Analytic Rate Theory of Polariton Relaxation that Explains Long Polariton Lifetime

Yifan Lai,!'® Wenxiang Ying,! Todd D. Krauss,»'?3 and Pengfei Huo' 2 3:P)

1)Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627,

U.S.A.

D The Institute of Optics, Hajim School of Engineering, University of Rochester, Rochester, New York 14627,
U.S.A.

3) Center for Coherence and Quantum Science, University of Rochester, Rochester, New York 14627,

USA

Hybridization of a molecular exciton with a quantized photon creates a polariton. Despite extensive exper-
imental investigations, the apparent lifetime of the exciton-polariton is not well understood. We examined
the steady-state population dynamics for a Holstein-Tavis-Cumming Hamiltonian to illuminate the long-term
polaritonic dynamics and lifetime of the exciton polariton in an optical cavity. For a realistic description of
polariton relaxation, cavity loss and various exciton decay channels are included in the model. We found that
in the presence of weak but finite exciton loss, the apparent lifetime of the lower polariton coincides with the
out-of-cavity exciton lifetime and is independent of cavity-matter detuning. This is a simple explanation for
the experimentally observed lifetimes for exciton polaritons, and theoretically justifies the dark state reservoir
hypothesis. Further, if the upper polariton is initially populated, the system reaches the steady state very
quickly, leading to single-exponential polariton relaxation. Starting from the lower polariton leads to a longer
pre-steady-state time period, leading to double-exponential relaxation. Finally, we considered the effect of
site orientational disorders and the exciton frequency disorderers. Under the collective limit, the effects of
this disorder can be included in Fermi’s golden rule population dynamics without explicit sampling. For
the exciton energy disorders, numerical calculations are needed. Our theoretical framework is applicable to
interpret exciton-polariton experiments, especially related to the measured apparent lifetime of polaritons.

I. INTRODUCTION and the exciton loss rate 'y, weighed by their respective
Hopfield coefficient, plus a small correction term for the
population transfer between polariton and dark states,

The strong collective coupling between molecular exci-
expressed as follows*’

tations to confined photon modes inside an optical cav-
ity generate excitonic polaritons.!® These quantum su- 1 ) )
per.positions. are hybrid states of light'and rnatt.er, and — = ’ (+|G, 1>‘ T+ (1 _ ’ (+|G, 1>‘ )Fex + vkt o),
their formation and subsequent dynamics are believed to T+

be integral to various interesting phenomena, including ) o ] ) (1)
cavity-induced modification of photo-chemical reactiv- where 7 is the lifetime for polariton states [+), I'c is the
ity 10, enhanced transport of delocalized excitons!! 2!, cavity loss rate, ['ex is the exciton loss rate, v is a rate
room temperature Bose-Einstein condensates with laser characterize the tran.sition from polariton states [+) to
pumping??24, and as a qubit candidate for quantum in- the dark states manifold {|D)}, and |G,1) = |G) ® [1)
formation applications?26, It was also believed that vi- represents the 1-photon dressed molecular ground states.

brational polariton played a central role in understand- Several experimental studies that measure excitonic

ing vibrational strong coupling (VSC)-induced chemical
reactivities?” 36 cautions are needed to make the same
claim as VSC could be in a different regime compared to
the exciton strong coupling (ESC) regime.

As polaritons are central to strong light-matter cou-
pling phenomena and potential applications to photo-
physics and photochemistry, the lifetime of the polari-
ton during population dynamics has been the subject of
experimental study, commonly through transient pump-
probe spectroscopy®” 4!, linewidth measurement??43 or
direct population probing such as photon counting** 4%,
as well as theoretical simulation. The most intuitive
analysis may conclude that the polariton relaxation rate
should be a combination of the loss rates of cavity I'.
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polariton relaxation suggest that the polariton lifetimes
are typically much longer (often by several orders of mag-
nitude) than the cavity loss timescale, with no apparent
detuning dependency.?”3?49753 or weak detuning depen-
dency®®. Various theoretical explanations have been pro-
posed for this unexpectedly long lifetime, including long-
timescale non-Markovian dynamics?, interaction with in-
termediate states®®, and dark states acting as a popula-
tion reservoir for the polariton,®? prolonging their ob-
served lifetime. In this study, we analyze the steady-
state polaritonic population dynamics to demonstrate
a simple, quantitative explanation for these long-lived,
detuning-independent polariton lifetimes and the corre-
sponding parameter range for this phenomenon.

Given the inherent collective nature of the polaritons,
as well as other related collective optical phenomena
such as Dicke superradiance emission®®°7, the effect of
potentially symmetry-breaking disorder of the sites has
been the focus of recent theoretical works.?® %> The most
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straightforward way to simulate the effect of disorder on
polaritonic dynamics is to sample each site’s energy, ori-
entation, and positions explicitly, followed by performing
an average over the simulated dynamics of the samples.
Existing computational methods capable of such simu-
lation at a collective scale (number of sites N > 10°)
include collective dynamics using truncated equations
CUT-E® 68 and trajectory-based methods accelerated
via sparsity.5? 7! However, a more application-friendly
theoretical treatment of site disorder would eliminate ex-
plicit sampling and include the effects of the disorder as
a set of parameters, such as a reduction in Rabi splitting
or collective relaxation.

In the present work, we study the highly collec-
tive excitonic polariton dynamics via Fermi’s golden
rule (FGR)™. We develop a theoretical explanation
for the apparent contradiction between long, detuning-
independent polariton lifetimes and fast, detuning-
dependent cavity loss via the steady-state dynamics of
lower polariton (LP) and the dark state manifold. Three
channels of Lindbladian loss, local, collective (super-
radiant), and cavity loss are considered for a comprehen-
sive description of the relaxation process. Elementary
expressions for the polariton lifetime and the timescale
corresponding to the steady state are derived under ap-
propriate and realistic parameter ranges. Additionally,
we showed that the effect of isotropic orientational dis-
order of the sites, despite its symmetry-breaking charac-
teristics, can be handled within the framework of FGR
without explicit sampling of the site angles. The effect
of such disorder comes in the form of corrections to Rabi
splitting, population transfer rates, and Lindbladian loss,
which are calculated in closed form.

Il. THEORY

Here, we develop an analytic theory to explain the of-
ten experimentally observed long lifetime of polaritons.
We quickly review the FGR expressions in Sec. IT A the
Lindblad operators we used to describe cavity loss and
exciton decay in Sec. II B, and use this framework to de-
rive the main results of this work in Sec. IIC-IID. The
main theoretical resutls are: (1) the apparent lifetime of
the steady-state (Eq. 30, and Eq. 28 for the exact form),
(2) the time scale for the initially excited polariton sys-
tem to appraoching to this SS behavior (Eq. 34), and (3)
the FGR rates when considering the dipole orientational
disorders (Eq. 47).

A. Fermi’s Golden Rule Rates for Polariton Dynamics

We consider a collection of N two-level systems (which
can be either electronic or vibrational excitations of
molecules), referred to as sites, inside and coupled to a
cavity. It is described by the Holstein-Tavis-Cummings

(HTC) model in the single exciton basis6*73 7
N-1
H = hwy Z |TL><TL‘ + hwc |G7 1><G7 1| + Hp + Hyp
n=0
N-1 (2)
+hge > (1G, 1l + )G, 1] )
n=0

Here, hwy is the site exciton energy, n € {0,1---N — 1}
is the site index, |n) = |n,0) = |e,) ® |0) and |G, 1) =
|G) ® |1) is the single-site excited state of site n and the
single photon state, respectively, w. is the photon fre-
quency, and g. is the single molecule light-matter cou-
pling strength. Experimentally, N ~ 10° — 102 was
estimated as the number of molecules coupled to a cav-
ity mode in VSC regime™® " as well as electronic cou-
pling regime, although the recent experiments®’ of spec-
troscopy and transport dynamics in VSC suggests that
N =~ 10% — 10*. For CdSe NPL coupled to the cavity un-
der the excitonic strong coupling regime, it was estimated
that N ~ 10% — 10° due to the large transition dipole of
the NPL.*>7 In this work, we will focus on the collective
coupling parameter range and analyze the effect of NV on
polariton lifetime, with the range of N ~ 10°.

It is well known that the polaritonic dynamics depend
strongly on the phonon environment.®!' In this model de-
scribed by Eq. 2, each site is coupled to its local phonon
environment, which is modeled by Hy, + Hg,. All baths
are assumed to be harmonic and identical for all sites n,
expressed as follows

I:Ib = Z Z h’wai)l,ni)a,n (33’)
a

n

Hay =Y Il @3 (bl +b,),  (3D)

where a is the bath mode index, and IA):fln are the rais-
ing operate for the ay, harmonic bath mode of the ngy
site, with frequency w,. The exciton-phonon coupling is

characterized by the spectral density defined as®?
J(w)=mh> " 25w — wa). (4)

In the current study, we refer to the electronic and the
photonic DOF's as the system DOFs, leaving everything
else (phonons) as the bath DOFs.

Dynamics simulation via the quantum master equation
(QME) approaches™ (including FGR) requires casting
the system Hamiltonian into its eigenbasis. We transform
the real-space Hamiltonian Eq. 2 into a reciprocal space
polaritonic basis.?3838% The basis includes N — 1 dark
states

1 = nj
|Dj) = N nz;o exp(=2mi 55) [n) (5)

for j € {1,2,---,N — 1}, which are delocalized (span
over all exciton states) and optically dark when there is
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no disorders. The optically bright state is 5 = 0 special
case of Eq. 5,

B)=j=0=— 3 [n) (6)

To differentiate between the site (real-space) basis and
the reciprocal basis, {m,n, - --} will be used to index the
site basis, and {j,k,---} will be used to index the re-
ciprocal basis. The polariton states are mixtures of the
photon state and the optically bright j = 0 state,

|[+) = sing |G, 1) + cos¢

T n=0
;N
—) =cos¢p |G,1) —sing —— n b
|- ¢ |G, 1) ¢ VN & [n) — (7b)
with the mixing angle ¢ as
_ 1 -1 2\/Ngc T

The above polariton states |+) and dark states D =
{|D;)} are the eigenstes of the polariton Hamiltonian
(system Hamiltonian)

IjISEIjI—IA{b—EISb (9)
N—-1
= fwy [F)+] + hw |[=X=|+ Y hwy |D;XD;]
j=1

and the energy of the polaritons as

Wy + We

2

wy = + %\/4Ng§ + (wx — we)2. (10)
The readers may refer to Ref. 72 for derivation details and
explicit expressions of the Hamiltonian in Eq. 2 in the
polaritonic basis (see Eq. A2 in Appendix A of Ref. 72).

The population dynamics governed by the polari-
tonic HTC Hamiltonian is described by non-equilibrium
Fermi’s golden rule (NE-FGR)®>® and equilibrium
Fermi’s golden rule (E-FGR). FGR is a perturbative the-
ory based on treating the off-diagonal elements of the
Hamiltonian as a perturbation, which in the polariton
and dark states basis assumes weak system-bath coupling
(exciton-phonon coupling). We expect this assumption
to be valid in the collective limit N ~ 10% ~ 10'2, since

)

all off-diagonal exciton-phonon coupling terms scale with
1/VN.

Following the existing time-domain derivation for pop-
ulation quantum master equation (QME),*5 88 the FGR
population equation of motion (EOM) is

=Y kisu(MPr(t) = > kyr(t)Ps(t) (11)

I#£J F#J

—PJ

where the time-dependent rates are the Fourier trans-
form of the correlation functions, the time-independent
E-FGR rates are taken at the limit ¢ — oc.

Fp(t) = —Re / ds Crop(ts)  (12)

Following our previous application of FGR to cavity
polaritons,”> we combine the N — 1 dark mode pop-
ulations into one overall dark state population Pp =
Z;V:_ll P;. Therefore, the EOM Eq. 11 concerns the
populations of three states I,F € {+,—,D}. In the
collective limit, the relevant correlation functions are t¢-
independent, Cr_pr(t,s) — Cr_p(s) and differ only by
the FF frequency and a prefactor

, 1
Ciyp(s) = @78 __~ (14 cos2¢) Cp_p(s)

(13a)
: 1

Cp_yi(s) = ellwx—we)s 5(1 + cos2¢) Cpp(s) (13b)
; 1

Ciz(s) = ellws—ws)s 1 sin? 2¢ Cp_,p(s) (13¢)

where the common dark-to-dark correlation function
Cp_p(s) is expressed as

Cp_p(s) = ]\ZT /de( ) [coth BTM cosws + isinws}
2 ih
= 35700) + ), (14)

where the definition for the frictions kernel 3 is adopted
from our previous work,”?

h /000 dw J(w) - coth (;577&1) cos(ws) (15a)

Y5(s) = o

~v(8) = vp=0(s) = %/OQ dw @ cos(ws) (15b)
0
A(s) = %/Odw J(w) - sin(ws), (15¢)

The NE-FGR rate constant is thus kj,p(t) =
% Re fot ds Crr(s). Under the equilibrium limit (¢ —
oo in Eq. 11 using Eq. 13), the rate constant k;,p =
k;_r can be evaluated in close form, yielding the well-
known E-FGR rate expressions

N -1 J(|wj:_wx‘)

ki_p= 7(1 + cos2¢) |1 — (o) (16a)
1 J(Jwx — w])
kD_>:t = m(l =+ cos 2¢) |1 _ e—Bh(UJX—UJi)‘ (16b)
. J(Jwtr — wz])
_ 2 T
kiog = 5Ny St 2¢ ‘1 — e—ﬁh(wi—wq:)’. (16¢)

The above expression can also be obtained from fre-
quency domain perturbation theory, with details pro-
vided in Ref. 72. Note that there is a large N — 1 fold
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of degeneracy for the dark states manifold, which explic-
itly shows up in k+_p. This may also be interpreted
from the entropy perspective,®® because Eq. 16a can be
recasted as

k__p= N [1—cos(20)] - J(wp — w-) (17)

x exp (—f [M(wo —w—) — kgTIn(N —1)]),

such that one can define an effective entropy change
AS = kg In(N — 1) associated with the transition. Note
that it differs from the thermodynamics entropy since
N — 1 is not the actual particle number but the degen-
eracy fold of the dark states manifold. When the dark
states dominate the equilibrium population, it can be
explained® as the dark states manifold has a relatively
lower free energy than the LP, with AF = A(wg —w_) —
kgTIn(N —1) = AE—-TAS < 0.

Our previous work™ suggests that the NEFGR the-
ory provides a reasonable estimation for all processes,
although it may underestimate the rate from LP to the
dark states manifold. Here, we use both rate expressions
to simulate the population dynamics and the lifetime of
polaritons.

B. Incorporating Cavity Loss and Excitonic Loss through
Lindbladian

The HTC Hamiltonian captures the dissipation pro-
cess (homogeneous broadening or dynamical disorder)
via system-bath coupling (exciton-phonon interaction),
as well as the important polariton relaxation process to
the dark states. However, cavity loss and other relaxation
channels are not included in the HTC model. Follow-
ing the established methodology for Liouvillian dynam-
ics, loss is accounted for via the addition of a Linbladian
term, 45:90

S0lt) = — 1, 5(0) (18)

+ 3 LaLupOLL - ;;Fa{igﬁa, 50}

where ﬁL is the Lindblad jump operator associated with
the decay channel «, with the corresponding rate T',.
As stated above, the dynamics due to the HTC Liouvil-
ian —%[H,p] is modeled by the FGR equation of mo-
tion, Eq. 11 (we have checked the validity of using the
rate equation to model the full quantum master equa-
tion in our previous work in Ref. 72). The Lindblad
jump operators L represent different relaxation channels.
Since we only concern with the population dynamics of
the excited states (Py and Pp), the refill term LpLT
can be omitted and the anti-commutator is replaced by
{LTL,p} =2L'Lp. This leaves

Palap(O)LL = STl bl PO} — —TaQup(t) (19

where Q, = ﬁ‘;f/a

In this study, we follow the previous work®® that inves-
tigates polariton spectra broadening through the Lind-
bladian description, by considering three relaxation chan-
nels. Photonic cavity loss corresponds to

Qc = |G7 1><Gv 1‘ ) (20)

where the corresponding loss rate can be obtained from
the cavity quality factor

I =we/Q, (21)

with Q as the quality factor. We also consider a local
relaxation channel for each exciton site,

Qloc = Z |n><n‘ ’ (22)

as well as a collective relaxation channel,®®

Qcol = Z |m><n|

with the corresponding loss rates I'io. and I'c,). Detailed
discussions of these Lindblad operators are provided in
Appendix A.

= N|B)BI, (23)

C. Analysis of Steady State Lifetime

Casting the above Q into the polariton eigenbasis
{|£), 7 =1,2,---N —1)} and keeping only the diag-
onal component leads to the corresponding population
DOF, we have the rate equations

ZkIH:tPJ

Je{ﬂF D}
—TLP.(t)
= ks pPylt

Je{+t}
—T'pPp(t)

*Pi — ki g Py(t)

(24a)

*PD — kp_yPp(t)

(24b)

where the loss rates 'y are

I'p

Ty = 7(1 + cos 2¢) + (1 £ cos29¢)

Nrcol
2 (25)

I'e
+7(1 F cos 2¢)

where for the no-disorder case, I'p = I'igc. It is important
to note that the NT form of the collective loss component
in Eq. 25 means that it corresponds to the super-radiant
loss of polaritons.?6:91:92

The relative strengths of population exchange rates
kr—r as well as loss rates I'c become relevant in the
steady-state (SS) behavior. In the timescale of which
the system reaches to the SS behavior, the population
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dynamics are assumed to become fully Markovian, such
that k;p(t) — ki p. Further, the upper polariton
state’s population is expected to fully decay to the dark
states and is supposed not to be re-populated (as transfer
processes towards UP are unfavorable energetically and
collectively), and lower polariton and dark state popula-
tions would have reached an unvarying, SS ratio. This
hypothesis is verified by our numerical solution of the full
rate equations in Eq. 24, as shown in Fig. 3 in the result
section. Based on the above discussions, we have

d P55(t) PS5(t) . (P_>SS.

dt PSS(t) — 7 PSS(1) Pp

(26)

Since the ratio (P_/Pp)ss is fixed, both populations
would have the same observed loss rate I'sg,

dPSS PSS
dt— = —Tgg P55, de = —T'gg PSS, (27)

where the SS behavior is defined by both |—) and D)
loosing population with the same rates I'ss. The actual
population EOM, on the other hand, is still governed by
Eq. 25. By deriving the EOM of the population sum
P_ + Pp from Eq. 25, we obtain (see details in Appendix
B) the expression of I'sg as

(52)geT= +Tp
1 + (%)SS’

and the steady-state ratio (P_/Pp)ss can be obtained
by solving Eq. 26 via explicitly expressing

d PSS(t)  PSS(t)PR3(t) — PSS(t) PS5 (t)
dt PRS(t) (PSS ()2

I'sg = (28)

:0,

and substituting in the time derivatives of each popula-
tion from the EOM in Eq. 24. This results in the follow-
ing expression for SS population ratio

(P,) B (kDaf"FFD—F, 1)2+
Pp/ss 2k__p 2
kp_+Tp—-T_ 1

2k__p 2

kpos

ko (29)

As such, plugging in the detailed expression of
(P_/Pp)ss in Eq. 29 into the I'ss (Eq. 28) gives the
closed form of I'ss. Eq. 29 and Eq. 28 are the first key
results of this work.

The above SS ratio can be further simplified by work-
ing in the appropriate parameter regimes relevant to the
experiments. In this study, we assume that the collec-
tive factor NV — 1 vastly overpowers the thermal energetic
factor®® exp[B(wy, —w_)], and the loss is dominated by
the cavity loss process, and therefore ' > I'p. As a
result, the steady-state ratio becomes

eﬂ(‘*’xfw— ) 1
< N_1 < 1,
(30)

(2. ks
PD SS - k7*>D+F, —FD —kDH,

and the derivation of this approximate expression, as
well as the SS ratio under other parameter regimes, are
provided in Appendix B. This leads to the approximate
steady-state loss rate
T ~T / k?HD
ss~Tp+hp, /(14 22-). (1)
r-—-rIp
Eq. 31 is the second main result of this work. In the col-
lective limit where kp_,_ < I'p, Eq. 31 predicts that the
the observed loss rate should equal to the dark-state loss
rate I'sg = I'p, which agrees with the intuitive picture in
which the dark-state manifold serves as a reservoir for the
polaritons,®® as suggested by the previous experimental
work.?%%2 This also means that the apparent lifetime of
LP, typically measured by Photoluminescence spectra, is
not really determined by 7-* (see Eq. 1), as suggested in
previous literature.?? Further, Eq. 29 and Eq. 31 are valid
as long as the population dynamics are governed by a rate
process, regardless of the validity of the FGR expressions
for describing the rates. In this sense, we expected that
Eq. 29 and Eq. 31 can be widely used to interpret the ex-
perimental data, when the rate constants and relaxation
rates are extracted from kinetics equations.*?
Note that Eq. 31 also suggests the following bound of
I'ss

Tss € (FD, I'p+ k%_). (32)

As such, for any polaritonic system (when considering a
single cavity mode approximation and no-disorders), if
there is a light-matter detuning dependence on the ap-
parent lifetime I'gg (such as those observed in Ref. 45),
the current theory suggests that it is caused by kp_,_,
which has to be comprable to I'p and being sensitive to
the light-matter detuning.

It is also important to know the timescale at which
the population dynamics is approaching the steady state
for the SS analysis to be relevant. We can estimate this
timescale by evaluating the rate at which P_/Pp ap-
proaches its SS value,

drP_(t) ,P_ L rP_(t) P
e~ sl = [po — ()ss) 89

Under the same collective coupling limit and cavity loss-
dominated parameter regime as discussed above, the
timescale approaching SS can be estimated to be

T§81 ~k__,p+T_—Tp—Fkp,_, (34)
which is approximately on the timescale at which lower
polariton exchanges population with the dark state
k__p. Eq. 34 is the third key result in this work. Again,
we emphasize that the above time scale is not related to

the apparent lifetime but rather how quickly the polari-
ton system approaches the SS.
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D. The effect of Disorders on Polariton Relaxation Rates

In molecular polaritons, there are various types of
static disorders that exist, which will influence the polari-
ton spectra, photophysical properties, and lienshape.?®

We first focus our attention on dipole orientational dis-
order with respect to the cavity polarization direction.
This results in a varied coupling strength between the
photonic excitation and the matter excitation (site state)
as follows

(G, 1| H |n) = hge - cosb,, (35)

where 6, is the angle between the dipole vector of
molecule n with respect to the cavity field polarization
direction, and g. is the coupling strength when the tran-
sition dipole vector is fully aligned with the field. In the
present study, we consider the case of isotropic angular
disorder in 3D space, in which case cos#6,, is uniformly
distributed between +1, according to Archimedes’s hat-
box theorem.

Since the field-matter coupling is treated non-
perturbatively in this study, it is necessary to work in
the eigenbasis of the system Hamiltonian

H,({6,}) = H({6,}) — H, — Hy, (36)
N—-1
= hwy Y In)n| + hwe |G, 1(G, 1]
n=0

N—-1
+hge Y cos 9n<|G, 1n| + [nXG, 1| )
n=0

to account for the angular disorder. Its eigenequation is

H,({6,)16) = E¢lé). (37)

The total Hamiltonian for the system with the dipole
angular disorder is expressed as

It is easy to show that the eigenstates of IEIS in Eq. 36
consist of N — 1 degenerate dark states |Dg) for & €

{1,2,--- N — 1} which are mutually orthogonal to each

other, and two polariton states,%* expressed as follows
IF) =sing |G, 1) +cos¢ |B) (39a)
) =cos¢ |G, 1) —sing |B), (39b)

where the collective bright excitation state is
= (Z cos? Qm)
m

and the mixing angle q~5 is,

1/2
. ZCOS O |n) (40)

Henceforth, the eigenstates of Hy({f,}) in Eq. 36 are in-
dexed with Greek letters (¢,&,--+), including the polari-
ton states in Eq. 39 as well as dark states, and the states
generated with orientation disorders are marked with a
tilde. The magnitude of the collective light-matter cou-
pling is reduced compared to the disorderless case,

(B H |G, 1) (Zcos 0 ) 9c <VNge,  (42)

where for the fully ordered case, (3°, cos?6,,)1/2 = VN
and for a 3D fully isotropic case, (3, cos?0,,)1/2 =

N/3. The reduced coupling strength leads to the cor-
responding reduced Rabi splitting QR = w4 —w_, where
the eigenenergies of UP and LP are

g =ty V/Zmﬁ

+ (wx —we)?.

(43)

To derive the FGR rates under these angular disor-
ders, we use the same derivation procedure reported in
Ref. 72 by using { |£), [€)} as the initial and final states
for rates. The phonon bath DOF, on the other hand,
would still be convieneitnly expressed in the original re-
ciprocal space for the disorderless case (c.f. Eq. 5-6), gen-
erating a set of delocalized reciprocal-space bath modes
1/3;,). The asymmetrical (j = 1,2,--- N — 1) bath modes
are defined as

1 N—-1
ZA/:’{,J‘ = N Z exp ( — 2mi 7)b(1; no

Vg = \/» Z exp (277@ —)b

(44a)

(44b)

and specifically, the symmetrical (j
modes are expressed as

= 0) phonon bath

Z
L

1 ~
Va,o = ﬁ Z bjz,n' (446)

i
o

This leads to modifications of how both diagonal and
off-diagonal system-phonon coupling could influence the
transfer rates. For a disorderless system, we have shown
that only the zeroth phonon mode (ﬁ;o, Eq. 44c) will di-
agonally couple to the eigenstates (see Eq. Al in Ref. 72).
In the current eigenbasis with disorders, all phonon
modes in Eq. 44 will diagonally couple to the eigenbasis.
In appendix D, we further show that the phonon diagonal
coupling will not exceed that of the zeroth phonon in the
reciprocal basis, and they will at most scale with 1/ V/N.
Hence, the effect of phonon shifts (diagonal coupling) can
be ignored in the collective limit.

With the effect of diagonal system-phonon coupling
ignored, the collective limit FGR rate constants in the
presence of orientational disorder depend solely on the
off-diagonal system-phonon coupling, in a manner similar
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to the case without disorder, allowing direct comparison
between the two. In the collective limit, it can be shown
in Appendix C that the rate constants are independent of
the explicit choice of dark states {D¢}, and the expres-
sions are related to the disorderless case (c.f. Eq. 13b)
through a constant factor as follows

N — AN

ﬁCiHD éq:aﬂ: = ANC:F~>:I:7 (45)

C:i:(—>D =

where AN depends only on the properties of the bright
state as follows

Again, the tilde indicates state vectors and quantities
associated with the dipole orientational disorder case,
and |D;) is the reciprocal basis defined in Eq. 5 (which
happen to be the dark states of the no-diaordered case).
Hence, the polaritonic dynamics in the presence of ori-
entational disorder depend on the reduced field-matter
coupling (Eq. 42) and the parameter AN (Eq. 46), which
in turn depends on the specific realizations of the random
angles {6,,}.

The resulting FGR rates in the presence of angular
disorder become

 N-AN (@ — )
ki_>D = W(l =+ cos 2¢) |1 — e*ﬂﬁ(ai*wx)‘ (47&)
k =——(1% 2 =
D—+ N(N*l)h( COS ¢)’1_e_ﬁh(wx_wi)‘
(47b)
_AN o (B — )
kyog = o, Sin 2¢ ’1 — e—ﬁh(‘:’i—w¥)|’ (47¢)

where w4 is expressed in Eq. 43. Eq. 16 is the third key
result in this work, which suggests that the role of anular
disorder for polariton relaxation is to modify w4+ — wy,
AN, and the mixing angle (E

As shown in Fig. 1, for a fully isotropic disordered case
in 3D, the distributions of the two parameters become
narrower as the number of sites NV increases. Therefore,
in the collective limit N > 106, we assume that these
parameters take their expected values by replacing the
sum over n in Eqs. 42, 46 with the respective integrations,

§ ﬁ 1 1 1 1/2 1
{BIHI|G,1) ~ (—/ dcosf cos? 9) =1/7 (48
\/Ngc 2/ &
1
~ 2 (" dcosf cos*f
AN ~ I s = % (49)
(f_lldcose cos? 9)

10* sites
10° sites

Probability density

I I

0.53 056 059 062 1.6 1.7 1.8 1.9 2.0
(BIHIG, 1)/v/N g. AN

Figure 1. Distribution histograms of (a) field-matter cou-
(BIH|G, 1)
\/Ngc
Eq. 46, among different realizations (samples) of disordered
site orientations {6, } with various N. The number of samples
is chosen such that N- N = 10%, with 6,, € [0, 27] uniformally
samled. The expected values (mean) for the plotted distribu-

tions are (a) <(§| H|G, 1>>S/\/NgC = \/g ~ 0.577, and (b).
(AN)=9/5=18.

pling reduction ratio , and (b) AN as defined in

which eliminates the need for sampling {6,}. For a
smaller N or some detailed realization of {6,}, Eq. 43
and Eq. 46 are still needed. It is also important to note
that the above angular disorder parameters reach the col-
lective limit much more slowly than the underlying dy-
namics. One can infer from Fig. 1 that the distributions
are not converged to the expected values at N = 100,
however, at this number of sites, the collective FGR rates
Eq. 13b already become valid.

The orientational disorder does not change the effects
of explicit cavity loss Qcay or local relaxation channel
Qioc in the rate EOM (Eq. 24), except for the changes
in the mixing angle ¢ — ¢ and the polariton frequency
@y (Eq. 43). To understand how the collective relaxation
operator Qcol changes with respect to the orientational
disorder, we notice th~at since the disorder is isotropic,
the new bright state B is expected to be orthogonal to
the no-disorder bright state (Eq. 6),

(B|B) Zcos 6, =0. (50)

Therefore, Qcol will act solely on the dark states instead
of polariton states. Following the derivation detailed in
appendix A, the loss rates in the presence of angular dis-
order are

FC FOC
ry :?(1$c082¢)+ 12 (1 + cos29)

(51a)

I'p =T + T (51b)

N
N -1
As shown in the above equation, an important feature
for the Lindbladian loss rates in the presence of orienta-
tional disorder is that the I'c,) contribution is weighted
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by N/(N — 1) — 1 (for large N), and is thus no longer
super-radiant. This is opposed to the no-disorder case in
Eq. 25 where NT'¢, does contribute to a super-radiant
channel for I'+. This observation is consistent with ex-
isting theoratical®®%%93-95 and experimental®96:97 stud-
ies of super-radiant polaritonic decay. FExperimental ob-
servation of super-radiant polaritons is performed with
well-ordered sites, either crystalline or supercooled sam-
ples in nature, and it has been demonstrated theoreti-
cally that the super-radiant loss diminishes with ener-
getic disorder.”® As we have shown in appendix A and
Eq. 25, the super-radiant broadening arises as a natural
result of simple Lindbladian radiative loss to the ground
state, without the existence of inter-site coupling.”® In
a system with orientational disorder, the collective loss
no longer overlaps with the bright state in the reciprocal
space. It instead applies to, and has its collective-ness
canceled by, the density of states of the dark-state man-
ifold.

We would also comment on another important source
of disorder in polaritonic dynamics arising from the inho-
mogeneous energy disorders®?® of exciton Aw,. These
static energetic disorder originates from static interac-
tions between the exciton and the environment, which
can be considered by adding the following term to the
total Hamiltonian H (Eq. 2),

N-1

V=> eln)nl. (52)

n=0

It has been shown that the eigenspectrum of H,+V can
be solved exactly.”? 101 Alternatively, one often uses per-
turbation theory to work out the influence of V. Here,
we try to cast some general discussions of this type of
disorder, by exactly diagonalizing the Hs + V and ob-
taining its eigenstates |¢), expanded in the reciprocal
basis {|D;)} (for j = [0, N — 1] where |D;) = |B))

N—1 N—1
) = G, 1)+ >y (D)5 [¢) =0, |G, 1)+ > | D;)
j=0

j=0
(53)
where the expansion coefficients 1, and 1; need to be
solved numerically from diagonalizing H + V in the
{|G,1),|D;)} basis. The FGR transfer rate between two
such states is

N—-1 N—1
2 S (Jwy — wyl)

2
. |1 ~ e,gh(wwfw;,”

(54)
and the population dynamics can be solved numerically
from the rates. This rate expression is consistent with
the disorderless case. Under the limit that there is no
disorder, v;; = §; j is the jy, dark state in the recipro-
cal space, and w;., = —0p,jssing is the disorder-less lower
polariton. As a result,

kysy = 5 ‘ 1/’;w;'+k‘

Nh -
k=0 j=0

N—-1 N-1

S| v

k=0 j=0

2 1
‘ = 5(1 — cos2¢)

which upon substitution into Eq. 54 leads to Eq. 16.

Assuming the disorder to be weak enough such that
the eigenbasis comprises two polaritons and N — 1 dark
states (see the criteria discussed in Ref. 102), the inter-
dark-state population transfer can be ignored during the
dynamics, and the transfer rates between polaritons and
dark states can be written as

ki_)p = Z kji_ﬂl,/ (wi - Ww/) (55)
Y'eD

kp+ = Z P'Z[;kw’—)i(w’l[)’ —wy) (56)
Y'€D

where P is the probability to occupy the dark state [¢),
and >, P), = 1. For no-disorder cases, Pj, = 1/(N —
1). Further assuming that the prefactor in Eq. 54 is the
same among the dark states and the relative dark state
populations PQL — P(wy) to be a function of energy, the
FGR transfer rates in this case can be approximated by
a convolution,33

(kxop) = /dw krop(w) - Glw — wy), (57)

where G(w—wx) is the dark state energy distribution, and
k+_,p(w) is expressed in Eq. 54 by replacing the prefac-
tor with a constant obtained via numerical diagonaliza-
tion. Ome could also get an approximate analytic ex-
pression of these rates by considering these static energy
disorders as perturbations. This perturbative operator
will fully split the degenerated dark state manifold, and
the degenerated perturbation theory is needed. Because
the dark states’ degeneracies are fully resolved, one, in
principle, needs to compute the population dynamics be-
tween individual polaritons and dark states, instead of to
a well-defined, degenerate manifold. We have developed
a numerically efficient approach for this when simulating
polariton spectra.®® Here, we will not perform numerical
simulations to consider the effect of static energy disor-
der in the following results, and only focus on the dipolar
angle disorders.

I1l. MODEL SYSTEM AND COMPUTATIONAL
DETAILS

To demonstrate the effect of various parameters on
the steady-state dynamics, we study the HTC model
adopted in our previous work,”?> where FGR and NE-
FGR are both shown to be accurate compared to the nu-
merically exact simulation of quantum dynamics.” We
assume that the exciton-phonon coupling term in Eq. 3
is described by a spectral density. Each site (exciton) is
coupled to a Brownian oscillator (phonon bath), with the
spectral density

AAnw?

J(w) = (@2 — 02)2 1 42w?

(58)
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15meV 0.2eV 0.1eV 2.0eV 50 meV

300 K

Table I. Model parameters for the present study.
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Figure 2.  Semi-logarithmic plots for population exchange
rates (k_«p, Eq. 16), Lindbladian loss rates (I'_,p), as well
as steady state loss rate (I'ss, Egs. 28), against the photon-
site detuning (A = we — wx). The cavity loss rate is T'cay =
1 meV, which corresponds to a moderately high quality factor
of @ ~ 2000. Three different combinations of matter losses are
chosen: (a). Vanishing dark-state Lindbladian loss I'_ = 0;
(b). Finite, but slow dark-state loss; (c¢). Dark-state loss rate
slower than, and comparable to, the cavity loss rate.

The model parameters are given in Table I, where we
consider the collective limit, with N = 10, and collective
light-matter coupling v Nge.

The FGR population dynamics is obtained by solving
for a simple rate equation, (¢, f,j € {£,D,G})

d
o hit = D ki Pit) = Y ki g Pi(t). (59)
i#] f#3
The solution of this EOM is obtained through the time-

evolution matrix P(¢) = P(0) exp(Kt), where K is given
by

Kizi=king, Kgi=T4 Ky = *ZKJ%, (60)
1

where the detailed expressions for these matrix elements
are provided in Egs. 16, 51a, 51b. K is then diagonalized
to become Ky, and K = U'K4U, which allows for a
straightforward evaluation of population dynamics,

P(t) = P(0)U 'exp(t-Kq)U. (61)
IV. RESULTS AND DISCUSSIONS

Fig. 2 compares the transfer rates of the FGR popu-
lation without disorder k_ . p but include the loss rates

(a) (b)
100 4 — NE-FGR| | 5(0)=ID)(DI
: - FGR 6(0)=14+ M+
102di L - |
1074 o 1
10-5 r—-— —
. A=150meV | _
10~ : )
101] ©] 2] (d)
: 9
1071 - RE
< Sl .
Z| 1073 + IR
QT
10—5 - & —
A=0meV Q_‘I \
107’ = =
1014 ()™ 1 (f)
10°1 4 T,
103 | e
10—5 . —
P A=-150meV \
1077 T T T T T T T T
0 1 2 3 4 5 0 1 2 3 4 5
time (ps)
Figure 3. Semi-logarithmic plots for (a, ¢, e€) population
ratio %(t) and (b, d, f) its difference to the steady-state
D

ratio ‘%(t) — (%)ss" For (a, c, e), a vertical dashed line
is added to the position of 7gs. For (b, d, f), a dashed line with
slope —7gg is added. Lindbladian loss to chosen corresponding
to Fig. 2 panel b, I'cayv = 0.5 meV, I'ge = 0.01 meV, and
I'cot = 0. The detuning is chosen to be A = 150 meV for (a,
b), A =0 for (¢, d), and A = —150 meV for (e, f).

I'_,p, with the apparent loss rate in steady state I'ss,
and with the steady-state timescale Ts_sl. A moderately
high quality factor @ = 2000 is chosen for demonstration
purposes.

Fig. 2a presents the case where matter loss occurs
through only the collective channel, resulting in vanish-
ing dark-state loss rate I'p = 0. According to Eq. 31,
the relative magnitude of I'ss and kp_._ depends on
P_ and k__p. If T_ > k__,p (which would always
be the case for realistic quality factors on the order of
10%), I'ss = kp_,_, which means the observed lifetime of
the lower polariton would correspond to the dark-to-LP
transfer rate. On the other hand, if I'_ < k__.p, the
lower polariton lifetime would be even longer.

Fig. 2b-c presents the case where matter loss occurs
only through the local channel, which corresponds to the
behavior of CdSe nanoplatelets. In this case, where the
dark-state Lindbladian loss is finite and much higher than
kp_,_, the apparent loss I'ss = I'p coincides with the

https://doi.org/10.26434/chemrxiv-2025-k4bzn-v2 ORCID: https://orcid.org/0000-0002-8639-9299 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0


https://doi.org/10.26434/chemrxiv-2025-k4bzn-v2
https://orcid.org/0000-0002-8639-9299
https://creativecommons.org/licenses/by/4.0/

10

. A=150meV (a) A=0meV (b) A=—=150meV (c)
10
g A EFGR ‘\‘ “
O -2 v == s _ _ N
4('_5‘ 10 R ‘\\ “
—_— 1 \ N\
3 1074\ 1\ .
o |‘ \\ \\
& ------------ - - ‘
— 6 _| = —— e = \ _ A
10 -‘I 1 1 1 1 1 A 1 1 1 1 1 1
0 2 4 6 8 10 2_ 4 6 8 10 2 4 6 8 10
time (ps)

Figure 4.

Log-log plots for the lower polariton population dynamics P_, with the lower polariton being initially populated.

Lindbladian loss is chosen to be the same as 3. The detuning is chosen to be (a) A = 150 meV, (b) A = 0, and (c)
A = —150 meV. Two black dashed lines are added to each panel with slopes of —kss and —k__,p — I'_, corresponding to the
steady-state loss state and the transient relaxation rate, respectively.

dark-state loss rate. This would result in a consistent
steady-state lifetime that is independent of the photon
energy, which can explain the apparent lack of detuning
dependency on longer-timescale lifetimes in our recent
experiments on CdSe nanoplatlets*®, and is consistent
with experimental works where the measured polariton
lifetime is close to the bare-film lifetime.?!:°2 This seems
to be true even if the matter loss is comparable to cavity
loss (Fig. 2 ¢), and regardless of the relative values of I'_
and k__,p. In all cases demonstrated above, the observed
lifetime of LP ngl is expected to exceed the much shorter
lifetime of lossy cavities.

For the above analysis regarding the apparent lifetime
to be valid, one also needs to consider the timescale 7gg at
which the population dynamics reaches the steady state,
as given in Eq. 34. Fig. 3 demonstrates the dynamics of
LP-versus-dark population ratio P_ / Pp, starting from
either polariton §(0) = |+) (£| or dark-state manifold
6(0) = |D) (D], which is a uniform and incoherent mix-
ture of dark states.

Fig. 3 (b, d, ) shows the time-dependent difference
between the population ratio and its steady-state value
P P
70 (5,
D D
with time, with a rate of Tgsl, meaning the steady-state
timescale is an adequate description of the relaxation to-
wards the steady state. However, the length of dynamics
outside of the steady state depends heavily on the initial
state. Fig. 3 (a, c, e) shows the time-dependent LP-
versus-dark population ratio P_ / Pp, where the time
elapsed before reaching the steady state is compared di-
rectly to 7qg. While dynamics starting from UP or the
dark state reach steady state within several (< 5) times
of 7gg, dynamics starting from LP requires much longer
time (several tens of 7sg) to reach the SS ratio. This
is because in the relevant case where the collective ef-
fect is much stronger than the thermal energetic effect,

)SS‘. This difference decays exponentially

Eq. 30, the steady state ratio is much smaller than unity.
If the dynamics start at LP, the initial LP-versus-dark
ratio would be very large, meaning the dynamics would
take longer to reach the SS. As a result, direct excita-
tion to the lower polariton will lead to an initial period
of fast relaxation that may last on the order of 10 ps, fol-
lowed by (usually much slower) relaxation at I'sg. In the
case where the initial excitation is to a highly detuned
state coupled to the exciton state, leading to an initial
mixture of both polaritons, the resulting relaxation dy-
namics will be a more complicated mixture of fast and
slow SS, leading to possibly a multi-exponential decay.
This may contribute to explaining the triple-exponential
relaxation observed in CdSe Nanoplatelets.*®

Fig. 4 demonstrates the LP population dynamics of
the same system, with LP being initially populated. The
population graph consists of two well-defined segments
of exponential decay, which show up on the log-log plots
as line segments, consistent with a double-exponential
relaxation dynamics. The latter half of the population
follows a loss rate of kgg. This long-term relaxation rate
is expected according to the steady-state analysis above
(Eq. 31). The former half of the LP population follows a
loss rate of k__,p 4+ I'_, which is the expected transient
LP dynamics where population transfer from other states
to LP is negligible.

As discussed in the previous section, the introduction
of orientation disorder changes the population dynam-
ics in three ways: (1). The Rabi splitting is reduced
by a factor of \/1/3; (2). The population exchange be-
tween polaritons and dark states slows down by a factor
of (N—1.8)/(N —1); (3). The collective relaxation chan-
nel no longer scales with N and affects the dark states
instead of polaritons. Since we are working in the collec-
tive limit N = 106, the ratio factor (N — 1.8)/(N — 1)
can be ignored (direct population exchange between two
polariton states is omitted for the same reason). The
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loss rate I'ss as a function of the light-matter detuning (A = w. — wx). The rates in the presence of isotropic orientational
disorder 0,, (a2, b2, c2) are compared to the case of no disorder (al, bl, c1). The cavity loss rate is ['cay = 1 meV, which
corresponds to a high quality factor of Q ~ 2000. The collective channel is chosen to be NT'cq; = 50 meV, which corresponds

to a bare-film radiative lifetime of F;j ~ 13 ns.

other effects of angular disorder is showcased in Fig. 5,
which compares the transfer rates of the FGR population
without disorder k_.,p with the loss rates I'_ p, the ap-
parent loss rate in steady state I'sg, and the steady-state
timescale Ts_sl, with and without disorder. Compared
to Fig. 2, a much faster collective loss Fgoll ~ 13 ps is
chosen, corresponding to a realistic radiative lifetime for
bare-film semiconductor nanoparticles.

The added corrections from angular disorder lead to
two changes in the rates. The dependence of the FGR
rates on detuning becomes weaker. This results from the
weakened field-matter coupling, which decreases the de-
pendency of D—LP energy gap on detuning. The more
important change is that of the collective loss channel.
A realistic T'¢, value no longer leads to sub-picosecond
super-radiant relaxation, and can instead be directly
added to I'io. to form the apparent loss rate of LP.

V. CONCLUSION

In this work, we theoretically investigated the polari-
ton population relaxation dynamics on a long time scale.
To this end, we define the steady state (SS) of dynamics
as the static LP-to-dark population ratio, and we derive
a simple, analytic expressions for the SS ratio in Eq. 29,
the loss rate, and the timescale within the collective limit
where the collective factor N — 1 overpowers the thermal
energetic factor exp S(wx —w—_). The simple expressions
in Egs. 30, 31, 34 allow easy access to the long-term po-
lariton lifetime from the cavity quality factor, as well as
out-of-cavity spectral density and site lifetime. A more
careful analysis of the steady-state reveals that the appar-
ent SS relaxation lifetime likely coincides with the dark-
state Lindbladian lifetime, which is independent of the
detuning. This is consistent with several experiments

that reported the prolonged lifetime of polaritons com-
pared to the cavity loss rate. The timescale at which SS is
reached depends on the initial state. Dynamics starting
from UP will reach a fast SS leading to a single-exponent
decay pattern, while starting from LP leads to a slow
SS, where the SS dynamics come after an initial period
of faster relaxation, resulting in a double-exponent pat-
tern. A mixture of the two initial states would likely give
more complicated relaxation patterns, which may explain
the reported triple-exponent relaxation pattern for CdSe
platelets.

The isotropic orientational disorder does not lead to
additional computational complexities in the collective
limit. The light-matter coupling and system-bath cou-
pling parameters can both be rigorously replaced by the
respective average value, eliminating the need for explicit
sampling (of individual molecules’ orientational disor-
ders). The effect of orientational disorder includes a re-
duced Rabi splitting, as well as a non-super-radiant Lind-
bladian loss from the collective channel. Despite these
additional theoretical changes, our analysis shows that
the SS dynamics described above are still valid.

Possible future extensions of the current theory include
exploring the semi-collective regime of several hundred
sites, where the collective FGR rates Eq. 13b are still
valid, but the orientational disorder has to be handled
via explicit sampling of the site angles. Another im-
portant addition would be the case of multiple modes
with different photon momenta'%3-1%¢ which makes rele-
vant the translational symmetry or the breaking thereof.
We expect this to have a complex interplay with both
the translational disorder and the orientational disorder.
This would be another important step towards a realistic
treatment of the polaritonic relaxation dynamics.
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Appendix A: Lindbladian Relaxation Channels and Their
Simplification under Population Only Dynamics

We start from the full Lindbladian form of loss, Eq. 18.
Following convention, the relaxation operators LI =
Yo |D)a| are assumed to be the hopping operators from
system-relevant states |a) to some irrelevant state |&)
that neither directly coupled to the cavity nor transfer
its population back to the system. In the present study,
we consider three channels of Lindbladian relaxation,

Ll = |G, 1XG, 0| (A1)

e
|

Lie =D [nXIn (A2)
Liy =" [n)XG,0]. (A3)

Here, L}, corresponds to cavity loss where transitions

occur from photonic excitation |G, 1) to the ground state

12

(vacuum) |G,0). Further, ﬁfoc corresponds to the local
matter loss channel where the exciton state |n) hops to
the corresponding irrelevant state |I,,), where site n oc-
cupies an irrelevant state and the other sites stay in the
ground state. Examples for such irrelevant states include
the double-triplet state in a singlet fission system®? or the
light-hole exciton in the CdSe nanoplatelet system.*>7
Lastly, IA/ITOC corresponds to the local matter loss channel
where the exciton state |n) hops to the overall ground
state |G,0) directly. This is usually the radiative relax-
ation channel.

In the context of Lindbladian loss, we ignore the back-
transition from the ground (irrelevant) state back to the
system. This is equivalent to setting (G,0|p|G,0) =
(G|p|I.) = (I.|p|/In) = 0 in Eq. 18. The back-flow term
IA/,éIAff can be eliminated as a result, leaving

S0l = 1, p0] - 3 YTl @ep0) (A0
¢

where QC = f)ZI:C
Eq. Al) and explicitly working out expressions for Q,
we have

Qcav = |G7 1><G7 1‘ Qloc == Z |n><n| Qcol = Z |m><n| .
n m,n (AS)

Using the expressions of LT (in

In the context of population dynamics, both 5(¢) and

its derivative ['{Q, p(t)} are projected into the space of
populations in the polaritonic basis, with

IP{Q, PA(t)} = T{PQ, Pp(t)} =2 (PQ) (Pi(t))
(A6)
and the anti-commutator in Eq. A6 can be replaced with
the operator product since PQ and Pp commute with
each other.
Below, we first consider the case where there is no dis-
order. The projection operator is defined as

PA= " |[ENE| (£[A|£) + ) |D;XD;| (D;| A|Dy),
+ J
(A7)
with |+) expressed in Eq. 7, and {|D;)} are expressed in
Eq. 5.
Projecting all Q onto the populations and dark basis
as PQ.

PQcav = Z |:l:><:|:| <:l:|Gv 1> <G’ 1|:l:>
+

=2

+

(1 + cos 2¢) )£ . 4

NN

For local relaxation, no explicit resolving of the recip-
rocal space is required, since Q¢ is the identity operator
in the matter subspace, and polaritons only overlap with
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the bright state. One can express Qloc as

N-—1
Que = |BYB|+ Y |D;XD,l, (A9)

j=1

where |B) is expressed in Eq. 6 and in the projected
population subspace,

R 1 N-1
PQue = 3 5 (17 cos20) e + 3 1DsXDsl
(A10)
The collective channel Qco = > Im)n| = N |BXB|
represents the super-radiant decay of the |B) state. In
the case of no angular disorder, |B) is the bright state,
which leads to the super-radiant decay of the polaritons,

POy = NZ%(mcosw) )] (A11)
+

Next, we consider the case of angular disorder (Eq. 36).
The projection operator is defined in the corresponding
eigenbasis,

PA=Y" |[ENE (F[A[E)+ > [DeXDe| (De| A|De)
+ 3
(A12)

where the polariton states |£) are expressed in Eq. 39,
and the dark states { D¢} are mutually orthogonal to each
other, as well as orthogonal to |£). The detailed choice
of these dark states is not important in our discussion
here. .

For cavity loss, the projected operator PQ.., has a
similiar form under isotropical orientational disorder,

PQunw = 3 5 (14 cos2) [, (A13)
+

For local relaxation, the projected form is

. 1 o~ N
PQuc =Y 5 (17 cos29) [ZNE + Y |DelDel-
+ e=1
(A14)

and the structure of this operator is the same as the no-
disordered case (Eq. A10).

On the other hand, with isotropical orientational dis-
order, the original bright state |B) (Eq. 6) becomes opti-
cally dark, because ) cos#, = 0. Additionaly, we can

recombine the degenerate dark states { |D¢)} so that each
dark state contains the same j = 0 character, meaning
| (D¢|B)|> =1/(N —1) for all D¢. As such, with angular
disorder,

. N N
PQCOI = m Z |D€><D€|a (A15)
=1

which is no longer super-radiant compared to the no-
disorder case (Eq. A10).
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Appendix B: Limits and Approximations for the
Steady-State Population Ratio (P_/Pp)ss

We provide a detailed proof of Eq. 28. In the steady
state regime, the population sum Pss(t) = P—_(t) + Pp(t)
follows an exponential relaxation EOM (by using Eq. 24)
as follows

%Pss(t) =-T_P_(t)-TpPp(t) (B1)
P_
r_mss g s(t)—Tp - 1Jr(%D)SSPss(t)

1+ (52)ss
= _PSSPSS(t)-

It is straightforward to show that P_(t) and Pp(t) follow
the same EOM

d (5)ss  d

0= Ty (g a0 = TP .
d 1 d (B2)
&PD(t) = @&Pss(t) = —T'ssPp(t)

which are equivalent to Eq. 28. With this, we can dis-
cuss the relationship between the SS population ratio
(P_/Pp)ss and the relative strength of I'p, I'_, k__,p,
and kp_,_.

For the convenience of the analysis, we re-express the

kp__ I'p—-T_
ratio in terms of b = 2=~ and a = b+ —2>——— — 1,
——=D k——>D
and one can easily verify that
P_ 1
=) = (Ve r ) B
(PD)SS 2( @At (B3)

In this work, we assume that the collective effect on the
rates exceeds the thermal effect,”?8° (c.f. Eq. 17) such
that

N > eﬁ(‘-‘-’xft"’*)7

and as a result b < 1. We consider approximate expres-
sions for (P_/Pp)ss in various limits and conditions.

Case 1. For a < 0 and a®> > 4b. This is the
condition adopted in the main text, where we assume
that Lindbladian relaxation is dominated by cavity loss
I'e > Tioe, NI'col, and as a result ' > I'p.

PN 2 b
(PD)SS_\/m+aN a
- by
kop+T_ —Tp—kp, '

(B4)

Case la. For (I_ —T'p) > k__.p. This is a stronger
condition than above, where the dynamics are dominated
by Lindbladian loss,

(%)ss = I‘IC,D%I:D' (B5)
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Case 1b. For k__,p > (I'- —T'p) > —kp_,—. The
inverse of the above condition, where the Lindbladian
loss is negligible compared to population transfer. This
results in a steady-state population ratio that coincides
with detailed balance

(7)™

Case 2. For a > 0, and a? > 4b. The alternative
conditions (2, 2a) are included here for completeness.

(&) _\/a2+4b+awa
PD SS o 2 -
kD*) +FD R k*HD

k—=p
Further, to evaluate 7g5 (c.f. Eq. 33)

eﬂh(wxfw_ )

N -1

kD—>— _

o (B6)

(B7)
|
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Case 2a. For (I'p —T'_) > k__,p. Then we can show
that

Ip—T_

(F)ss ™
Pplss ™ k__p

, which is the rate for the system to approach the steady state behavior, we

start with the EOM of the population ratio between LP and dark state as follows

d P_(t) P_(t)\2 P_(t)
T Po(t) _k__m<PD(t)) ~ (koo +T T kD*‘)% + kDo (B9)
also,
2
—k__p (i@) (kfﬁp +I'_ —Tp— kpﬁf) (;))SS +kp__ =0. (BlO)
Taking the difference between the two yields
d 1 P_(t) P_ P_(t) P_ (1) P_
&[Pp(t) - (FD)SS} - *%D[pp(t) + (?D)ss} [ Pp(t) (PD>SS} (B11)
_(k——m +I-—TIp— kD—>—) {;;8 - (%)SS}
1T P-(®) P_
= Tss [P’D(t) - (E)SS}

Assuming the state of the system is close to the steady-
state P_(t)/Pp(t) — (P_/Pp)ss and substitute in Eq. 29
yields

Tgsl = \/(kfﬁ'D + . — FD - kDH*)2 + 4k7HDkD%7
(B12)
which reduces to 7'8_51 =k__p+I_ —Tp—kp_,_ with
the assumption of k_ _p > kp_,_ and I'_ > I'p.

Appendix C: Derivation of NE-FGR rates with Dipole
Angular Disorder

The key component of the FGR rate constats
Ci—f(t, s) is expressed as the following two-time correla-
tion functions,

Cip(t,s) =Tr ﬁb(O)e%ﬁitf{ife_%ﬁfsﬁfie_%m(t‘s)}
(C1)

(

where p,(0) is the thermal distribution of the phonons
without coupling to excitons
(-)

No1 oy
=& 5
a j=0 @3
Following our previous work in Ref. 72, we expand the
Hamiltonian (Eq. 38) into single phonon-mode compo-
nents

(C2)

<C|H|C hwc-i—ZZh’—i—ZHa( (C3a)

Hee = (C|HIE) = Z Hace (C3b)
L
b, = hway 0, (C3c)

where |) = {|T), |D¢)} are eigenvectors of Hy({0,}) (see
Eq. 37). Further, the detailed expressions of ﬁa,c and
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H, ¢ are expressed as

o Nl N—-1
Hyo=—= (’911 +7_4) Z CeGCC itk (C4a)
N5 j=0
o N1
a ~ ~
= Seek o+ U_
VN — cck( k k)
o Nl N-1
2 a ~T ~
Ha“g — \/N (Vk + V—k‘) CC,jC£1j+k (C4b)
k=0 §=0
o Nl
a A~ ~
= Scek o+ ,
\/N — s, ( k k)
where c¢; = (] |D;) is the overlap between the exci-
ton eigenstates with and without disorder, and S¢¢ ) =
€L jCE G+

For the brevity of the derivation, the reciprocal space
index {j, k,---} is defined cyclically so that —j = N — j
and N +j = j. As shown in appendix D, the diago-
nal system-bath coupling parameter S¢¢ ; have an upper
bound of

Seee < S¢co=1. (C5)
Following our previous work,” all diagonal system-bath
coupling H, ¢ can be omitted in the limit of N — oo.
This greatly simplifies the correlation function C;_, ¢ into
a multiplication of Cp_,p(s). Assuming the dark states
to be initially unpopulated, the relevant transfer rates are
simplified to (the overbar on C is to signify the existence
of orientational disorder),

N-—-1
Comelt:) = 3 ISccs* 2 5 e (61(s)02) + (7a()7))
7=0
N-1 ~
= > IS¢ iI°Cpn(s) = Cesclt, s)
” (o)
_>C(t,s) ellwx—wx)s 1(1j:cos2$)
N—-1
ML e (5h(5)5,) + (a()7) o
7=0

N-1
(wx—w 1
eilwx—wi)s 3 1ic052¢ JZO So¢.i1*Cp-sn(5)

Since the N — 1 dark states are degenerate, a non-
unique choice of basis has to be made for the explicit
evaluation of individual transfer rates. To combine the
dark-state populations into one manifold population, as
in the case of no disorder, a set of dark states has to
be chosen such that their population stays the same.
This, since forward and backward transfer rates are al-
ways equal between any pairs of dark states, is equivalent
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to requiring > |Soc,j]? to be equal for all ¢ # 0, which
makes the dark states equivalent in terms of the transfer
rates between them and the polaritons. To this end, we
consider the sum of these rates over all dark states and
realize that it is independent of the choice of dark states

N—-1N-1 N—-1 N-1

3 sl =N Y ]

¢=1 j=0 k=0 j5=0 (08)
=N-AN

Since it is always possible to recombine the dark states
into a new basis such that they have the same popula-
tion, we assume (without explicitly specifying the basis)
that such a dark-state basis is always taken, and that the
transfer rates between singular dark-state and polariton
are 1/(N — 1) of their corresponding sum, which is inde-
pendent of the dark-state choice,
~ _ 1 ~ -
Ciypl(t,s) = ellwx—w)s 5 (1c0s20)(N — AN)Cpp(s)
1 ~ N — AN
3 (1+£cos2¢)———

~ ¢ _ (wt —wx)s
CD*}:E( 78) € N _1

Cp-p(s)
(C9)

which, upon Fourier transformation, leads to the
polariton-dark transfer rates being under the collective
limit.

The population transfer rate constant between the po-
laritons is given by,

N-1

Ciaq:(t s) = eilws—ws)s 4sln 2(;5 ZO |SOOJI Cp—p(s)
J

_ ei(wi —wx)s

1 ~ -
1 sin®2¢ AN Cp-p(s)
(C10)
For fully isotropic orientational disorder, the value of
AN can be obtained via integration over cos#, with-
out generating the bright state from explicit sampling

of {6}

Appendix D: Proof that shift of phonon modes has an
upper bound in the presence of angular disorder

Here, we provide proof that the diagonal shift due to
coupling to the phonon modes has an upper bound in
the presence of angular disorder (Eq. C5). It is easy to
see that S¢cco = 1. In this section, we will show that
this is an upper bound for all phonon mode shifts in the
reciprocal states, under any eigenstate, i.e.,

N-1 N—-1
Scco =D €ice, > ’Z Cz,jcc,ﬂk’ = |S¢ckl  (D1)
=0 =0

This would be achieved by proving the stronger state-
ment that

N—

—

=0

(D2)

N-1
2> e llec )]
=0

<.
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for any {p(0),p(1),---} which is a permutation of
{0,1,--- N — 1}, such that {c¢,(;)} is a permutation of

{ecit-

Assuming Eq. D2 is true for N = 1,2,---M, we
consider the case of N = M + 1. We realize that a
unique directed graph can be constructed for any permu-
tation {p(0),p(1),--}, starting from N labeled vertices
{vg, v1,-- -}, and construct a directed edge from every j
to p(j). The resulting graph is a disjoint union of one
or more branchless directed cycles. In the case of more
than one cycles V, Eq. D2 can be proved by splitting the
sum accordingly,

M
D lecillecoil = DD lecsllee v
j=0 vV jev
’ (D3)
<Y N el =D lecsl?
v jev =0

This leaves us with the case of one singular cycle of size
M + 1. Without loss of generality, we assign |c¢ | to be
the largest |c| term by permuting them along the M +1—
cycle. Removing this largest term and constructing an
M — cycle leads to

M
> leejllec i
=0

= [e¢.ollecpo)] +lecp-10)llec,ol
—lecp1llecpo)]

+ > lecjllee piiy| + o1 @ llecp()]
() £0

lec.ollecpy] + lecp-10yllec.ol

—lec1ollec o] + D lecl?
i#0
= (lecol = lecoo) (leco10| = lecol)

M
+> lecl?
=0
M
< Z|047j|27
=0

IN

(D4)

which completes the proof of the induction step. Since
the base case of N = 1,2 is obvious, by induction we
conclude that Eq. D2 holds in general. By defining the
permutation to be p(j) = j + k, the original statement
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can be easily obtained:

N—-1
Scco =Y ¢ ¢

=0
N—-1 N-—1

>3 lecllecisnl =D let jec il
i =0
N-—1

2 ‘ Cz,jcc,jwc’ = [Sce.l- (D5)
=0
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