Polariton excited state energy Ej (RCO ) −MIN[E0 (RCO ) ] of the formaldehyde-cavity hybrid system, with the
coupling strength of A0 = 0.04 a.u., and a cavity frequency (b) ωc = 6.5 eV and (c) ωc = 9.5 eV. The cavity polarization
is parallel to the C-O bond. For panels (b)-(c), the color map indicates the photonic character and the cavity-free
electronic states are shown as thick gray lines. The inset in panel c shows the reduction of the avoided crossing from
75 to 9 meV. (d) Polaritonic transition density ρM0j (r) of the upper (UP) and lower (LP) polaritons for A0 = 0 a.u., 0.01
a.u., 0.04 a.u., and 0.05 a.u. at ωc = 7.92 eV with a C-O bond length of 1.22 Å. (e)-(h) Excitonic absorption spectra of
a (6,5) single-walled carbon nanotube (SWCNT) coupled to an optical cavity plotted as a function of the transition
energy and coupling strength A0. The Lorentzian energy-broadening parameter is σ = 0.1 eV. The cavity frequency is
taken to be (e) ωc = 1.0 eV (half-resonance), (f) ωc = 1.5 eV, (g) ωc = 2.0 eV (resonant with bright molecular transition,
E11), and (h) ωc = 2.5 eV. (Above) The polaritonic transition density at A0 = 0.0 a.u. is shown above the spectra for
the ground-to-bright E11 transition.

basis states (with contracted notation |ψα (R) ⟩ ⊗ |n ⟩ = |ψα (R), n ⟩) as,

|Φj (R) ⟩ =
Nel∑
α

NF∑
n

C
j
αn |ψα (R), n ⟩, (20)

where C jαn = ⟨ψα (R), n |Φj (R) ⟩. Here, Nel and NF are treated as convergence parameters such that the polaritonic
observables are adequately converged (see more details in Section 3.1.3). The obvious first choice is the convergence
of the lowest-energy eigenvalues of Eq. 19. In our experience with realistic ab initio systems, the convergence with
respect to the number of Fock states is rapid, only requiring NF ∼ 5 to obtain ∼10 meV accuracy. However, due to
the complicated and highly off-diagonal dipole matrix36 in real molecules, the convergence with respect to electronic
states is slow, possibly requiring Nel ∼ 100 or more states to achieve ∼10 meV accuracy.37;38 In Sec. 3.2, we will
briefly address other approaches, namely self-consistent schemes, to converge complicated systems which contain
many strongly dipole-connected states as well as systems with large light-matter coupling that necessitate a more
advanced and rigorous approach toward obtaining the polaritonic eigenstates in a self-consistent way.

Fig. 1a-d presents excited state potential energy surfaces of formaldehyde as a function of the C-O bond length,
showing the two lowest-energy excited states with ground-to-excited transition dipole along the C-O bond direction
(which is parallel to the cavity polarization direction, ê ). The bare electronic states (Fig. 1a) show two localminima in the
lower-energy excited state as well as an avoided crossing (see inset). Upon coupling to the cavity, the local minima

https://doi.org/10.26434/chemrxiv-2024-72ghz ORCID: https://orcid.org/0000-0002-8639-9299 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-72ghz
https://orcid.org/0000-0002-8639-9299
https://creativecommons.org/licenses/by/4.0/


10 Weight et al.

near C-O bond length of 1.50 Å can be removed with a negatively detuned cavity (ωc = 6.5 eV, Fig. 1b, colorbar
indicates the average photonic character ⟨ â† â ⟩). Alternatively, the avoided crossing can be systematically reduced via
a positively detuned cavity (ωc = 9.5 eV, Fig. 1c, see inset). An important feature of this change in the avoided crossing
is that the character of both states involved is retained (i.e., mainly electronic excitation character) where both states
exhibit negligible amounts of photonic contributions. Direct control over the relative energy of electronic states while
maintaining their original character is a useful concept and design principle in processes controlled by non-adiabatic
coupling between the excited electronic states.

Fig. 1d presents the matter-projected polaritonic transition density in real space,

ρM0j (r) = ⟨r |Trph
[
ρ̂0j

]
|r⟩ =

Nel∑
αβ

NF∑
n

C 0
αn (C

j
βn

)∗ · ξMαβ (r), (21)

where the photonic DOFs have been traced out, leaving only the electronic contributions. Here, ξM
αβ

(r) = ψ∗
β
(r)ψα (r)

is the αβth electronic transition density in real space r and ρ̂0j = |Φj ⟩⟨Φ0 | is the 0jth polaritonic density operator. More
details on calculating observables can be found in Sec. 3.1.3. The light-matter hybridization leads to superpositions
between photon-dressed electronic states, which leads to various electronic transition densities mixing through the
polaritonic expansion coefficients in the adiabatic-Fock basis (see Eq. 20). The matter-projected polaritonic transition
density39;37 is only one of many ways to examine the character of the molecular part of the polaritonic excitation.
Other examples of matter-projected polaritonic observables are the difference density,40;41 the natural transition
orbitals,37 the transition density matrix,37 and other yet to be applied for the polaritonic case.

The changes of the polaritonic transition density are presented as a function of the coupling strength A0 (varied
along the horizontal axis of panel d) for the upper and lower polaritons, with a C-O bond length of 1.22 Å and at cavity
energy ωc = 7.92 eV. Under this configuration, the cavity is nearly resonant with the molecular adiabatic transition
from the ground state to the ψA1

1 state at the Franck-Condon points. Through the coupling-dependent mixing of the
various electronic transition densities, the polaritonic transition density is modified for each coupling strength, and the
results showcase how tuning the cavity parameters can modify the local electronic properties to facilitate chemical
reactions or photophysical changes.

Fig. 1e-h shows the excitonic spectra of a (6,5) single-walled carbon nanotube (SWCNT) system inside an optical
cavity for cavity frequenciesωc = (e) 12E11, (f)

3
4E11, (g) E11, and (h)

5
4E11, where E11 is the lowest energy bright transition

in the pristine SWCNT. This system has been the subject of recent exploration by the polaritonic community and has
yielded many interesting results.42;43;44;45;46;47 It is well known that pristine SWCNTs are relatively dark to emission
due to low-lying optical inactive electronic transitions. Here, the |ψ0, 2⟩ photon-dressed ground state is in resonance
with the bright |E11 ⟩ ≡ |ψ6, 0⟩ state. At resonance (panel g), the bright character of the E11 state is split nearly
symmetrically as a function of the light-matter coupling strength, A0. For negatively detuned cavity (panels e,f), the
bright character is blueshifted. For a positively detuned cavity (panel h), the bright character is redshifted to below
the manifold of low-lying dark states, effectively brightening the emission of the SWCNT system without the need
for chemical functionalization48;49;50;51;52;53;54;55 or solvent doping.56;57

3.1.2 | Polarized Fock State Basis

In Section 3.1.1, we have described one possible basis for the representation of the PF Hamiltonian (Eq. 13). However,
this is not the only choice. In fact, the adiabatic-Fock representation is useful in the weak coupling limit, since the basis
is simply the basis that diagonalizes the unperturbed electronic (Ĥel) and photonic (Ĥph) Hamiltonians. In this sense,
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F IGURE 2 (a) Diabatic Mulliken-Hush (MH) potentialsVI(R) (red) andVC(R) (blue), with diabatic couplingVIC (gold
line). (b) Matrix elements of µ̂ in the adiabatic representation (dashed curves) µgg (pink), µee (cyan), and µeg (gold), as
well as in the diabatic representation (solid lines) µII (red) and µCC (blue). Here µII = µI (red) and µCC = µC in the MH
representation since no off-diagonal dipole elements are present in the dipole operator. (c) Polaritonic potentials
color-coded according to the number of photons with four relevant avoided crossings labeled as R0, R1, R2, and R3.
The black solid vertical arrow indicates the initial photoexcitation, and the dashed lines illustrate the dynamics of the
hybrid system. (d) Time-dependent photon populations. For panels (c)-(d), the light-matter coupling strength set to
A0 = 0.127 a.u. with a cavity frequency of ωc = 1.5 eV.

when the contributions of the interaction (Ĥe−ph) or dipole self-energy (ĤDSE) become large, the many adiabatic and
Fock states will be needed in the description of the polaritonic wavefunctions. Other choices exist for the description
of the photonic DOFs, such as the grid basis, which diagonalizes q̂c ∝ â† + â and has been extensively used.5;58;59;60

The choice of basis can significantly enhance computational efficiency or reduce the conceptual complexity of a
problem, depending on the light-matter coupling strength and cavity frequency parameters. One such basis, aimed for
use in the strong light-matter coupling regime, is the recently proposed polarized Fock State (PFS) basis introduced
in Ref. 61. Here, the Pauli-Fierz Hamiltonian is rewritten using an entangled electronic-photonic basis, where the
electronic states are represented by the eigenstates of the dipole operator∑ν P̂µ̂ P̂ = µνν (R) |φν ⟩⟨φν | and is referred
to as the Mulliken-Hush (MH) representation (Eq. 11). The polaritonic Hamiltonian (see Eq. 13) in the MH basis can
be written as,

Ĥpl = Ĥel +
p̂2c
2

+
∑
ν

ω2
c
2

[
q̂c + q0ν (R) |φν ⟩⟨φν |

]2
, (22)

where q0ν (R) = − λ
ωc · µνν (R) . Considering the Hamiltonian of the bare photonic field, Ĥph = 1

2

(
p̂2c + ω2

c q̂
2
c
)
, one may

notice that the QED Hamiltonian is simply shifted in the position coordinate q̂c by the value −q0ν (R) and is hence a
shifted harmonic oscillator (or “polarized Fock state” since the field is polarized by the molecular electric multipole),
unique for each MH electronic state ( |φν ⟩). At zero light-matter coupling or infinitely large cavity frequency, the
original MH and un-shifted (or “vacuum”) Fock states are returned. The light-matter Hamiltonian (Eq. 22) can be now
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block-diagonalized using the polarized Fock state basis (PFS) { |nν (R) ⟩} for each MH state |φν ⟩, which is defined as,

1

2

[
p̂2c + ω2

c
(
q̂c + q0ν (R)

)2] |nν (R) ⟩ ≡ (b̂†ν b̂ν +
1

2
)ħωc |nν (R) ⟩ =

(
nν +

1

2

)
ħωc |nν (R) ⟩.

where b̂†ν (b̂ν ) is the creation (annihilation) ladder operator for the shifted harmonic oscillator specific to the νth MH
state. Defining the total basis as the tensor product of the MH states and the PFS basis, |φν (R) ⟩ ⊗ |nν (R) ⟩ ≡
|φν (R), nν (R) ⟩, which is an entangled light-matter basis since the molecular dipole appears in the definition of the
shifted Fock state, the matrix elements of the light-matter Hamiltonian can be expressed as

(Ĥpl )νµ,nνmµ =

[
Vνν + ħωc (nν +

1

2
)
]
δνµδnνmµ + ⟨nµ |mν ⟩ Vνµ (1 − δνµδnνmµ ) . (23)

Note here that we have dropped the explicit dependence on the nuclear position R for clarity. In this basis, the
diagonal matrix elements are the diagonalMH energiesVνν (Eq. 12) and PFS harmonic oscillator eigenvaluesωc (nν+ 1

2 ) ,
while the off-diagonal contributions are now the MH coupling elements Vν,µ reduced in magnitude by the overlaps
⟨nϵ |mν ⟩ ∈ [−1, 1] between two PFS harmonic oscillator states with nν photons and mµ photons associated with two
different electronic MH statesφν andφµ . In this compact basis, the light-matter coupling and dipole self-energy are all
neatly housed in the MH coupling and PFS overlaps, ⟨nµ |mν ⟩ Vνµ , and thus all interactions between light and matter
DOFs are carried through this single term. Note also that the calculation of the PFS overlaps is analytic and can be
written as,

⟨nϵ |mν ⟩ = (−2ξ )n−me−2ξ2
√
m!
n! ∗ Lg (4ξ2,m, n − m ), for m < n (24)

where Lg is the associated Laguerre polynomial and ξ = (q0ν − q0µ )/
√
2ωc with q0ν = λ

ωc · µνν . This basis is expected
(and has been explicitly shown for models systems61) to efficiently converge the photonic basis, especially when the
permanent dipoles µνν in the MH basis are large. For additional discussion on the PFS basis, see Ref. 61. Further, a
similar basis has been used in the quantum optics and recently in the polariton communities, which is referred to as
the generalized coherent state (GCS) basis,62;63;41;64 which also relies on the molecular dipole information to define
a new photonic basis. The polaritonic Hamiltonian in the PFS basis is, in general, not as sparse as that of the adiabatic-
Fock matrix (see Eq. 19) since all shifted Fock states between differentMH electronic statesφν are connected via their
shifted harmonic oscillator overlaps, so sparse matrix techniques cannot be as readily applied. The main advantage
of the PFS basis is that many of the overlaps will be near zero due to the widely varying magnitudes of the molecular
dipole µνν elements. In this way, the PFS basis, in principle, will allow one to use many fewer shifted Fock states as
a basis than the vacuum Fock states used in the adiabatic-Fock basis (see Section 3.1.1) and therefore may perform
more efficiently in many cases. More rigorous testing is required for real, ab initiomolecular systems where the dipole
matrices are extremely non-diagonal in themany-state adiabatic basis compared tomany of the testedmodel systems,
such as the harmonic oscillator or the double-well potentials where the dipole matrix is nearly diagonal, hence the
adiabatic states are already almost equal to the MH states themselves. In our experience, the photonic basis is more
easily converged in ab initio systems compared to the convergence of the electronic basis, which often requires many
states to provide a useful convergence (see Sec. 3.2 for additional discussion).

Fig. 2 presents the polariton potential energy surfaces predicted by various quantum optics model Hamiltonians
for themodel LiFmolecule shown in Fig. 2a-b (the details of themodel can be found in Ref. 61). Here, only two diabatic
states were considered, which are denoted as the ionic state |I⟩, and covalent state |C⟩. These two diabatic states
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are coupled through a diabatic couplingVIC (R ) (dotted yellow line in Fig. 2a) that causes a splitting (avoided crossing)
near the anti-crossing of the diabatic potentialsVC (R ) andVI (R ) (solid red and blue line in Fig. 2a, respectively). The
adiabatic electronic states, ground |G(R ) ⟩ and excited |E(R ) ⟩ states can be obtained by diagonalizing the electronic
Hamiltonian Ĥel =VI (R ) |I⟩⟨I | +VC (R ) |C⟩⟨C | +VIC (R ) ( |I⟩⟨C | + |C⟩⟨I | ) at each R (see Eq. 12).

The electronic dipolematrix at each R is diagonal in this diabatic representation. This is because the diabatic states
|I⟩ and |C⟩, also referred to as the Mulliken-Hush diabatic states, are by definition the eigenstates of the electronic
transition dipole operator (see discussion around Eq.10). Fig. 2b presents the matrix elements of µ̂ in both the diabatic
(solid lines) and the adiabatic (dashed lines) representations. As expected, the permanent dipole for the ionic state
|I⟩ (corresponding to Li+F− ) µI (R ) linearly increases, while the permanent dipole for the |C⟩ state (corresponding to
covalently bonded Li-F ) µC (R ) remains nearly zero with increasing interatomic separation R . The adiabatic states
switch their characters around R ≈ 13.5 a.u., as a result, the adiabatic permanent dipole switches in that region, and
µeg (R ) peaks at R ≈ 13.5 a.u.

Fig. 2c shows the polaritonic potential energy surfaces for a cavity frequency ωc = 1.5 eV and light-matter cou-
pling strength A0 = 0.127 a.u. The coloring indicates the average photon number of the polaritonic state. Given an
initial excitation from |G(R ), 0⟩ → |E(R ), 0⟩ (vertical black arrow) at the ground state minimum (outside the cavity’s
influence), the time-dependent average photon number was calculated (see Ref.61 for more details) and shown in
Fig. 2d. Thus, through nuclear motion and light-matter coupling, excited photons can be generated.

3.1.3 | Calculating Relevant Polaritonic Properties

Exciton-polaritons have many characteristic features, such as the Rabi splitting observed in linear spectroscopy when
the cavity frequency is in resonance with a well-separated electronic transition (e.g. historically found in single-atom
spectroscopy). Of course, there are many spectroscopic footprints of polariton formation that are of interest to the
community for finding and exploring the physics of such quasi-particles; however, the spectroscopic results available
experimentally may not be the most informational for probing local phenomena such as chemical reactions, charge
transfer, or exciton diffusion. In these examples, the main features are stored in the excitonic part of the polariton,
which is usually not directly visible in most experimental configurations due to the fast photon loss mechanisms and
mirror absorption. However, examining the photonic contribution to the spectroscopy will give indirect information
regarding the changes to the excitonic part of the polaritonic wavefunctions. In this section, we will outline the neces-
sary steps to compute observables of polaritonic states using the direct diagonalization approach already discussed.
We will focus on the local excitonic changes due to the formation of hybrid light-matter states, which are directly
relevant to the local chemical reactivity, excited-state charge transfer, and exciton diffusion processes.

Any polaritonic observable Ô can be described with any basis of light and matter, e.g. adiabatic-Fock (Sec-
tion 3.1.1), PFS (Section 3.1.2), or any other. Note that this is a more general case than was done in Eq. 21. Here,
we will choose the adiabatic-Fock basis for conceptual simplicity, but all of the main points are easily transferable to
another basis by unitary transformation. The matrix elements of the polaritonic observable Ô can be expanded in the
adiabatic-Fock basis (Eq. 20) as,

⟨Φj |Ô |Φk ⟩ =
Nel∑
αβ

NF∑
nm

C
j
αnC

k
βm ⟨ψα , n |Ô |ψβ ,m ⟩ =

Nel∑
αβ

NF∑
nm

C
j
αnC

k
βm ⟨ψα |Âel |ψβ ⟩⟨n |B̂ph |m ⟩, (25)

where C k
βm

= ⟨ψβ ,m |Φk ⟩. Note here that since the polaritonic Hamiltonian, Eq. 15, is real-valued, then the expansion
coefficients in the adiabatic-Fock or PFS basis will also be real-valued, i.e., (C k

βm
)∗ = C k

βm
. In general, any polaritonic
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F IGURE 3 (a) Schematic of possible reaction pathways of theelectrophilic bromination of nitrobenzene. (b)
Relative energy of the polaritonic ground states between ortho-PhNO2- Br+ and meta-PhNO2- Br+ intermediates
with various cavity polarization directions. Ground state density difference between coupling to the cavity and
outside the cavity case, for (c) the meta-cationic intermediate and (d) the ortho-cationic.

observable, even restricting to ground-to-excited elements, are linear combinations of all matrix elements present in
the electronic and photonic subs-systems. As such, highly non-trivial mixing of matrix elements can appear when
the light-matter coupling becomes large. Here Ô = Âel ⊗ B̂ph are factorized electronic and photonic operators, re-
spectively, which is not a requirement of Ô but is often the case for simple, non-entangled observables, such as the
average photon number Ô = Îel ⊗ â† â .65 Another example is linear spectroscopy where the polaritonic dipole matrix
elements can be expressed as ˆ̃µpol ∼ ˆ̃µel ⊗ Îph + Îel ⊗ q̂c. In experiment, the relative magnitudes of the excitonic
and photonic contributions are highly dependent on the experimental configuration and are usually understood to
be dominated by the photonic contributions (i.e., keeping only the q̂c term in ˆ̃µpol) and is often called the “visibility
spectrum” or “transmission spectrum”.66 In this case, the local information regarding the excitonic spectrum is present
only in an indirect sense. However, often one is interested in examining the changes to the excitonic subsystem for
purposes of exploring electronic reorganization through the mixing of electronic adiabatic states via hybridization
with light.39;37;63;40;67;68;17;69;70 As such, to achieve an observable that will give direct information on the excitonic
subsystem, we will ignore the second term in the polaritonic dipole operator to exclude photonic contribution, and
in this way, we have traced out the photonic DOFs. An arbitrary matter-projected polaritonic operator can now be
written as,

ÔM
j k = ⟨Φj |Âel ⊗ Îph |Φk ⟩ =

Nel∑
αβ

NF∑
n

C
j
αnC

k
βn ⟨ψα |Âel |ψβ ⟩, (26)
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where we have made use of the orthogonality of the vacuum Fock states, ⟨n |m ⟩ = δnm . For example, one may be
interested in the polaritonic transition density39;71;37 ρM0j (r) (see Eq. 21) or the polaritonic difference density

40;17;41

∆ρ (r) = ρM
j j

− ξj j of the molecule inside the cavity.

With the pQED approach, textbook organic reactions can be studied. Several theoretical studies have recently
shown17;19 that the cavity can completely switch selectivity of well-known chemical reactions. If successful, cavity QED
could revolutionize fundamental knowledge of organic chemistry. One such reaction is the electrophilic bromination
of nitrobenzene17 shown in Fig. 3a. This is a textbook reaction,72;73 where only the meta-substitution product is
possible, and the ortho-substituted (or para-substituted) product is not observed experimentally. This has been well-
explained due to the stability of the catatonic active complex PhNO2-Br+, for example, using the resonance structure
or using ab initio calculations. By coupling this reaction to an optical cavitywhichmixes the character of the ground and
excited electronic states, it was observed that one can fundamentally change the selectivity of this reaction, making
the ortho-substituted product possible. Fig. 3b presents the relative energy difference between the meta-substituted
and the ortho-substituted catatonic active complex PhNO2-Br+, where the blue region of the figure indicates where
themeta-substitution is more stable, and red region of the figure indicates where the ortho-substitution is more stable.
Fig. 3c,d presents the ground state density difference (∆ρ (r) , defined below Eq. 26 using Eq. 21) for the meta- and
ortho-substituted intermediate coupled inside the cavity and outside the cavity. This density difference aids in the
understanding of the cavity QED effects on modified relative energies of the intermediate species. This observable
has a close connection with the intuitive resonance structure arguments, since the difference density shows how
the electronic distribution is modified by the presence of the cavity.17 As such, coupling to the cavity cavity enables
ortho-substituted nitro-benzene, thus making impossible reactions possible. Additionally, Ref. 17 predicts that the
experimental condition for this change requires the cavity frequency of ωc = 1.8 eV and the filed intensity of 2 − 10

V/nm, both of which can be accomplished with the state-of-the-art plasmonic cavity designs.25;26;74

3.2 | Iterative Approaches

In the previously discussedQED approach, one is required to compute themany-body electronic states { |ψα ⟩} for use
in a direct diagonalization procedure of the Pauli-Fierz Hamiltonian (Eq. 18) coupled with some basis for the photonic
DOFs (e.g., Fock/number states, polarized Fock states) to arrive at a description of the polaritonic states in these
choices of basis. This method, in the infinite basis limit, provides the exact results for the polaritonic states, capturing
the exact correlation between the electronic and photonic DOFs. The primary limitation of this approach is that the
electronic basis converges very slowly for strong light-matter coupling strengths, requiring the calculation of highly
excited electronic states (∼100) to converge even the lowest polaritonic energies.38;37 Contrary to this, the photonic
basis only requires a relatively small number of basis states to converge for realistic, ab initio systems.37;17

Due to this limitation of the direct diagonalization approach, the community seeks other approximations in line
with previous electronic structure approaches that now include the photonic interactions to some degree to arrive at
a self-consistent description of the problem. In principle, this approach will require many fewer basis states than a
single, direct diagonalization but with similar approximations for the electron-photon and photon-photon interactions
that are intrinsic to the many-body method of choice. In this way, these approaches will be able to capture the
cases where strong light-matter coupling is too strong to utilize the direct diagonalization approach with a frozen
basis. We define these self-consistent analogues to the commonly used electronic structure approaches as scQED-
X, where X can be any of the standard approaches, such as Hartree-Fock theory (HF),41;64;63;68 density functional
theory (DFT), linear response time-dependent DFT (LR-TD-DFT),75;76;39 coupled cluster (CC),41;64;40;67 configuration
interaction (CI),63;77 full configuration interaction (FCI),78, second-orderMøller–Plesset perturbation theory (MP2),79
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and density matrix renormalization group (DMRG).80

3.2.1 | Generalized Coherent State Transformation

In a similar manner as done in the construction of the polarized Fock states in Sec. 3.1.2, the generalized coherent
state (GCS) transformation is a specific instance of polarizing the photonic basis by a parameter proportional to the
molecular dipole moment. The GCS basis has been used in many recent works exploring the self-consistent solution
to the ground polaritonic state.41;64;40;68 The unitary transformation can be written as,

ÛGCS = eZâ
†−Z∗ â , (27)

where the GCS shift parameter Z is chosen to be,

Z = −λ · ⟨µ̂⟩GS√
2ωc

, (28)

where ⟨µ̂⟩GS is the expectation value of the molecular dipole in the ground state. For this choice of GCS parameter,
one can rewrite the Pauli-Fierz Hamiltonian, Û †

GCSĤplÛGCS = ĤGCS
pl ,

ĤGCS
pl = Ĥel + ħωc

(
â† â + 1

2

)
+
√
ωc
2

(λ · ∆µ̂) ( â† + â ) + 1

2ħ
(λ · ∆µ̂)2, (29)

in terms of the deviation of the molecular dipole from its expectation value in the ground state ∆µ̂ = µ̂ − ⟨µ̂⟩GS and
its variance (∆µ̂)2. In the following section (Sec. 3.2.2), we will see that ⟨∆µ̂⟩SD = 0 for many-body methods that
employ only a single-determinant (SD) wavefunction, such as Hartree-Fock (SD→HF) or density functional (SD→DFT)
theories, allowing for a drastic simplification of the coupled electron-photon Hamiltonian. Note that contributions
from the dipole self-energy survive, since ⟨ (∆µ̂)2 ⟩SD = ⟨µ̂2 ⟩SD − ⟨µ̂⟩2SD, even with a single determinant approach.

It is important to note that simply using the GSC transformation does not yield a fully origin invariant Fock matrix
or single-particle orbital energies. Ref. 68 discusses such drawbacks and proposes the so-called strong coupling
variant of the Hartree-Fock theory (SC-QED-HF), which transforms the Pauli-Fierz Hamiltonian in a similar way as
the GSC rotation but now contains orbital specific rotations, similar to the polarized Fock state basis (see Sec. 3.1.2).
Since the orbitals are involved and the transformation depends on the dipole operator, the single-particle Hamiltonian
is first rotated to the dipole basis (similar to Eq. 12 but for single-particle molecular orbitals instead of many-body
states).

Furthermore, one should note that this choice of Z (Eq. 28) or the case of SC-QED-HF in Ref. 68 only applies
in the limit of infinite light-matter coupling. Recent works have performed a variational optimization procedure on
the shift parameter Z, e.g., choosing ZOPT under the condition ∂E(R)

∂Z = 0, which further minimizes the energy of
the ground state.79;81 This minimization is done on top of the self-consistent iterations and can be interpreted as
an additional DOF for the self-consistent procedure. Given this rotation of the Hamiltonian, both the DSE as well as
the bilinear interaction term would remain, even for single-determinant approaches, but would be scaled (or partially
shifted away) by some optimal factor proportional to ∆λ = λ − ZOPT and (∆λ )2, respectively. This partial transfor-
mation can be interpreted as a rotation that pushes the maximal amount of complicated many-body electron-photon
and photon-mediated electron-electron correlations into the mean-field solution of the QED problem.
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3.2.2 | Single-determinant Ground Polaritonic States

Assuming a single-reference (i.e., single-determinant) wavefunction for the electronic DOFs |HF⟩ (taken as Hartree-
Fock determinant) for the polaritonic ground state in the GCS basis (see Sec. 3.2.1), then the deviation in themolecular
dipole ∆µ̂ = µ̂ − ⟨µ̂⟩GS=HF = 0 since ⟨HF |µ̂ |HF⟩ = ⟨µ̂⟩GS=HF, effectively removing the bilinear coupling term in the
GCS light-matter Hamiltonian (Eq. 29). However, the DSE term remains since ⟨ (∆µ̂ )2 ⟩HF , 0 even for the single-
determinant approximation. To be clear, for approaches with multiple determinants (i.e., the use of excited Slater
determinants in a CIS-like expansion), the direct coupling term will survive. For a single-reference ground state, Eq. 29
can then be simplified to,

ĤGCS
pl = Ĥel + ħωc

(
â† â + 1

2

)
+ 1

2ħ
(λ · ∆µ̂)2, (30)

where the only photonic operator that appears is that of the photonic Hamiltonian Ĥph = ħωc
(
â† â + 1

2

)
whose eigen-

states are the vacuum Fock states |ñ ⟩ in the rotated GCS basis (which have the same frequency but with a shift in
position qc by Z compared to the vacuum Fock states). One should note that the Pauli-Fierz Fock states can be re-
obtained by applying the reverse unitary coherent state transformation ÛGCS (Eq. 27) to the resulting Fock states after
the self-consistent solution (discussed below) of Eq. 30 has been achieved, whose average photon number will depend
on the self-consistent solution of the dipole moment ⟨µ̂⟩HF = 0. suggesting that molecules with strong ground-state
dipole moments will exhibit stronger polaritonic effects.40;82

The ground polaritonic state can be defined as the |HF, 0̃⟩ wavefunction. Neglecting the photonic zero-point
energy (i.e., ⟨0̃ |Ĥph |0̃⟩ = ħωc

2 ), the electron-photon Fock matrix can be written as,

Fpq = FHF
pq + 1

2ħ

[ Nocc∑
o

(λ · µpo ) (λ · µoq ) −
Nvir∑
v

(λ · µpv ) (λ · µvq )
]
, (31)

where o , v , and (p ,q ) are occupied, virtual, and any molecular orbitals, respectively. Noting that the solution to the
bare molecular Fock matrix is achieved if FHF

ov = 0, the scQED-HF energy can be written as,41

EQED−HF = EHF +
1

2ħ
⟨ (λ · ∆µ̂)2 ⟩HF = EHF +

1

ħ

∑
ov

(λ · µov )2, (32)

which is then variationally minimized in a self-consistent way, updating the coherent shift Z at each iteration. More
details on the scQED-HF scheme in varying complexity can be found in Refs. 41, 68, and 63.

Following a similar procedure, the single-determinant nature of density functional theory can be used to simplify
the Pauli-Fierz Hamiltonian to that of the GSC representation without the direct coupling term. However, due to the
ad hoc nature of density functional theory, there are many ways to approximate the exchange-correlation kernel to
arrive at various levels of corrections to the electron-electron, electron-photon, and photon-photon correlations. In
fact, the simplest choice (albeit the least motivated) is to ignore the electron-photon and photon-photon terms in the
exchange-correlation kernel. In this case, the only responses of the single-particle orbitals {p, q } are those induced by
the dipole self-energy contributions (the last term in Eq. 31). This is the simplest approach since no novel exchange-
correlation functionals need to be used/created, and one can rely on the already-developed, high-level functionals
for the complicated electron-electron correlation, such as CAM-B3LYP83, ωB97XD84;85, and SCAN.86;87 Recently,
novel exchange-correlation functionals for electronic and photonic DOFs have been constructed based on a variety
of frameworks, such as the optimized effective potential (OEP) approach,88;89 photon-free effective Hamiltonians,90
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and the fluctuation-dissipation theorem approach.91 In any case, the ground state energy can be loosely written as

EQED−DFT = EDFT + E el−ph
ex−corr + E ph−ph

ex−corr, (33)

where the last two terms (or more specifically the exchange-correlation functionals of the density E [ρ ]), in addition to
the first term for standard DFT, are not known explicitly and must be approximated.92 Note that a fraction of Hartree-
Fock exchange can still be included in the electron-electron exchange term within EDFT. For more details, we refer
the reader to the original references regarding density functional theory, Refs. 89, 90, and 91, as well as others who
have explored and utilized similar Hartree-Fock63;68;40;93;41;64 and density functional theories for electron-photon
systems.58;39;71;88;91;94;95;96;75;97;98;99;100;101;102;103;104

3.2.3 | Addressing Correlations and Excited States

Capturing higher-order correlations between electrons has a well-defined procedure using post-HF approaches, such
as configuration interaction (CI) or coupled cluster (CC) expansions in the basis of excited Slater determinants. The
polaritonic community has also used such wavefunction approaches for computing the polaritonic electronic-bosonic
states41;64;40;67;63;36;105;69;81;70 in addition to other approaches such as time-dependentDFT (TD-DFT),70;82;75;39;97;71;89;99

reduced density matrix (RDM) theory,106 quantumMonte Carlo,107 Møller-Plesset Theory (MP-n),79 and density ma-
trix renormalization group (DMRG).108;109;110;80 Whilemean-field approaches (e.g., HF, DFT) yield useful ground state
information, even in the absence of correlation, it is not yet clear to what extent the correlated excitations of the mat-
ter and photonic DOFs will impact the results, even in the ground polaritonic state. Further, the need for polaritonic
excited states is ubiquitous in the photophysics and photochemistry of excited polaritons. Additionally, the determi-
nation of the light-matter coupling strength is often predicated on the magnitude of the Rabi splitting between the
light andmatter excitations at resonance. While our goal is not to outline all possible many-body approaches which go
beyondmean-field, we will briefly outline and discuss QED coupled cluster theory (QED-CCSD) since in the electronic
structure community coupled cluster theory is one of the most widely used approximations for capturing electronic
correlation in a wide variety of molecules.

The CC ansatz for the ground-state polaritonic wavefunction is41;78

| ECC
0 ⟩ = e T̂ | EHF

0 ⟩ = e T̂
[
|ψHF ⟩ ⊗ |0⟩Z

]
, (34)

where | EHF
0 ⟩ is the polaritonic ground state calculated at the uncorrelated HF level (see Eq. 32) and |ψHF ⟩ is the

uncorrelated HF electronic ground state. Here, |0⟩Z is the photon vacuum state in the rotated coherent state rep-
resentation with |0⟩Z = ÛZ |0⟩ (see Eq. 27) at the optimal coherent state parameter Z after the HF self-consistent
procedure. T̂ is the cluster operator (not to be confused with the kinetic energy operator T̂R or T̂r in Eq. 1). This cluster
operator involves a sum of electronic, photonic, and mixed electron-photon excitations as follows

T̂ =
∑
α

tα τ̂α +
∑
n

tn τ̂n +
∑̃
α ,ñ

t α̃ ñ τ̂α̃ ñ , (35)

where τ̂α represents creation and annihilation operators for an αth-order electronic excitation. For example, with
α = 1 (single electronic excitation), τ̂a

i
= ĉ†a ĉi excites an electron from an occupied orbital i to an unoccupied orbital

a . Similarly, α = 2 implies τ̂ab
i j

= ĉ†a ĉ
†
b
ĉi ĉj which will excite two electrons i → a and j → b , respectively. The photon

excitation operator is commonly written as the standard photonic ladder operator τ̂n = ( â† )n .40;41 It should be noted
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that this is not the only way to define the bosonic excitations. The authors of Ref. 78 defined an idempotent form
of the excitation operator as τ̂n = |n ⟩⟨0 | for a finite number of Fock states { |n ⟩} = { |0⟩, |1⟩, ..., |NF ⟩}. However, the
two cases are not formally equivalent, and a rigorous comparison of the quality of the results has not been performed.
In a similar manner, the coupled electron-photon excitation operator τ̂α̃ ñ can be written, for example, as ĉ†a ĉi ( â† )n

for a one-electron electronic excitation coupled to an nth-level photonic excitation while ĉ†a ĉ†b ĉi ĉj ( â
† )n will provide

the two-electron and nth-level photonic coupled excitations. Each of these excitation operators is connected with a
unique cluster amplitude {tα , tn , t α̃ ,ñ }.

The amplitudes tα , tn , and t α̃ ñ can be solved by projection (Eq. 36). This requires the evaluation of the similarity-
transformed Hamiltonian operator ˆ̄HPF = e−T̂ ĤPFe

T̂ , where ĤPF is expressed in Eq. 13 and is usually rotated to the
coherent state basis (see Sec. 3.2.1). This leads to the ground state coupled cluster energy ECC

0 as a solution to the
following set of equations,

⟨E0 | ˆ̄H | E0 ⟩ = ECC
0 , {LΓ } = ⟨E{Γ} | ˆ̄H | E0 ⟩ = 0, (36)

with | E{Γ} ⟩ = τ̂{Γ} | EHF
0 ⟩, where {Γ} = {α , n, α̃ ñ } is the set of possible excitations in the cluster operator T̂ (Eq. 35)

leading to the set of projection equations {LΓ } . These projections lead to the equations for the excitation amplitudes
t {Γ} and are usually solved in a self-consistentmanner. A similar CC projection formalism can be found in any electronic
structure textbook.111

There are many different notations for themethods developed by changing the highest level of excitation for each
term in the cluster operator. The most straightforward notation is CCSD-n-jm, which implies that the electronic DOFs
are treated up to double (SD) excitations in the cluster operator, the photonic excitation is limited to n levels, and
the mixed excitation is set to j electronic and m photonic. As per usual CC theory, the cutoff value of the excitation
levels leads to effects that include even higher excitations through the exponential treatment of the cluster operator
T̂, thus effectively outperforming similar methods such as CI with the same excitation level cutoff. However, due to
the O(N 6 ∗ NNmode

F ) scaling (with N electrons/basis functions and Nmodes cavity modes each with NF Fock states) of
the scQED-CC method in general, including more than two Fock states has been a challenge even for small molecular
systems,40;112;18;41 and limited study has been performed including up to 10 Fock states for a half-filled four-site
Hubbard model with direct comparison to the full configuration interaction result.78 This will have unfavorable scaling
on multi-mode cavities with quasi-continuous dispersion relations (where Nmode > 10). Nevertheless, QED-CCSD
remains one of the most accurate approaches for simulating ab initio polaritons.107

4 | POLARITON QUANTUM DYNAMICS

In this section, we address and outline various approaches to simulate the quantum dynamics of polaritons at various
levels of theory. The essential task is trying to solve the time-dependent Schrödinger equation (TDSE)

iħ
∂

∂t
|Ψ(t ) ⟩ = ĤPF |Ψ(t ) ⟩, (37)

where |Ψ(t ) ⟩ is the total quantum state of the electronic-nuclear-photonic hybrid system. The time-evolution of such
a system is governed by the Pauli-Fierz QED Hamiltonian ĤPF (Eq. 13). Depending on this complexity of the molec-
ular system, one may perform the dynamics exactly as dictated by the TDSE (which may be prohibitively expensive
for more than a few nuclear DOFs) or resort to various approximations, such as mixed quantum-classical (MQC) ap-
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proaches, semi-classical approaches, various approximate master equation approaches (e.g., Lindblad, Redfield, etc.),
or approximate wavefunction approaches (e.g., multi-configurational Hartree-Fock). In the following discussion, we
will briefly introduce an exact method for solving polariton quantum dynamics (Sec. 4.1) as well as a few popular mixed
quantum-classical approaches (Sec. 4.2). Additionally, we will address the calculation of the exact nuclear gradients
and their effects on the quantum dynamics (Sec.4.3).

4.1 | Exact Polaritonic Quantum Dynamics

Webegin by briefly discussing how to solve Eq. 37 exactly, thus giving an exact solution to the polaritonic quantum dy-
namics. There are, in principle, many possible strategies for exact quantum dynamics propagation, and we only outline
one of the most commonly used strategies based on the Born-Huang expansion113 and subsequent propagation in
the energy basis. We describe the total wavefunction of the electron-photon-nuclear DOFs using the adiabatic-Fock
basis as,

|Ψ⟩ =
NG∑
ξ

Nel∑
α

NF∑
n

χαn (Rξ ) |Rξ ⟩ ⊗ |ψα (Rξ ) ⟩ ⊗ |n ⟩, (38)

where χαn (Rξ ) = ⟨Rξ ,ψα , n |Ψ⟩ =
(
⟨Rξ | ⊗ ⟨ψα (Rξ ) | ⊗ ⟨n |

)
|Ψ⟩ is the ξαnth expansion coefficient and NG is the num-

ber of grid points for the nuclear basis set in a grid or spectral basis (e.g., discrete variable representation).114 Here
{ |ψα (R) ⟩} are the electronic adiabatic states at nuclear configuration R, { |n ⟩} are the photonic Fock states, and
{ |Rξ ⟩} are the basis functions of the grid describing the nuclear DOFs.

Within this representation, the matrix elements of the total light-matter Hamiltonian ĤPF = T̂R + Ĥpl are written
as,

(T̂R + Ĥpl )ξξ′,αβ ,nm = (T̂R )ξξ′,αβ δnm + (Ĥpl )αβ ,nm (Rξ )δξξ′ (39)

(T̂R )ξξ′,αβ = − 1

2

NR∑
a

1

Ma

[
⟨Rξ |+2

a |Rξ′ ⟩δαβ + 2daαβ (Rξ ) · ⟨Rξ |+a |Rξ′ ⟩ + D
a
αβ (Rξ )δξξ′

]
(40)

(Ĥpl )αβ ,nm (Rξ ) =
[
Eα (Rξ ) + ħωc (n +

1

2
)
]
δαβ δnm + µ̃αβ (Rξ )ηnm + Dαβ (Rξ )δnm , (41)

where the individual terms in Ĥpl (i.e., µ̃αβ , ηnm , and Dαβ ) were defined previously in Eq. 18. Additionally, da
αβ

(Rξ ) =
⟨ψα |+a |ψβ ⟩ is the non-adiabatic coupling and D aαβ (Rξ ) = ⟨ψα |+2

a |ψβ ⟩ is the second-derivative coupling, which were
defined in Eqs. 4 and 5, respectively. NR is the number of nuclear DOFs in the system. We refer the reader to Ref. 114
and Ref 115 for evaluating quantities (e.g., the nuclear kinetic energy) using the grid or spectral basis for the nuclear
DOFs.

Upon diagonalization of this Hamiltonian ĤPF = T̂R + Ĥpl (Eq. 39), the electronic-nuclear-photonic eigenstates can
be obtained as,

ĤPF | Ep ⟩ = (T̂R + Ĥpl ) | Ep ⟩ = Ep | Ep ⟩. (42)

The electronic-nuclear-photonic wavefunction can then be propagated in time as,

|Ψ(t ) ⟩ = e−i ĤPFt |Ψ(t = 0) ⟩ =
∑
p

cpe−iEp t | Ep ⟩, (43)
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where Ep is the pth eigenvalue and cp is the projection onto initial total wavefunction onto the pth eigenstate | Ep ⟩,

cp = ⟨Ep |Ψ(t = 0) ⟩, (44)

where |Ψ(t = 0) ⟩ is an arbitrary initial condition (in the same form as Eq. 38). Additional details on the exact propaga-
tion can be found in Refs. 116, 117, and 59.

There are many ways in which to evaluate the exact (or approximately exact) dynamics of a quantum mechani-
cal system in addition to the one outlined above, which may be one of the simplest to write down. However, other
approaches exist, such as the Multi-configuration time-dependent Hartree (MCTDH),118;119;120;60;121, the exact fac-
torization (XF)11;122, the hierarchical equation of motion (HEOM)123;124, etc., which have been already used for
exploration in polaritonic systems. Additionally, ab initio multiple spawning (AIMS),125;126 Ehrenfest multiple cloning
(EMC),127;69 and their variants128;129;130 could also be adapted for polaritonic dynamics to give nearly exact results.

4.2 | Trajectory-based Approaches

In lieu of an exact propagation of the total wavefunction, including electron, photon, and nuclear DOFs as quantum
mechanical DOFs, we now move to a discussion of Mixed Quantum-Classical (MQC) and Semi-classical approaches.
These methods are trajectory-based schemes of varying complexity and accuracy in the sense that the nuclear (and
in some cases photonic) distribution is now composed of an ensemble of trajectories in order to compute observables
over the entire nuclear (and/or photonic) initial distribution as ensemble averages. Further, usually the trajectories
are taken to be completely independent of one another, aside from the initial nuclear distribution, with some recent
exceptions of the coupled-trajectory approaches and quasi-coupled trajectories approaches stemming from the exact
factorization scheme.131;132;133;134

Two schemes exist for applying the MQC approach: (I) treating the nuclear and photon DOFs classically or (II)
treating only the nuclearDOFs classically. While both approacheswill yield interesting results, wewill focus on scheme
(II) where the photon is treated fully quantum mechanically. In the following two sections, we will briefly outline two
approaches commonly used in the quantum dynamics, namely the mean-field Ehrenfest and fewest switches surface
hopping.

4.2.1 | Mean-field Ehrenfest

Ehrenfest (EH) dynamics is aMQCapproach for propagating the coupled electron-photon-nuclear dynamics.135;136;127

We choose to treat the electronic and photonic DOFs as fully quantum mechanical while treating the nuclear DOFs
as classical ones. In this way, we can write the total wavefunction (Eq. 38) in an approximate form, including only the
electronic and photonic DOFs explicitly and the nuclear DOFs as parameters as,

|Ψ(t ) ⟩ =
Nel∑
α

NF∑
n

cαn (t ) |ψα (R(t ) ), n ⟩, (45)

where cαn (t ) = ⟨ψα (R(t ) ), n |Ψ(t ) ⟩ is the αnth time-dependent, adiabatic-Fock expansion coefficient, |ψα (R(t ) ) ⟩
is the αth electronic adiabatic wavefunction parameterized by the nuclear positions at time t , R(t ) , and |n ⟩ is the
time-independent photonic Fock state. The time-dependent electronic-photonic wavefunction |Φ (t ) ⟩ is evolved by
approximating the time-dependent Schrödinger equation (TDSE), i ∂∂t |Ψ(t ) ⟩ = ĤPF |Ψ(t ) ⟩ (see Eqs. 13 and 18), as the
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following set of differential equations for the expansion coefficients in the adiabatic-Fock basis,

¤cαn (t ) = −i ϵα ,ncαn (t ) −
Nel∑
β

[ dR(t )
d t

· dαβ (R(t ) ) − iDαβ

]
cβn (t ) − i

Nel∑
β

NF∑
m

µ̃αβ ηnm cβm (t ) (46)

Here, dαβ (R(t ) ) = ⟨ψα (R(t ) ) |+R |Ψβ (R(t ) ) ⟩ is the derivative coupling (Eq. 4) and dR(t )
d t is the classical nuclear ve-

locity. The matrix elements ϵα ,n , µ̃αβ , ηnm , and Dαβ were defined previously in Eq. 18. To achieve this expression,
one assumes that the second-derivative couplings are vanishingly small and that the nuclear distribution is sharply
peaked around its average position. Additionally, we have made use of the orthogonality of the vacuum Fock states,
⟨n |m ⟩ = δnm as well as noting that the nuclear gradient does not act on the photonic basis states (i.e., ⟨n |+R |m ⟩ = 0)
since they do not depend on the nuclear positionsR. This non-dependency of the photonic basis states leads to a large
amount of sparsity in the matrices, and as noted earlier in Section 3.1.1, sparse matrix methods could be employed to
achieve more efficient calculations. Note that this is not true, for example, when employing the PFS photonic basis
(Section 3.1.2), where the definition of the photonic basis states relies on the nuclear positions through the use of the
molecular dipole operator.61

In order to propagate the classical nuclear DOFs, the classical-like force is simply the sum of all contributions from
the elements of the reduced density matrix, ραn,βm (t ) = c∗α ,n (t )cβ ,m (t ) . In this way, the force can be written as,

F(t ) = −⟨Ψ(R(t ) ) |+RĤpl |Ψ(R(t ) ) ⟩ = −
Nel∑
αβ

NF∑
nm

ραn,βm (t ) ⟨ψα (R(t ) ), n |+RĤpl |Ψβ (R(t ) ),m ⟩, (47)

where the nuclear gradients on the Hamiltonian +RĤpl will be discussed in detail in Sec. 4.3. For a similar description
in terms of the polaritonic basis, see Ref. 36.

4.2.2 | Linearized Spin-mapping

In the fully linearized spin-mapping framework,137;138;139;140 any electronic-only, two-operator correlation function
can be written as,

CAB (t ) = ⟨ AW (Z(0) ) BW (Z(t ) ) ⟩spin−LSC (48)

where AW (FW) is the Stratonovich-Weyl (SW) transform of operator Â (B̂ ). The measurement of an arbitrary operator
at time t can be written as,

[B̂ ]W (Z , t ) ≡ BW (Z (t ) ) = Tr[B̂ ω̂W (Z (t ) ) ] . (49)

The SW kernel can be written as,

ω̂W (Z , t ) = 1

2

Nel∑
αβ

NF∑
nm

(
Zαn (t )Z ∗

βm (t ) − γWδαβ δnm
)
|ψα , n ⟩⟨ψβm |, (50)

in a diabatic basis for the Npol polaritonic states. The SW kernel is evaluated as a function of the complex-valued, time-
evolved mapping variables Z = {Z1, Z2, ..., ZNpol } with a fixed zero-point energy parameter γW = 2

Npol
(
√
Npol + 1 − 1) .
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It should be noted that the approach outlined here is one of many realizations for spin-mapping dynamics. In this
work, we focus on the so-called spin-mapping dynamics confined to the W-sphere, which shows the most accurate
results for the widest variety of systems.137;138;141;142;143

The correlation function for the time-evolved density matrix ραn,βm , given an initial excitation to state arbitrary
state σl (i.e., Â = |σl ⟩⟨σl | in Eq. 48) is evaluated using focused initial conditions such that,

ραn,βm (t ) ≈
∫

dR dP dZ ρb (R,P) ρ (σl )W
[
|ψαn ⟩⟨ψβm | ]W (Z(t ) ) ), (51)

where ρb (R,P) is the Wigner distribution for the nuclear DOFs, and ρ (σl )W is the initially focused distribution for the
mapping variables,

ρ
(σl )
W =

δ ( |Zσl |2 − γW − 2)Παn,σl δ ( |Zαn |2 − γW )∫
dZ δ ( |Zσl |2 − γW − 2)Παn,σl δ ( |Zαn |2 − γW )

. (52)

For a given initial state σl , the mapping variables Z are initialized as,

Zσl =
√
2 + γW e i θσl (Initially focused state)

Zαn =
√
γW e i θαn , αn , σl (53)

with {θ} randomly sampled between 0 and 2π , independently from one another.

The propagation of the mapping and nuclear variables can be done identically to Eq. 47 with the state-dependent
forces Fe (R,Z) ,

Fe (R,Z) = − 1

2

Nel∑
αβ

NF∑
nm

ραn,βm ⟨ψα , n |+RĤpl (R) |ψβ ,m ⟩. (54)

with

ραn,βm =
1

2
(Z ∗

α ,n (t )Zβ ,m (t ) − γWδαβ δnm ) . (55)

For more details on the linearized spin mapping approach, we refer the reader to Refs. 137, 138, and 140. We also
want to point out extensions of the spin mapping approach to partially linearized methods144;140;145;146 as well as a
recently developed surface hopping-inspired spin mapping formalism.147;148;149

4.2.3 | Surface Hopping

We now move to an alternative description of mixed quantum classical treatment of the dynamics known as Fewest
Switches Surface Hopping (FSSH), which is one of many variants of the surface hopping.150;151 This method ap-
proaches the problem in amore classical way, propagating the nuclei on a single adiabatic surface until a discontinuous
hop is performed. Once a hop is achieved, which must satisfy energy conservation through a rescaling of the classical
nuclear velocities, then the nuclear forces are now derived from the new adiabatic state. The electronic DOFs are
propagated according to the Schrodinger equation, and the probabilities for hopping between adiabatic states are
proportional to the first-order non-adiabatic couplings dαβ between adiabatic states. This approach has also been
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recently used to simulate polariton chemistry.27;152;77;28;153;116;154

It is well-known that surface hopping approaches perform better when the propagation is done in the adiabatic
(i.e., polariton) basis. However, many “tricks” exist to propagate the quantum mechanical DOFs in a locally diabatic
basis for higher accuracy and to work around the sharply peaked non-adiabatic couplings throughout the nuclear
dynamics. The total wavefunction for the quantum mechanical DOFs (i.e., the electrons and photons) can be written
as,

|Ψ(t ) ⟩ =
Npol∑
j

cj (t ) |Φj (R(t ) ) ⟩, (56)

where cj (t ) = ⟨Ψ(t ) |Φj (R(t ) ) ⟩ is the time-dependent expansion coefficient for polaritonic state j and Npol is the
number of polaritonic states. During the nuclear dynamics, the active polaritonic state S dictates the nuclear forces,
which can be written as,

F(t ) = −⟨ΦS (R(t ) ) |+RĤpl |ΦS (R(t ) ) ⟩ = −+RES (R(t ) ) . (57)

At each nuclear time-step ∆t , the probability to hop from the current active polaritonic state S to any other polaritonic
state j is computed as,

PS→j (t ) = MAX
[
−
σSj (t )
ρSS (t )

, 0

]
, (58)

with,

σSj (t ) = 2Re
[
ρSj (t )

] dR(t )
d t

· dSj (R(t ) ) . (59)

Here, dSj (R(t ) ) is the non-adiabatic coupling between polaritonic states, dR(t )d t = ¤R(t ) are the classical nuclear veloc-
ities, and ρSj (t ) = c∗S (t )cj (t ) is the reduced density matrix in the polaritonic basis. Between nuclear time-steps, the
electronic DOFs are updated via direct propagation of the time-dependent Schrodinger equation as,

¤cj (t ) = −i Ej (R(t ) )cj (t ) −
Npol∑
k

ck (t ) ¤R(t ) · dj k (R(t ) ) . (60)

It is well known151 that FSSH suffers from producing overly coherent results (or, equivalently, a lack of proper deco-
herence between quantum states) within the expansion electronic coefficients and will subsequently be problematic
for the polaritonic coefficients.151 Many ad hoc corrections exist to modify the expansion coefficients in FSSH to
account for decoherence, such as the instantaneous decoherence correction (IDC),155;127 the energy-based deco-
herence correction (EDC),156 etc., as well as other forms of the surface hopping scheme, such as the augmented
surface hopping (A-FSSH),157 the decoherence-induced surface hopping (DISH),158 and the global flux surface hop-
ping159 schemes. More recently, a spin-mapping145;144;140;137;138;139;160;141;142;143 analogue of the surface hopping
approach was constructed and mitigates much of the shortcomings of the standard FSSH procedure without ad hoc
adjustments.147;148

Amajor simplicity afforded by the FSSHmethod is that the derivative coupling vectors dj k (R(t ) ) are not explicitly
required as the nuclear forces (unlike in the mean-field MQCmethods) do not require this quantity for time-evolution
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of the electronic or nuclear DOFs except at the hops for the nuclear velocity rescaling. To be clear, the electronic
propagation only requires the scalar non-adiabatic coupling terms dj k (R(t ) ) · ¤R(t ) = ⟨Ψj | dd t |Ψk ⟩, which can be eas-
ily obtained via finite difference wavefunction overlaps of the polaritonic states throughout the trajectory.161;162

This procedure is drastically cheaper than the direct computation of the non-adiabatic coupling vectors themselves,
as one only needs to compute the non-adiabatic coupling vectors to rescale the nuclei at the moment of a hop.155

Further, one can ignore the asymmetric nuclear velocity rescaling altogether and perform uniform energy-based rescal-
ing, which is known to provide slightly worse dynamics but alleviates the computation of the vector non-adiabatic
couplings altogether, providing a substantial speed-up in ab initio simulations. It is also worth mentioning that the
first-order non-adiabatic couplings of the electronic subsystem dαβ (R(t ) ) can be approximated using the scalar non-
adiabatic coupling and the diagonal gradients.163;164

4.3 | Exact QED Nuclear Gradients

In the aforementioned mean-field, MQC Ehrenfest approach as well as other mean-field approaches not discussed
here,144;140;138;165;166 the nuclear force is written as a weighted average over the reduced density matrix involving
both the diagonal gradients of the adiabatic states as well as the off-diagonal non-adiabatic couplings (see Eq. 47).
Here, +RĤpl is,

+RĤpl = +RĤel +
√
ωc
2
λ ( â† + â )+Rµ̂ +

λ2

2
+Rµ̂

2 . (61)

Note here that thematrix elements of+RĤph are zero in the adiabatic-Fock basis and that thematrix elements of+RĤel

will lead to the usual electronic gradient of the adiabatic PESs,+REα (R) , aswell as the non-adiabatic couplings, dαβ (R)
(Eq. 4). Additional terms arise in the nuclear force that are proportional to the gradient on the molecular dipole matrix
elements +Rµ̂, and these terms may contribute large amounts to the nuclear force in regions of large light-matter
coupling λ.

Using the chain rule,116 the matrix elements of the nuclear gradient operator for the ath nuclear DOF acting on
the polaritonic Hamiltonian can be written as,

[+a Ĥpl ] = +a [Ĥpl ] − [Ĥpl ] [d̂ a ] + [d̂ a ] [Ĥpl ] ≡ +a [Ĥpl ] + X a , (62)

where [+a Ĥpl ], [Ĥpl ] and [d a ] are the matrix representations (in the adiabatic-Fock basis) of +a Ĥpl, Ĥpl, and the
non-adiabatic coupling operators, respectively, along the ath nuclear DOF, and we have defined the matrix

X a ≡ [d̂ a ] [Ĥpl ] − [Ĥpl ] [d̂ a ] . (63)

Note that [d̂ a ] is the same as that of Eq. 4 but in the full electron-photon Hilbert space as d̂ ⊗ Îph. As a concrete
example, for a polaritonic system composed of two electronic adiabatic states { |g⟩, |e⟩} and two photonic Fock states
{ |0⟩, |1⟩}, the 4 × 4 gradient matrices can be written explicitly, with the +a [Ĥpl ] expressed as,

+a [Ĥpl ] =


+a

(
Eg + Dgg

)
+aDge +a µ̃gg +a µ̃ge

+aDeg +a (Ee + Dee ) +a µ̃eg +a µ̃ee

+a µ̃gg +a µ̃ge +a
(
Eg + Dgg

)
+aDge

+a µ̃eg +a µ̃ee +aDeg +a (Ee + Dee )


, (64)
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F IGURE 4 (a) Two-state, one-dimensional Shin-Metiu (SM) model along with the (b) non-adiabatic coupling
matrix element dge element and (c) dipole matrix elements µgg, µge, µee as functions of the nuclear coordinate R (d)
SM model coupled to an optical cavity of frequency ωc = 0.1 a.u. and coupling strength A0 = 0.05 a.u. using a highly
truncated basis of two electronic states { |g⟩, |e⟩} and two photonic Fock states { |0⟩, |1⟩} The average photon
number in the length gauge ⟨ â† â ⟩ is shown with the colorbar, where ⟨ â† â ⟩ = 0.0 represents purely electronic
character. (e) Various contributions to the nuclear gradient as functions of nuclear position R . (f) Exact quantum
solution for the population dynamics using the approximate (dashed curves) gradient at the Jaynes-Cummings level
(i.e. with completely uncoupled |g, 0⟩ and basis |e, 1⟩ states) and the Pauli-Fierz gradient (solid curves).

and [X a ] as,

[X a ] =


2d ageDeg d age (Ee − Eg + Dee − Dgg ) 2d age µ̃ge d age

(
µ̃ee − µ̃gg

)
d age (Ee − Eg + Dee − Dgg ) 2d aegDeg d age

(
µ̃ee − µ̃gg

)
2d aeg µ̃ge

2d age µ̃ge d age
(
µ̃ee − µ̃gg

)
2d ageDeg d age (Ee − Eg + Dee − Dgg )

d age
(
µ̃ee − µ̃gg

)
2d aeg µ̃ge d age (Ee − Eg + Dee − Dgg ) 2d aegDeg


.

(65)
Note that µ̃αβ ≡ ωcA0 (ê ·µαβ ) and Dαβ = ωcA0

∑Nel
γ (ê ·µαγ ) (ê ·µγβ ) , where Nel is the number of electronic adiabatic

states (i.e., Nel = 2 in this example), as defined in Eq. 18. For additional details regarding the nuclear gradients, we refer
to interested reader to Ref. 116 and Ref. 154. These nuclear gradients have been the hardest hurdle to overcome in
performing on-the-fly simulations with realistic, ab initio systems, since the nuclear gradients on the molecular dipole
are not widely available analytically.167 However, some recent work has been done in achieving MQC dynamics
at the Jaynes-Cummings level (i.e., without the dipole self-energy term and ignoring the highly oscillatory terms in
the light-matter interaction Hamiltonian) through iterative schemes28 or through the approximation of the gradient
via a Taylor expansion.168 However, for further theoretical advancement, the community requires work toward the
efficient and analytic evaluation of these nuclear gradients to enable another theoretical leap in the simulation of
polariton dynamics for realistic systems.

Fig. 4 presents an example of the effects of the nuclear gradients on the quantum dynamics of the system.116 As
before, the one-electron Shin-Metiu model is used and provides access to a realistic ab initio system, albeit simplified.
Fig. 4a-c show the bare electronic properties, lowest two potential energy surfaces Eα (R ) , the non-adiabatic coupling
dge (R ) (Eq. 4), and the molecular dipole matrix elements µαβ (R ) . Fig. 4d extends Fig. 4a to include the quantized
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F IGURE 5 (a, top) Depiction of the one-electron Shin-Metiu model system, with two fixed nuclei (red and blue)
of unit positive charge, one proton at position R (black), and one electron (green) at position r . (a, bottom) The
potential energy of the protonVp (black) and of the electronVe (green). (b) The ground and first electronic states of
the Shin-Metiu model system as functions of the proton position R , showcasing an avoided crossing near R = 2.0 a.u.
(c) Polaritonic potential energy surfaces as a function of the proton coordinate R for two choices of light-matter
coupling strength A0 = 0.01 a.u. (d-f) Population dynamics for various MQC methods (d) spin-LSC, (e) Ehrenfest, and
(f) FSSH. The initial conditions are |e, 0⟩ at the proton position R = −4 and for the same choice of light-matter
coupling strength as panel (c). The exact results are shown in solid curves whereas the approximate MQC results are
shown as circles. All polaritonic states were described in a truncated basis of two electronic states |g⟩ and |e⟩ and
two photon vacuum states |0⟩ and |1⟩.

cavity photon in the four-state basis of |g, 0⟩, |e, 0⟩, |g, 1⟩, and |e, 1⟩. The colorbar indicates the average photon
number ⟨ â† â ⟩. The gradients in this basis take the form of Eq. 62. Fig. 4e shows only a few of these matrix elements
as a function of the nuclear coordinate. For example, the +[V ]e0,g1 ≡ +[Hpl ]e0,g1 is the off-diagonal gradient of the
Hamiltonian shown in Eq. 64, and the other elements are of the quantity X = [d ] [Hpl ] − [Hpl ] [d ] which relates to the
cavity-mediated non-adiabatic couplings. Due to the light-matter couplings, the |g, 0⟩ and |g, 1⟩ are coupled through
the gradient on the permanent dipole moment µgg as well as through the non-adiabatic coupling multiplied by the
transition dipole moment µge, in total, proportional to+µgg (R ) +2dge (R )µge (R ) . This can be seen directly in theXg0,g1

curve in Fig. 4e given that the permanent dipole moment µgg has a constant gradient near R = 0.0 and thus provides
a plateau for Xg0,g1 in the same region. Most importantly, the redistribution of dge among all the basis states allows
for a complex and interesting non-adiabatic events that would be absent without the light-matter coupling. Finally,
Fig. 4e shows the quantum dynamics simulation using the exact nuclear gradients (solid curves, Eq. 62) in addition to
showing the approximate population dynamics using the approximate gradients of the Jaynes-Cummings Hamiltonian
in the |e, 0⟩, |g, 1⟩ subspace (dashed curves, see Ref. 116 for more details). Clearly, additional states beyond the JC
subspace will be explored by the quantum dynamics of the hybrid system due to the NACs among these states. The
population of the |e1⟩ state is mainly contributed from the population transfer from the |e0⟩ state due to the light-
matter coupling originating from the permanent dipole µee. In addition, the population transition between |e0⟩ and
|g1⟩ is mediated by the cavity-induced coupling near R = 0.0, where the PES exhibits a strong mixing between these
two states as shown in Fig. 4d.
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As a concrete example of the above-mentionedMQCdynamics applied to a “realistic ab initio” system, the authors
of Ref. 154 explore the one-electron Shin-Metiu model system (shown in Fig. 5a). This model system is composed
of four species: two heavy particles fixed-in-space (red and blue) with unit positive charge as well as a mobile and
classical proton (black) and a quantum mechanical electron (green). Below the system, Fig. 5a shows the potential
energy of the proton (black curve) as well as that of the electron (green curve) as a function of the proton coordinate
R . For a detailed explanation of the parameters of this asymmetric Shin-Metiu model, we refer the interested reader
to Ref. 154. The two lowest energy Born-Oppenheimer potential energy surfaces (i.e., the ground and first excited
adiabatic states), Eg and Ee, are shown in Fig. 5b, which exhibit an avoided crossing near R = 2.0 a.u.

Using these two electronic states as well as two photon number states, |0⟩ and |1⟩, as a basis, the four polaritonic
Born-Oppenheimer surfaces were constructed at a light-matter coupling strength A0 = 0.01 (Fig. 5c) with the curves
colored by their average photon number, ⟨ â† â ⟩ (see colorbar). The cavity frequency is ωc = 0.1 a.u. After vertical
excitation from the R = −4.0 a.u. to the |e, 0⟩ basis state (i.e., a linear combination of polaritonic states), the quantum
dynamics of the system was performed using the (Fig. 5d) MQC spin-LSC, (Fig. 5e) MQC Ehrenfest, and (Fig. 5f) MQC
FSSH approaches.154 The MQC results are shown in circles while the exact results are shown as solid curves. For
these MQC simulations, the exact nuclear gradient was implemented (as discussed in the previous section, Sec. 4.3)
in order to compute the exact polaritonic nuclear force. At short times (< 20 fs), the nuclear wavepacket starts in and
quickly leaves the region of strong light-matter coupling, showcasing a fast decay in coherent oscillations from the
light-matter coupling. At ∼20 fs, the nuclear wavepacket crosses the electronic non-adiabatic region near R = 2.0 a.u.
where much of the population decays to the total ground state, |g, 0⟩, before the simulation ends. In this example,
spin-LSC MQC dynamics performs better than either Ehrenfest or FSSH. It should be noted here that FSSH can
generally be improved by using various decoherence corrections.156 Specifically, spin-LSC is able to capture the weak
population of the |e, 1⟩ state (green) while Ehrenfest (and to a lesser extent FSSH) dramatically over-populates this
state. Furthermore, Ehrenfest and FSSH do not accurately predict the electronic non-adiabtic crossing time, instead
showing a delay of 5-10 fs.

5 | TOWARD REALISTIC POLARITONS

5.1 | Machine Learning

As pointed out in previous sections (e.g., Sec. 4), performing trajectory-based ab initio polaritonic dynamics requires
multiple properties of the molecular system, including the energy matrix, (Ĥ )αβ , transition dipole matrix, (µ̂ )αβ , and
the nuclear gradients of both (+RĤ )αβ and (+Rµ̂ )αβ . The gradient on the energy leads to the usual state gradients
+REα as well as the first-order non-adiabatic couplings +Rdαβ (Eq. 4). These non-adiabatic couplings may be analyti-
cally available in some electronic structure software, such as QCHEM,169 MOLPRO,170;171 NEXMD,155 etc. but not
all, and largely depend on the level of electronic structure itself. Further, the nuclear gradients of the transition dipole
matrix elements, to our knowledge, is not implemented in an analytical form in any common electronic structure
software.

With this current limitation in obtaining the exact polaritonic gradient (see Sec. 4.3), we turn toward the use of
machine learning, which will allow one to train the molecular dipole as a function of the nuclear coordinates. Then
the nuclear gradient can be obtained analytically from the gradient of the trained dipole function. One of the many
possible techniques is the kernel ridge regression (KRR) scheme, which relies on supervised learning of the molecular
dipole matrix and has been used in several recent works.172;173;174 In this approach, the molecular property, µxk

αβ
(R)

(the αβth matrix element of the transition dipole moment in the x th
k

spatial direction), is trained based on a function
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F IGURE 6 (a) Ground and first excited potential energy surface of bare azomethane as computed by CASSCF
along its CNNC dihedral angle coordinate, showcasing a conical intersection (CI). (b) Polaritonic potential energy
surfaces at light-matter coupling strength A0 = 0.05 a.u. (solid curves) and A0 = 0.5 a.u. (circles). (c) Dipole matrix
elements along the CNNC dihedral coordinate and projected along the Y-axis of the molecule (perpendicular to the
molecular plane) computed by CASSCF (solid curves) and the machine learning framework (open circes). (d) The
nuclear gradient on the polariton potential energy surfaces. (e) Population dynamics at varying coupling strengths A0

= 0.05 a.u. (red solid curve, middle) and A0 = 0.5 a.u. (open circles, bottom) as well as outside the cavity (green, top).

of the nuclear coordinates which are represented by a molecular descriptor m such that,

µ
xk
αβ

(m ) =
Nt∑
s

wsK (m,m (s ) ), K (m,m (s ) ) = e−
|m−m (s ) |2

2σ2 (66)

wherem (s ) is the molecular descriptor for the sth nuclear configuration (with Nt total training configurations), K is the
Gaussian kernel function with ws as the regression coefficient and σ as the width. This choice of kernel function is a
radial basis function and only depends on the absolute distance between m and ms with a single parameter σ . The
coefficients ws are trained by minimizing a cost function C defined as,

C ≡
Nt∑
s

[
µ
xk
αβ

(m (s ) ) − µrefαβ (R)
]2 + λWTKW. (67)

Here µref
αβ

(R) is the reference molecular property value (often calculated numerically by finite-difference methods), λ
is a Lagrange multiplier, and W is the matrix of regression coefficients. The choice of molecular descriptor m for the
nuclear geometry can be one of many, but one of the simplest choices is the Coulombmatrix,mRa,Rb = ZRa ZRb /|Rb −
Ra | where Ra is the spatial coordinates of nucleus a and Za its nuclear charge. Once the dipole matrix elements are
trained as a function of molecular descriptor, µxk

αβ
(m ) , the nuclear gradient can be obtained by the chain rule as,

∂µ
xk
αβ

(m )

∂R
xj
a

=
∑
l

∂µ
xk
αβ

(m )
∂m l

∂m l

∂R
xj
a

. (68)
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Here m l is an element of the molecular descriptor and R xja are the coordinated of nucleus a in the direction xj . For
additional details on using the KRR method for molecular properties in polaritonics, we refer the reader to Ref. 175.

Fig. 6 presents recent work175 by Hu and Huo using the KRR approach to parameterize the transition and perma-
nent dipoles of the azomethane molecule (Fig. 6a), which exhibits a conical intersection between the ground S0 and
excited S1 electronic states as a function of the dihedral angle. Inside the cavity (Fig. 6b), the ground and excited states
hybridize (black box) to form exciton-polaritons {Ej } with mixed electronic (primarily S0 and S1) and well as photonic
character (primarily n = 0 and 1 vacuum Fock states). To perform the quantum dynamics simulations, the molecular
dipole and its gradient were trained based on the KRR approach to yield the analytic dipole matrix elements, shown
in Fig. 6c against the exact results using the CASSCF electronic structure method as the training/exact data. The total
polaritonic gradient of the first+RE1 and second+RE2 excited polaritonic states is shown in Fig. 6d (see Eq. 64). Using
these learned values, the quantum dynamics simulation of the photoisomerization of azomethane results are shown
in Fig. 6e. Inside the cavity, at a small coupling strength of A0 = 0.05 a.u., the avoided crossing between the first and
second excited polaritonic states (black box in Fig. 6b) reduces the amount of product formed by the photo-reaction
by bifurcating the wavepacket before reaching the conical intersection. At an increased coupling strength (A0 = 0.50
a.u.), this effect is increased, reducing the overall population of the trans-product to less than 40% from the original
product yield of 60% by increasing the population transfer at the polaritonic avoided crossing region.

5.2 | Simulating Cavity Loss with Trajectory Methods

Lindblad decay theory can be used to simulate the effects of photonic loss channels in semi-classical dynamics meth-
ods. The most general Markovian description of a dissipative environment (i.e., modes external to the cavity) in-
teracting with the electron-photon subsystem ρ̂ (t ) of interest that is both norm-preserving and always provides a
positive-valued population is the Lindblad master equation. For the current problem, this can be written as,

d ρ̂

d t
= − i

ħ
[Ĥ , ρ̂ ] + Γ

(
L̂ρ̂L̂† − 1

2
{L̂†L̂, ρ̂}

)
= LCoh. [ρ̂ ] + LDiss. [ρ̂ ] (69)

where ρ̂ is the reduced density operator of the quantum subsystem including the electronic and photonic DOFs, Ĥ
is the polaritonic Hamiltonian including the non-adiabatic terms, L̂ is a Lindblad jump operator that mediates the
dissipation due to an effective environment (i.e., loss channel), Γ is the dissipation rate, {Â, B̂ } = ÂB̂ + B̂ Â is the anti-
commutator of matrices Â and B̂ and [Â, B̂ ] = ÂB̂ − B̂ Â is the commutator. LCoh. and LDiss. are super-operators
in Liouville space which describe the quantum mechanical evolution of the electron-photon subsystem under the
Hermitian Hamiltonian Ĥ which governs the coherent evolution of the system and L̂ which governs the dissipation
(i.e., incoherent evolution). Lindblad dynamics ensure the conservation of the total population of the system. The
Lindblad jump operator that governs the photon dissipation channel in Fabry-Perot cavities is defined as,

L̂ = Îel ⊗ â = Îel ⊗
NF∑
n

√
n |n − 1⟩⟨n |, (70)

where â is the photonic annihilation operator and Îel is the identity operator for the electronic subspace. This jump
operator L̂ facilitates population transfer from one photonic Fock state to the one below ( |n ⟩ → |n − 1⟩) while also
creating decoherence between the original state ( |n ⟩) and all other states ( |m , n ⟩).
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The evolution of the reduced density matrix ρ̂ in the Liouville space can be written as,

ρ̂ (t + d t ) = e(LCoh.+LDiss. )d t [ρ̂ (t ) ] ≈ e
1
2LDiss.d t eLCoh.d t e

1
2LDiss.d t [ρ̂ (t ) ], (71)

where a short-time evolution by d t can be approximated to first-order by the symmetric, factorized product of indi-
vidual exponentiated Liouville operators. This leads to a time-reversible and symplectic propagation for the simulated
cavity loss, at a similar level to a velocity-Verlet-like scheme. The time-evolution can then be obtained as a step-wise
propagation using the following equations of motion,

¤ρ (t ) = Γ

2

(
L̂ρ̂ (t )L̂† − 1

2
{L̂†L̂, ρ̂ (t ) }

)
, ¤ρ (t ) = − i

ħ
[Ĥ , ρ̂ (t ) ], ¤ρ (t ) = Γ

2

(
L̂ρ̂ (t )L̂† − 1

2
{L̂†L̂, ρ̂ (t ) }

)
. (72)

We can expand the equations of motion in the adiabatic-Fock basis (Sec. 3.1.1). We define the matrix elements of the
polaritonic Hamiltonian including the first-order non-adiabatic couplings asHαn,βm = (Hpl )αn,βm − iħ dαβ · ¤Rδnm , where
we have used the fact that the Fock states have no dependence on the nuclear coordinates dαn,βm = dαβ δnm and
that ¤R is the classical velocity of the nuclei. Further, the matrix elements of the Lindblad jump operator can be written
as Lαn,βm =

√
mδn,m−1δαβ , which has no affect on the electronic states. Fig. 7 presents results of the computational

method by combining (Fig. 7a-d) Ehrenfest and (Fig. 7e,f) surface hopping dynamics with a stochastic extension to the
previously outlined Lindblad decay. For details pertaining to the stochastic analogue to the aforementioned Lindblad
loss approach, see Ref. 176. This approach stochastically maps the dynamics in Liouville space to dynamics in the
Hilbert space. We refer to this method as the L-MFE approach. The convergence of this approach176 with respect
to the number of trajectories is similar to any mixed quantum-classical method, thus the addition of the stochastic
cavity loss does not increase the computational cost. This is a general scheme that can be easily incorporated into
any trajectory-based dynamics approaches, such as Ehrenfest, FSSH, or mapping approaches, or additionally to any
trajectory-guided wavepacket-based methods, such as ab initio multiple spawning or ab initio multiple cloning.

The model system13 portrays an isomerization reaction containing two electronic states |g⟩ and |e⟩ and two
photonic Fock states |0⟩ and |1⟩ with a spin-boson bath for the nuclear DOFs to mediate electronic transitions. Due
to the use of the Jaynes-Cummings Hamiltonian in the single-excited subspace, the ground state is “uncoupled” from
the excited states via direct light-matter interaction; however, due to the cavity loss, the Lindblad decay mediates
population transfer from |g, 1⟩ → |g, 0⟩ with a rate of Γ.

Fig. 7a,b show the potential energy surfaces of the three states with light-matter couplingA0 set to 0.0 eV (Fig. 7a)
and 0.136 eV (Fig. 7b) with a cavity frequency of ωc = 1.632 eV. Fig. 7c,d present the polariton population dynamics
in the adiabatic-Fock basis with loss rates of Γ = 0meV (Fig. 7c) and Γ = 1meV (Fig. 7d). The numerically exact results
are obtained using the discrete variable representation (DVR) basis114 for the nuclear DOF and Fock states for the
photonic basis. As shown in Fig. 7c, the L-MFE dynamics (dotted line) capture the essential physics of the problem
but deviate from the exact simulations (solid) at a longer time, which is a known problem of the mean-field Ehrenfest
approach and is not the main point of this discussion. The dynamics portrayed with a loss rate of Γ = 0.0 meV (Fig. 7c)
reduce exactly to the dynamics of a closed quantum system with zero population residing in the uncoupled ground
state, at any time t . At increased cavity loss of Γ = 1 meV (Fig. 7d), the system slowly populates the ground polaritonic
states by funneling population from |g, 1⟩ to |g, 0⟩. This gives rise to plateaus in the ground state population curve
when the majority of the population is present in the |e, 1⟩ state during the coherent population transfer processes,
most pronounced at short times t < 1.0 ps.

Fig. 7e,f provides a direct application of this method to an ab initio on-the-fly dynamics study of the isomerization
of azomethane (a direct extension to the results shown in Fig. 6).175 The polaritonic potential energy surfaces can
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F IGURE 7 Potential energy surfaces (PESs) and population dynamics of the model isomerization reaction
coupled to the cavity. Panel (a) presents the diabatic PESs where the dark blue line is the |g , 0⟩ PES, the cyan line is
the |e, 0⟩ PES, and the magenta line is the |g , 1⟩ PES. Panel (b) presents the adiabatic PESs where the dark blue line
is the uncoupled ground state |g , 0⟩ PES, the middle line (labeled |LP⟩) is the lower polariton PES, and the upper line
(labeled |UP⟩) is the upper polariton PES. The colors along the adiabatic PESs represent the diabatic character at
each nuclear position. Panels (c)–(d) present the polaritonic population dynamics with a decay rate of (c) Γ = 0 and (d)
Γ = 1 meV. The solid lines are exact Lindblad dynamics, while the dotted lines are the approximate L-MFE method.
The colors of the curves represent the population of various adiabatic-Fock basis states: |g , 0⟩ (dark blue), |e, 0⟩
(cyan), and |g , 1⟩ (magenta). For the same on-the-fly ab initio isomerization as shown in Fig. 6, panels (e)-(f) show the
trans isomer population dynamics for various cavity loss rates Γ = 0, 2, 4, 8, 16, 32, and 64 meV (colors, top to
bottom) at light-matter coupling strengths of A0 = (e) 0.05 a.u. and (f) 0.5 a.u. The results outside the cavity is shown
as a solid black curve.

be found in Fig. 6b. The loss rate Γ was varied (colors) from Γ = 0.0 to 64 meV for a light-matter coupling strengths
A0 = (Fig. 7e) 0.05 a.u. and (Fig. 7f) 0.5 a.u. At low coupling strength, the effects of the cavity loss are minimal. The
dynamics at increased coupling strength allow for additional population to transfer to |g, 1⟩ leading to fast decay into
the cis-ground state |g, 0⟩ without allowing enough time for the nuclear rearrangement to the trans-isomer before
relaxing. This almost completely removes the isomerization pathway previously available to the system, effectively
turning off the isomerization process for increased cavity loss rate.

In the present cases, the effects of cavity loss provide an additional factor when considering cavity-modified
reaction rates – in the present ab initio case, the cavity loss coincide with the effects of the light-matter coupling
strength which decreases the reaction yield. Overall, explicitly including cavity loss in realistic polaritonic dynamics is
required for a rigorous and consistent comparison to experiment, where the cavity loss rates are substantial enough
to cause dramatic effects on the population dynamics and subsequent photo-reaction pathways accessible to the
system.
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F IGURE 8 (a) Schematics of N molecules coupled to a FP cavity. (b) Polariton Eigenspectrum predicted by the
Tavis-Cummings (TC) model. (c) Polariton Eigenspectrum predicted by the Jaynes-Cummings (JC) model. (d)
Time-dependent polaritonic energies colored by (left) photonic character and (right) non-adiabatic coupling from a
representative trajectory. (e) Time-dependent polaritonic populations of the ground-state (gray), upper polariton
states (red), lower polariton state (blue), as well as the total population of the dark-states (black). Panels (d) and (e)
were taken from https://pubs.acs.org/doi/10.1021/acsnano.4c05871

5.3 | Extending to many-molecule and many-mode simulations

In reality, optical cavities are composed of many photonic modes/wavevectors (i.e., cavity dispersion relations) whose
form depends on the type of cavity. For example, in typical Fabry-Perot (parallel mirror cavities, Fig. 8a), the dispersion
relation can be written as Eph (θ ) = ħ

nc c

√
k 2z + k 2x = ħ

nc ckz
√
1 + tan2 θ, which depends on the angle of the external

probe, θ = tan−1 (kx /kz ) . Here c is the speed of light in vacuum, nc is the refractive index inside the cavity, and ħk is
themomentum of the photon. It should be noted that there aremany other cavity designs, most notably the plasmonic
cavity which contain many varied geometrical arrangements of nanoparticles-on-metal-surfaces which lead to a wide
variety of cavity dispersion relations.177 As shown in Fig. 8a, the total wavevector k = ⟨kx , kz ⟩ is related to the quasi-
continuous parallel kx and strictly quantized perpendicular kz modes. Additionally, theremay bemanymolecules Nmol

collectively coupled to these cavity modes Nmode, The scaling of such a Hilbert space (given by the Hamiltonian in
Eq. 17) can be written as dim[Ĥ ] ∝ NNmol

el × NNmode
F , which is exponential in both the number of molecules as well as

the number of photon modes. While not the focus of this review, for extended systems (i.e., solids), the incorporation
of k-points raises further issues regarding the conservation of momentum between the electron and photon systems.
This has been discussed in a few recent works.178;179 In any case, making the long wavelength approximation nullifies
any mismatch between the electron and photon momenta.

To overcome this unfeasible scaling, many works have shown that excited polaritonic states at weak-to-moderate
light-matter coupling strengths can be simulated in the so-called first-excited subspace of the total Hamiltonian
(Eq. 17). In singly excited subspace, the overall scaling can be written as dim[Ĥ ] ∝ NelNmolNFNmode, which is now
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F IGURE 9 Numerical scaling of the Pauli-Fierz Hamiltonian in various subspaces: S1 (black), S2 (red), S3 (green)
as well as the full Hilbert space SFULL (blue) as a function of the number of molecules. The number of
configurations/basis states are shown as solid curves and the required memory to store the Hamiltonian is shown as
dashed curves. The thin, dashed gray line represents 100 GB of memory. Here, we assume only two electronic
states per molecule, a single photonic mode with two Fock states, and a real-valued Hamiltonian (i.e., complex would
simply double the memory requirements).

linear scaling in all quantities. The zeroth S0 and singly excited S1 subspaces can be explicitly written as,

|S0 ⟩ =
Nmol⊗
A

|g⟩ (A) ⊗
Nmode⊗
M

|0⟩ (M ) , (73)

|S1 ⟩ =
Nmol∑
A

(Nmol⊗
B<A

|g⟩ (B ) ⊗ |e⟩ (A) ⊗
Nmol⊗
B>A

|g⟩ (B )
)
⊗ |0⟩ +

Nmol⊗
A

|0⟩ (A) ⊗
Nmode∑
M

( N −1⊗
M<N

|0⟩ (M ) ⊗ |1⟩ (N ) ⊗
Nmode⊗
M>N

|0⟩ (M )
)
(74)

wherewe assumed only a singlemolecular ground and excited state permolecule { |g⟩, |e⟩} and a single excited photon
{ |0⟩, |1⟩} per mode, which is already a major approximation for most molecules with many nearby excited states.
Higher-order subspaces have also been explored,180 but even including the second excited subspace produces highly
unfavorable scaling with a realistic number of molecules Nmol ∼ 106. Fig. 9 presents the numerical scaling (i.e. the
number of possible configurations/basis states) as solid curves aswell as the requiredmemory to store theHamiltonian
(dashed curves) as a function of the number of molecules. Here, we assume only two electronic states per molecule,
a single photonic mode with two Fock states, and a real-valued Hamiltonian (i.e., complex would simply double the
memory requirements). The thick gray line represents 100GBofmemory, a typical node on a typical high-performance
computing cluster. In the S1 subspace (black), the 100-GB line is reached with a little over 105 molecules, while for
the second excited subspace S2 (red), this line is reached with a little less than 1000 molecules. Third subspace S3

(green) only allows for 100 molecules. The full Hilbert space scales exponentially (blue). This exemplifies the need for
the truncation of the total Hilbert space in order to perform meaningful theoretical explorations with realistic cavity
designs and environments.

Upon the diagonalization of the many-molecule, many-mode Hamiltonian (Eq. 17) in the singly excited subspace
S1, polariton eigenenergies and eigenstates are obtained, as shown in Fig. 8b for a collection of quasi-continuous
parallel cavity modes and Fig. 8c for a single resonant mode. Here, the formation of the upper and lower polariton
branches P+/− (Fig. 8b) or states | + /−⟩ (Fig. 8c) can be observed. Furthermore, due to the presence of the other
molecules (which are all degenerate with the cavity frequency), many degenerate polaritonic states can be found at
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the same energy as the bare molecular transition. These states are referred to as “dark states” {Di } since they contain
no transition dipole moment between the polaritonic ground state nor do they contain any photonic character (in the
absence of molecular disorder). The Rabi splitting in this case famously scales as ΩR ∝

√
Nmol.25;36 In the presence

of molecular fluctuations (e.g., thermal fluctuations), the photonic character becomes distributed amongst the “dark
states”.

Fig. 8d shows the time-dependence of the polariton eigenenergies colored by the (left) photonic character ⟨ψj | â† â |ψj ⟩
and (right) non-adiabatic coupling σj =

∑
k ⟨ψj | dd t |ψk ⟩ for each polaritonic state j (both on log colorbar scales). The ex-

change of character mediates population dynamics between such polariton states (i.e., cavity-mediated non-adiabtic
couplings). Fig. 8e presents mixed quantum-classical mapping approach to surface hopping (MASH)148;147 dynamics
where a LASER drives population from the collective ground state |G⟩ to the upper polariton |+⟩ (left) without and
(right) with cavity loss. The dynamics suggest that the dark states quickly accumulate much of the population at ini-
tial times. Wihout cavity loss, the polaritonic states reach equilibrium by 3.0 ps, while with cavity loss, none of the
state retain significant population due to the rapid transfer to the ground state and the ongoing polariton-polariton
non-adiabatic couplings.

As discussed above in Fig. 9, the explicit inclusion of many-molecules yields unfavorable conditions for the direct
diagonalization (Sec. 3.1) of the Hamiltonian. In the case of self-consistent approaches (Sec. 3.2), one encounters
a similar bottleneck where the inclusion of many sets of one-molecule single-particle orbitals Nsp = Nocc × Nvir

leads to a many-molecule ground state density matrix of dim[ρ̂ ] ∝ Nsp × Nmol. The off-diagonal blocks of which will
include the long-rangeCoulomb, short-range exchange, and intermolecular DSE interactions. In recentwork,181 it was
argued that the off-diagonal blocks of the total density matrix can be decoupled in the cavity Born-Oppenheimer (BO)
approximation58 in which the cavity photon is treated as a parameter (similar to the nuclear BO approximation). Thus,
the diagonal blocks of the density matrix and treated as effectively independent, reducing the memory cost of the self-
consistent treatment back to dim[ρ̂ ] ∝ Nsp but with Nmol such matrices. However, without approximations, such as
cavity BO, treatingmanymolecules coupled tomany cavitymodes is still beyond the reach of direct simulation. Relying
on efficient semi-empirical or tight-binding approaches182;183;184;185 may provide the most direct route toward the
direct simulation of many molecule QED, including both ground and excited states and has already been used to
simulate plasmonic systems.186;187;188;189

5.4 | Intermolecular Interactions

In experiment, often the molecules are spatially confined in a polymer matrix (e.g., Poly(methyl methacrylate), PMMA).
In such cases, the the molecules are often close enough to exhibit strong dipolar interactions amongst one another.
Alternatively, molecular aggregates can be formed directly.190 In these cases, from the perspective of polaritonic
structure theory, the inclusion of molecular interactions must be considered carefully. The most rigorous approach is
to consider all molecules simultaneously in a self-consistent sense (Sec. 3.2), which will naturally capture all molecule-
molecule interactions, including those at or beyond dipole such as the entire Coulomb and exchange interactions.
Additionally, the cavity itself provides intermolecular interactions through the DSE term in the Hamiltonian and thus
provides a competition between baremolecular interactions and cavity-mediatedmolecular interactions. These cavity-
induced effects to non-bonded interactions (i.e., van derWaals, hydrogen bonding, etc.) was directly explored with the
high-level scQED-CCSD approach for two molecules.64 Though, for the extension to the many-molecules, including
all molecules in the self-consistency is difficult and scales poorly with the number of increasing molecules. Hence,
one should turn toward an approximate model which captures the leading-order physics, in the same sense as the
parameterized QED approach aims to do (see Sec. 3.1).
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Intermolecular interactions have been well-studied for molecules in the absence of a cavity,191 including effects
beyond the bare Coulomb interactions.192 Here, we will focus only on the direct Coulomb interactions at the dipole
level for brevity. Such interactions can be written as ĤAgg = Ĥel + Ĵ , where

Ĵ =
µ̂A · µ̂B − 3(µ̂A · êA ) (µ̂B · êB )

|RA − RB |3

where Ĥel is the bare electronic Hamiltonian (diagonal in the adiabatic representation) and Ĵ is the dipole-dipole inter-
action term.50 RA is the location of molecule A, and êA is the unit vector of molecule A (not to be confused with the
unit vector of the cavity polarization e). Adding the interaction term Ĵ to the many-molecule Hamiltonian in Eq. 17 will
lead to additional physics and direct competition between the intermolecular DSE terms and the direct Coulomb inter-
actions. These two interactions were shown to cancel each other when there is no electron density overlaps (i.e. in the
absence of exchange couplings)98;193. However, this textbook result193 has, to our knowledge, never been explicitly
investigated in molecular cavity QED. Thus, in this modified light-matter Hamiltonian, the molecules now communi-
cate between one another through both the light-matter and Coulomb interactions, and each molecule’s electronic
structure can be evaluated individually with massively parallelized electronic structure calculations.32;168;194.

6 | CONCLUSIONS

As the experimental demonstrations of molecular cavity QED in the strong and ultrastrong coupling regimes become
more frequent and accessible to the broader community, there is a need for the development of new theoretical
tools that can accurately and efficiently describe such complex light-matter interactions found in experiments. This
review summarizes some of these exciting theoretical advances in polariton chemistry, showcasing methods ranging
from improvements in the fundamental framework and description of these hybrid systems to the computational
challenges, techniques, and applications spanning from modifying reactivity in the ground state to understanding
spectral signatures of excited state photochemistry.

In Sec. 2, we discussed the rigorous theoretical background of molecular cavity QED. We first reviewed the ba-
sic theory of the molecular Hamiltonian (Sec. 2.1) and introduced the necessary formalism for molecular quantum
electrodynamics (Sec. 2.2). Sec.3 focused on solving the polaritonic eigenvalue equation using various approaches
from direct diagonalization in the adiabatic-Fock basis (Sec. 3.1.1) and polarized Fock basis (Sec. 3.1.2) as well as the
self-consistent solution at the mean-field (Sec. 3.2.2) and correlated (Sec. 3.2.3) levels of theory. Using the tools put
forth in the previous two sections, Sec. 4 explored the rich quantum dynamics of the strongly coupled light-matter
systems, laying out common approaches toward simulating exact (Sec. 4.1) and realistic (Sec. 4.2.1-4.2.3) molecules in
the extended Hilbert space of the coupled electron-photon system as well as motivating the need for an accurate de-
scription and efficient calculation of the nuclear gradients (Sec. 4.3) used in the exact Pauli-Fierz Hamiltonian. Finally,
in Sec. 5, we provide three directions toward amore complete picture of themolecular polariton picture in experiment,
including machine learning polariton gradients (Sec. 5.1), the simulation and effects of cavity loss (Sec. 5.2), and the
extension to many molecule and many cavity modes (Sec. 5.3).

Overall, with the recent new capabilities demonstrated in experiments, there has been a recent push to rigorously
simulate polariton systems in the strong coupling regime. This has led to a number of theoretical innovations that start
to explain and predict these experimental results. However, there are still many mysteries to solve as the systems
get increasingly more complex with more molecules and cavity modes. From the theoretical perspective, the single-
molecule case has made significant progress due to the relative numerical simplicity of the simulations compared
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to highly expensive many-mode and many-molecule (with many electronic levels) simulations that have yet to be
fully explored. From the experimental perspective, single-molecule spectroscopy in plasmonic cavities is extremely
challenging and has not been widely achieved; however, the results stemming from such simple hybrid systems will
afford a much greater leap forward in understanding.

The purpose of this review was to introduce and outline state-of-the-art techniques toward the simulation of
realistic, ab initio molecular polaritons for readers in the emergent field of polariton chemistry. This review captures
much of the recent work, but not all, toward the description of polaritonic states and properties as well as their
quantum dynamics. Specifically, this work focused on the methods and approaches needed for one to explore these
complicated problems in more depth and did not focus on connecting theory to experiment. While this connection
is intrinsic to the answers one seeks from simulation, the discussion of experimental progress and its setbacks is well
beyond the scope of this review. We hope this work allows readers of all kinds to dive into the simulation of molecular
polaritons to explore themany unknown features of this novel tool tomanipulate chemical reactions aswell as physical
phenomena and to help the community address the many open questions still unexplored by theory and simulation.
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