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ABSTRACT: This paper reports how CdSe core-only nano-
platelets (NPLs) coupled with plasmonic Al nanoparticle
lattices can exhibit exciton-polariton lasing. By improving a
procedure to synthesize monodisperse 4-monolayer CdSe
NPLs, we could resolve polariton decay dynamics and pathways.
Experiment and theory confirmed that the system is in the
strong coupling regime based on anticrossings in the dispersion
diagrams and magnitude of the Rabi-splitting values. Notably,
polariton lasing is observed only for cavity lattice periodicities
that exhibit specific dispersive characteristics that enable
polariton accumulation. The threshold of polariton lasing is
25-fold lower than the reported photon lasing values from CdSe
NPLs in similar cavity designs. This open-cavity platform offers
a simple approach to control exciton polaritons anticipated to benefit quantum information processing, optoelectronics, and
chemical reactions.
KEYWORDS: polariton lasing, strong coupling, CdSe nanoplatelets, nanoparticle arrays, surface lattice resonances

Strong light-matter coupling and the generation of
exciton-polaritons are attracting attention in quantum
information processing,1,2 optical and spin-based elec-

tronic devices,3,4 and controlling chemical reactivity.5,6 Polar-
itons are hybrid light-matter states that form when the
interaction strength between an optical cavity and emitter
exceeds the individual losses. In a strongly coupled system,
energy is coherently exchanged between the electronic state of
the emitter and the optical mode of the cavity.7,8 Recently,
polaritons have been pursued to understand mechanisms of
light generation since, unlike photon lasing, polariton lasing
does not depend on the population inversion of excited states
but on the buildup of polariton population in the same
quantum state.9,10 Since the coherent emission of photons by
radiative decay of polaritons occurs spontaneously, polariton
lasing occurs at considerably lower thresholds.9,11 This distinct
property has resulted in prospects to realize electrically driven,
room temperature polariton lasing by optimizing both gain
material and cavity design.12−15

Semiconducting CdSe nanoplatelets (NPLs) are promising
exciton materials for strong coupling because of their out-of-
plane quantum confinement in 1D and large in-plane oscillator
strength.16,17 Compared to other emitters used in strongly
coupled systems (e.g., organic dyes,18 emissive metal−organic
frameworks,19 and perovskites15,20,21), the crystal structure of

CdSe NPLs results in increased chemical stability;22 moreover,
their exciton states can be n- or p-doped under an applied
voltage.23 CdSe NPL excitons can be delocalized across their
entire 2D area, which minimizes nonradiative optical losses
from biexciton Auger recombination;24,25 the presence of
defects can, however, result in exciton localization.26 These
features have enabled amplified spontaneous emission as well
as photon lasing under pulsed27,28 and continuous-wave pump
excitation.29

The primary approach to reducing thresholds using CdSe
NPLs as gain material has focused on core/shell engineering or
lateral size modulation to mitigate Auger-based losses.24,25

However, polariton lasing offers an alternative route to
realizing efficient coherent light sources. Previous studies
have demonstrated strong coupling using core-only CdSe
NPLs in Fabry−Peŕot,30 gold film,31 and nanohole array32

cavities but polariton lasing has not been reported. Plasmonic
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nanoparticle lattices are attractive cavities for polariton lasing
given that they are a well-established cavity for photon lasing;
their large scattering cross sections from the localized surface
plasmons of nanoparticles combined with the in-plane
diffraction (Rayleigh anomaly (RA)) modes33−35 form surface
lattice resonances (SLRs) that support distributed feed-
back.36−41 In addition, SLR modes exhibit polarization-
dependent dispersion properties.33,35 Importantly, strong
coupling using these cavities with organic dyes,18,42 metal−
organic frameworks,19 and 2D perovskites,20 has been reported
where the open-cavity architecture of plasmonic lattices
enabled precise tuning over the degree of coupling.
Here, we show room-temperature polariton lasing from

CdSe NPL films strongly coupled to plasmonic Al nanoparticle
lattices. By optimizing the synthesis and purification protocol
to produce monodisperse 4-monolayer CdSe NPLs, we could
differentiate polariton decay dynamics from that of common
CdSe impurities. We discovered that although strong coupling
was supported by different lattice periodicities, polariton lasing
was observed only at specific exciton-cavity detuning. Angle-
resolved transmission measurements exhibited anticrossing and
band-bending signatures that closely matched Jaynes−Cum-
mings−Hopfield calculations; the fitted Rabi splitting energies
were in the strong coupling regime. When the devices were
optically pumped, lasing from the lower polariton (LP) band
was observed at a threshold of ∼6 μJ/cm2, 25 times lower than
values reported for photon lasing. The polaritonic nature of the
emission was supported by static and time-resolved photo-
luminescence measurements below the lasing threshold and
Holstein−Tavis−Cummings calculations.

RESULTS AND DISCUSSION
Figure 1a depicts the light and matter components for a
strongly coupled system based on an Al plasmonic nanoparticle
lattice coated with a CdSe NPL thin film. Al nanoparticles
(height h ≈ 55 nm, diameter d ≈ 95 nm) were patterned by
electron-beam lithography on high-refractive index (n) glass

substrates (nglass ≈ 1.578 @ 500 nm) to reduce refractive index
differences with the CdSe NPL films (nfilm ≈ 1.73 @ 475 nm,
thickness t = 95 nm) that can result in hybrid optical modes,43

including waveguide-SLRs32,38,44 (Figure S1) with more
complicated features. Synthesis of 4-monolayer (ML) CdSe
NPLs generally followed reported protocols,27,45,46 but we
modified and scaled the procedure to achieve monodisperse 4
ML CdSe NPLs with high brightness (Supporting Information:
S1). Transmission electron microscopy of NPLs from our
optimized protocol shows uniform lateral sizes of about 10 nm
× 30 nm (Figure 1a). Although the synthesis of CdSe NPLs
has been widely adopted,27,29,45,47,48 we discovered that the
quality of products depended critically on the initial degassing
of the reagents. We speculate that this step involves the
formation of CdSe seeds, which can then direct NPL growth.
For comparison, we synthesized and purified two CdSe NPL
batches under the same conditions except for the degassing
step: (1) at 80 °C for 1 h according to literature27 (NPLA);
and (2) at 95 °C for 30 min in our modified procedure
(NPLB). Films were produced by concentrating NPL solutions
to 60 mg/mL in cyclohexane and then spin-casting at 4000
rpm on transparent substrates (Supporting Information: S2).
Figure 1b shows both the normalized absorption and

photoluminescence of CdSe NPLA and NPLB films. In both
batches, the absorption spectra had two distinct bands (2.42
and 2.58 eV) that can be assigned as heavy hole (HH) and
light hole (LH) excitons, respectively. However, the spin−orbit
split-off band (SO) at 2.86 eV was exclusively detected in
NPLB, and CdSe NPLA exhibited a broad absorption feature
below the HH band; these differences could be from the
inhomogeneous lateral dimensions of the NPLA batch (Figure
S2). When the films were excited at low fluences (ca. 0.8 μJ/
cm2) and at 420 nm (1 kHz, 100 fs), the photoluminescence
showed a single emission band for CdSe NPLB films but also a
weak 5 ML emission peak for CdSe NPLA films. Although the
percentage of 5 ML in CdSe NPLA is small, fluorescence
resonance energy transfer within a 4 and 5 ML mixture can

Figure 1. Strongly coupled CdSe NPL-Al nanoparticle lattice system. (a) Scheme of components. Inset shows a TEM image of CdSe NPLB.
(b) Absorption and photoluminescence spectra of NPLA and NPLB batches. (c) TE-polarized optical transmission dispersion diagrams of
bare Al nanoparticle lattices with different periodicities, a0.
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convolute carrier lifetime measurements of strongly coupled
systems.49 Also, similar sample heterogeneities are known to
result in energy funneling from large to small band gap
semiconductors, which can result in higher thresholds for
amplified spontaneous emission and lasing. Therefore, we use
the improved CdSe NPLB (referred to hereafter as NPL)
materials for the strong coupling and polariton lasing study
that follows.
To realize strong coupling with our optimized 4 ML CdSe

NPLs, we designed Al nanoparticle lattices with varying
periods (a0) that support Γ-point (k∥ = 0) SLR modes above
(a0 = 270 nm), between (a0 = 310 nm), and below (a0 = 330
nm) the LH and HH exciton energies. Figure 1c shows the
angle-resolved transmission of Al lattices for a0 = 310 and 330
nm; data for a0 = 270 nm are in Figure S3. Transmission
dispersion measurements for bare Al nanoparticle lattices
under transverse-electric (TE)-polarized white light exhibit
linear dispersive bands that follow the (±1,0) diffraction
orders. Both bright and dark modes are observed about the Γ-
point where the bands cross, which can be approximated by
the Bragg diffraction equation λ = a0 × n. For lattices with a0 =
310 nm, the band edge occurs at 2.52 eV, between the LH and
HH energies, and for a0 = 330 nm, it occurs at 2.38 eV, below
the HH energy. We note an increase in SLR quality (i.e.,
narrower line widths) with increased lattice periodicity because
of larger detuning of the RA condition from the localized
surface plasmon of the nanoparticles, which were kept fixed in
size and hence energy (2.70 eV) for all periodicities (Figure
S5).34,50 The transverse magnetic (TM)-polarized dispersion
diagrams have quadratic bands and show trends of line width
narrowing and band edge lowering similar to that under TE
polarization (Figure S4).
Figure 2 compares experimental and calculated dispersion

diagrams of a0 = 310 and 330 nm Al nanoparticle lattices
strongly coupled to CdSe NPL films under TE- and TM-
polarized light. For both lattice periodicities, the transmission
bands are markedly different from bare, uncoupled lattices in
Figure 1c and exhibit the characteristic band anticrossing and
band bending of polariton modes. Polariton bands with
energies lower than the HH band are identified as lower
polaritons (LP); the middle polaritons (MP) are between the
HH and LH energies; and the upper polaritons (UP) reside
above the LH energy. For the a0 = 310 nm lattice (Figure 2a),
the TE-polarized transmission shows two distinct LP band
behaviors above and below the band gap (ca. 2.36 eV): (1) a
nearly flat band that terminates at the dark edge of the band
near the Γ-point and (2) linear bands that start at the bright
edge. The MP and UP bands are relatively flat at large k∥ values
and become more dispersive as they approach k∥ = 0. Similarly,
three polariton bands are experimentally observed for a0 = 330
nm lattices (Figure 2b). The LP bands shift to lower energies
and become more intense, which makes the dark band edge
more visible. These measurements indicate how a variety of
distinct polariton dispersion characteristics can be achieved by
tuning the Γ-point SLR energies with respect to the CdSe NPL
exciton bands.
To confirm that our system is in the strong coupling regime,

we used the Jaynes-Cummings model to extract Rabi splitting
values (Ω) (Figures S6−S7).18 The model estimates Ω values
of 150 meV for the a0 = 270 nm lattice and 130 meV for a0 =
310 and 330 nm lattices. When compared with the exciton
(γHH, γLH) and SLR (γSLR) loss factors (full-width half-
maximum (fwhm) of the uncoupled exciton bands and SLR

band at the anticrossing position) (Tables S1−S2), the strong
coupling conditions Ω > γSLR and Ω > γHH,LH are satisfied;7

although the HH is strongly coupled to the a0 = 270 nm lattice,
the LH is not according to Ω < γSLR (Table S2). The right half
of each plot in Figure 2 shows the simulated transmission
diagrams with line widths and relative intensities of the
polariton bands based on their Hopfield coefficients and
uncoupled SLR eigenmode properties.51,52 The modeling is in
good agreement with the experiment; slight discrepancies may
be attributed to approximations intrinsic to this model
(Supporting Information: S6−S7).
Since SLR modes are polarization dependent, strong

coupling resulted in polariton bands with distinct dispersion
behavior under TM-polarized (versus TE-polarized) light
(Figure 2c,d). TM-polariton bands have local minima at k∥ =
0 and show increasingly dispersive character at larger k∥ values.
As the lattice periodicity a0 of the cavity increased, the
polariton bands became narrower while maintaining their flat-
banded dispersion (Figures S3, 2a,b). One important feature of
the strongly coupled a0 = 330 nm lattice under TM
illumination is the presence of two LP bands (Figure 2d): a
slightly blue-shifted, LP band with a higher quality factor (Q)
and a more intense LP band of lower Q. These LP bands
formed from the RA and SLR cavity modes of the plasmonic
lattice (Figure S4). That there are two LP bands with distinct
Q in experiment and theory indicates that both RA and SLR
modes can be simultaneously and independently strongly
coupled to CdSe NPL excitons. To distinguish between
polaritons from RA and SLR modes, we label them as LPRA
and LPSLR, respectively.
To characterize the emission of the strongly coupled system,

we performed angle-resolved photoluminescence experiments
using a Fourier microscopy setup with a 1 kHz, 100 fs pulsed

Figure 2. Polarization-dependent polariton dispersion diagrams.
Experiment (left) and Jaynes−Cummings simulation (right)
optical transmission of CdSe NPL films coupled to Al nanoparticle
lattices under TE-polarized light with (a) a0 = 310 nm and (b) a0 =
330 nm and under TM-polarized light with (c) a0 = 310 nm and
(d) a0 = 330 nm. The dashed lines indicate the energies of the
light-hole (LH) and heavy-hole (HH) exciton bands.

ACS Nano www.acsnano.org Article

https://doi.org/10.1021/acsnano.4c03164
ACS Nano 2024, 18, 15177−15184

15179

https://pubs.acs.org/doi/suppl/10.1021/acsnano.4c03164/suppl_file/nn4c03164_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsnano.4c03164/suppl_file/nn4c03164_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsnano.4c03164/suppl_file/nn4c03164_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsnano.4c03164/suppl_file/nn4c03164_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsnano.4c03164/suppl_file/nn4c03164_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsnano.4c03164/suppl_file/nn4c03164_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsnano.4c03164/suppl_file/nn4c03164_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsnano.4c03164/suppl_file/nn4c03164_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsnano.4c03164/suppl_file/nn4c03164_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsnano.4c03164/suppl_file/nn4c03164_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsnano.4c03164?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.4c03164?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.4c03164?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.4c03164?fig=fig2&ref=pdf
www.acsnano.org?ref=pdf
https://doi.org/10.1021/acsnano.4c03164?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


excitation source centered at 420 nm. Surprisingly, lasing
resulted only from the a0 = 330 nm lattice that showed the
largest negative detuning from the HH exciton, even though
the other cavity periodicities also supported strong coupling.
Figure 3a shows a nonlinear increase in the photoluminescence
as a function of excitation fluence characteristic of lasing
action. At low pump fluence (<5.5 μJ/cm2), only a broad
photoluminescence feature from uncoupled NPL excitons was
observed around 2.42 eV; however, upon increased fluence, an
intense and narrow lasing peak at higher energies ca. 2.35 eV
(fwhm = 1.8 meV, 0.4 nm) emerged. The inset in Figure 3
indicates that the lasing emission is delocalized across the
entire pump areas, a common feature of plasmonic lattice
cavity lasers.53 Pump fluence vs output intensity curves show
behavior expected of lasing action, with a transition from linear
to superlinear behavior accompanied by a rapid narrowing in
line width (Figure 3b). Notably, the threshold fluence Pth = 6.0
μJ/cm2 is very low; compared to photon lasing using core-only
CdSe NPLs (Pth ≈ 150−200 μJ/cm2),27,28 this threshold is
around 25-fold less. Despite higher optical losses intrinsic to
plasmonic cavities, this low threshold is similar to dielectric-
cavity lasers that integrate gain-engineered materials such as
core/crown CdSe NPLs or lead halide perovskite nanocryst-
als.54−56

To determine whether lasing was mediated by photons or
polaritons, we used angle-resolved photoluminescence imaging
to identify which bands contributed to the signal. At fluences
near the threshold (Figure 3c), the LP emission occurs at the
Γ-point and at an energy 25 meV higher than that of the
isoenergetic TE-polarized dark band-edge SLR and TM-
polarized LPRA band (Figure 2b−d). The collapse of emission
into the minima of the LP band suggests polariton−polariton

relaxation and also that population accumulation at the minima
is the mechanism behind the lasing observed, i.e., polariton
lasing.9 At twice the polariton lasing threshold, Figure 3d
reveals that the emission broadens and shifts to higher
energies. Normalized high-fluence spectral measurements
(Figure 3e) confirm the gradual shift and broadening of the
emission from 2.351 eV (fwhm = 1.8 meV, 0.4 nm) at Pth to
2.365 eV (fwhm = 14 meV, 3.5 nm) at 2.5 × Pth. Both the
spectral blue-shifting and peak broadening can be attributed to
polariton−polariton Coulombic repulsion and polariton-
exciton repulsion since exciton−phonon coupling in CdSe
NPLs is weak.16,57 We note that the observed shift in lasing
energy is distinct from multiexciton amplified spontaneous
emission from uncoupled CdSe NPLs that show spectral red-
shifts due to attractive multiexciton interactions.27

To understand why polariton lasing was observed only from
the a0 = 330 nm lattice, we characterized the photo-
luminescence of the strongly coupled system below the
threshold (Figure 4). Since single-exciton emission in CdSe
NPLs occurs as a band that is Stokes-shifted ∼7 meV from the
HH absorption energy,27,48 photoluminescence from polar-
itons will be limited primarily to LP bands and, in some cases,
MP bands; emission from MP is fairly strong for a0 = 270 nm
(Figure S3). Although the transmission of the LP bands shows
dark and bright SLR band edges negatively detuned from the
HH band for both lattices (Figure 2), the photoluminescence
shows additional differences. For the a0 = 310 nm lattice,
strong emission is observed from the LP bands, with higher
intensities around the Γ-point region, as well as weaker
emission from the MP (Figure 4a, inset). Since the LP band
edges for the a0 = 330 nm lattice are at lower energies than the
HH, the regions of highest intensity are when k∥ > 5 μm−1,

Figure 3. Polariton lasing from a0 = 330 nm lattice. (a) Waterfall plot of emission intensity and wavelength as a function of pump fluence.
Inset shows the real space image of the lattice above the lasing threshold Pth. (b) Input−output plot showing a linear to superlinear increase
in intensity along with rapid line width narrowing at Pth ≈ 6 μJ/cm2. (c) Angle-resolved photoluminescence image at Pth shows that lasing is
slightly blue-shifted at the lasing threshold. LP bands above (below) the threshold are indicated in solid (dashed) lines. The solid line is a
guide to the eye where the calculated LP bands were shifted. (d) Angle-resolved photoluminescence image at 12 μJ/cm2 reveals band
broadening and further blue shifting above the threshold of the LP bands. (e) Above-threshold spectral traces taken at the Γ-point confirm a
gradual peak shift and broadening, as expected from polariton−polariton interactions.
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particularly for TM-polarized LP bands (Figure 4b); only faint
emission from MPs was measured (inset). Also, we calculated
the photoluminescence using the generalized Holstein−Tavis−
Cummings (GHTC) model58 (Figure 4c,d), where the
population dynamics were simulated using the Lindblad
mean-field Ehrenfest method.59 The photoluminescence
spectra were generated by combining the polariton population
dynamics and Hopfield coefficients of the GHTC exciton-
polariton states. The intensities at each angle and energy were
weighted by the polariton population and magnitude of SLR
character in each state (Supporting Information: S8−S10).
The model correctly predicted emission from the MP and LP
bands, in agreement with experiments. Some minor discrep-
ancies are found since the mean-field Ehrenfest dynamics
method is known to overestimate the MP and UP populations
when using a Holstein phonon-coupling model.30

The photoluminescence intensity distribution trends in
Figure 4 indicate that cavities with different periodicities
facilitate different polariton relaxation pathways. For the a0 =
310 nm lattice, the buildup of the LP population occurs at the
top of the bright, TE-polarized band edge; hence, polaritons
populating this band edge can decay further along the LP band,
which likely precludes polariton accumulation and therefore
polariton lasing. In contrast, for the a0 = 330 nm lattice, the
TE-polarized LP bands are populated above the LP dark band
edge at k∥ > 5 μm−1, and polaritons can lower their energy
through polariton−polariton scattering events to accumulate at
the band minima. Moreover, although both lattices support
TM-polarized LP bands with similar dispersive behavior, their
line widths are different. For the a0 = 310 nm lattice, polaritons
populate the LPSLR band; for the a0 = 330 nm lattice,
polaritons primarily populate the higher Q-factor LPRA band

and from which lasing is observed. Another determining factor
for polariton lasing is the polariton radiative lifetime, which
sets an upper limit for the rate that the polariton population
can accumulate at the band minima and hence contribute to
lasing. Fortunately, the high purity of our 4 ML CdSe NPLs
allowed us to estimate uncoupled exciton and LP radiative
lifetimes by performing time-resolved photoluminescence that
integrated the entire (E, k∥) response (Figure 4a,b) using a
streak camera under nonresonant, pulsed excitation (420 nm,
0.8 μJ/cm2) (Supporting Information: S11). We analyzed
time-resolved traces of the LP emission energies below the
single-exciton emission peak to extract the LP lifetimes.
Radiative decay of uncoupled CdSe NPL films follows a

biexponential behavior with room-temperature time constants
τ1 and τ2 on the order of 30−60 ps and 0.2−12 ns,
respectively; the fast and slow decay components are attributed
to the bright and dark exciton lifetimes.16,17,45 For the
uncoupled NPL film at 2.36 eV, our fitting produced τ1 =
36.7 ps and τ2 = 338.6 ps, in agreement with reported
values.16,17 The strongly coupled system also showed similar
biexponential decays, where τ1 can be assigned to a direct
polariton radiative transition and τ2 to transitions into the
longer-lived dark polariton reservoir. Interestingly, the results
for a0 = 310 nm lattices (τ1 = 32 ps and τ2 = 313.3 ps) showed
shorter radiative lifetimes than the uncoupled film, while the a0
= 330 nm lattices (τ1 = 37.6 ps and τ2 = 319.8 ps) had longer
lifetimes, which favors population accumulation (Supporting
Information: S11). Photoluminescence and lifetime data
suggest that for a0 = 330 nm lattices, the LP bands facilitate
efficient polariton relaxation and accumulation at the band
minima, where a polariton population involved in lasing can
build up because of their longer radiative lifetime. Similarly,
polariton accumulation at the bright band edge of the a0 = 310
nm lattice and the shorter polariton lifetime may have hindered
polariton accumulation and therefore polariton lasing.

CONCLUSIONS
In summary, we demonstrated polariton lasing by tailoring
dispersion diagrams of plasmonic lattices to support polariton
relaxation and accumulation and improving the monodispersity
of the CdSe NPL gain materials. Interestingly, this lattice cavity
architecture can exhibit a rich range of polarization-dependent
optical modes for strong coupling, including RA modes and
SLRs. Our results highlight prospects for advances in polariton
lasing by further engineering of particle shape and lattice
geometry. Moreover, unlike the common Fabry−Peŕot cavities,
plasmonic lattices have an open architecture that allows ready
interfacing with microfluidic devices as well as optical and
electrochemical platforms to study polariton chemistry. We
anticipate that ease in tuning polariton bands can be leveraged
to modify the potential energy landscape of chemical reactions
to increase the yield or achieve unexpected products, opening
innovative tools for synthetic chemists.

METHODS
Sample Fabrication. Arrays of Al NPs were fabricated using

electron-beam lithography (Raith Voyager) on PMMA A3 (Kayaku
Advanced Materials)-coated H-BAK8 glass substrates (CDGM). After
development, 55 nm of Al was electron-beam evaporated on the
patterned substrates and then the photoresist was lifted off using
acetone. Four monolayer CdSe core nanoplatelet films were spin-cast
onto Al NP arrays by dropping 45 μL of a 60 mg/mL NPL solution
while the substrate was spinning at 4000 rpm. The full synthesis and

Figure 4. Cavity-dependent photoluminescence from the lower
polariton. Experimental photoluminescence measurements of Al
NP lattices coupled to CdSe NPL films with (a) a0 = 310 nm and
(b) a0 = 330 nm. Insets in (a) and (b) are regions of middle
polariton emission, displayed from 0 to 25 counts. These
measurements are background subtracted from the uncoupled
film. Simulated PL measurements from a generalized Holstein−
Tavis−Cummings model with (c) a0 = 310 nm and (d) a0 = 330
nm.
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purification protocols of the CdSe NPLs can be found in the
Supporting Information.
Optical Characterization. Wavelength and angle-resolved trans-

mission and PL measurements were carried out using a Fourier
microscopy setup. The back focal plane of a 20× Plan Apo Nikon
(NA = 0.75) objective lens was imaged onto the entrance slit of an
SP2500 (Teledyne, Princeton Instruments) spectrometer coupled to a
2D CCD camera (PIXIS 400, Teledyne, Princeton Instruments). The
images are then converted into (E, k∥) plots where E = hc/λ and k∥ =
(ω/c)sin θ, where h is the Planck constant, c is the speed of light in
vacuum, λ is the wavelength, ω is the angular frequency, and θ is the
incidence angle. During the transmission measurements, the samples
were illuminated using a broadband white-light source, whose
polarization was controlled to measure the optical response under
TE or TM-polarized excitation.

During the PL and lasing experiments, the sample was excited at
420 nm by a laser system consisting of a tunable optical parameter
amplifier (TOPAS Prime, Light Conversion) and a Solstice Ace
(Spectra-Physics) mode-locked Ti:sapphire laser with a regenerative
amplifier (fundamental 800 nm wavelength, 1000 Hz operation, and
100 fs pulse width). The laser excitation was incident at ca. 60° with
respect to the sample normal and had a spot size of 3.45 mm by 1.7
mm. To remove the signal from uncoupled emitters in Figure 4, the
PL was background subtracted against a pristine CdSe NPL film
region located beside each array which minimized film heterogeneity
effects. In the inset in Figure 3a, the pump beam spot size is larger
than the imaged area and is filtered out during imaging using a long-
pass filter.

Time-resolved photoluminescence measurements were performed
using a streak camera (Hamamatsu) system with an Acton SP150
spectrometer (Princeton Instruments). During the experiments, the
samples were excited at 420 nm with a fluence of 0.8 μJ/cm2 with the
same laser system used in the lasing experiments. To image the full
angular range captured by our Fourier microscopy setup, the back
focal plane image of the collection objective lens was imaged onto the
entrance slit of the spectrometer.
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