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Resonance theory of vibrational strong
coupling enhanced polariton chemistry
and the role of photonic mode lifetime

Check for updates

Wenxiang Ying 1 & Pengfei Huo 1,2

Recent experiments demonstrate polaritons under the vibrational strong coupling (VSC) regime can
modify chemical reactivity. Here, we present a complete theory of VSC-modified rate constants when
coupling a singlemolecule to an optical cavity, where the role of photonicmode lifetime is understood.
The analytic expression exhibits a sharp resonance behavior, where the maximum rate constant is
reachedwhen thecavity frequencymatches the vibration frequency. The theory explainswhyVSC rate
constantmodification closely resembles the optical spectra of the vibration outside the cavity. Further,
we discussed the temperature dependence of the VSC-modified rate constants. The analytic theory
agrees well with the numerically exact hierarchical equations of motion (HEOM) simulations for all
explored regimes. Finally, we discussed the resonance condition at the normal incidence when
considering in-plane momentum inside a Fabry-Pérot cavity.

A series of recent experiments1–14 have demonstrated that chemical reaction
rate constants can be enhanced11–14 or suppressed1–6,9,10 by coupling mole-
cular vibrations to quantized radiationmodes inside an optical microcavity.
These surprisingmodifications happened under a “dark” conditionwithout
any external laser pumping, and the change in the chemical kinetics is
attributed to the formation of vibrational polaritons (quasiparticles from the
hybridization of the photonic and vibrational excitation)2,3. This phenom-
enon is referred to as the vibrational strong coupling (VSC) modified che-
mical reactivities, whose central feature is that when the cavity frequencyωc

is in resonance with the bond vibration frequency ω0, the reaction rate
constant can be enhanced or suppressed, usually up to 4–5 times compared
to outside cavity rate constant10,11,14. This new strategy of VSC provides a
novel avenue for synthetic chemistry through cavity-enabled bond-selective
chemical transformations2,7,8,15–17 as one can selectively slow down one
competing reaction over the target reactions by using cavities2,15.

Despite the encouraging progress in VSC experiments, we do want to
point out that there are experimental efforts that try to reproduce the
published VSC results but cannot find any apparent VSC modifications.
One of them is an early attempt in ref. 18 to produce the enhancement of the
hydrolysis reaction13 but not being successful. The second one was an
attempt19 to reproduce the VSC enhancement on a hydrolysis reaction11

coupled inside an FP cavity, but cannot reproduce the effect. On the other
hand, there is a preliminary attempt to reproduce the same hydrolysis
reaction coupled to a plasmonic cavity and did find an enhancement of the
rate constant20. In that same work20, the authors also tried to conduct this
reaction inside the FP cavity and claimed to reproduce the VSC

enhancement effect. We emphasize that ref. 20 has not been published but
we trust readers’ own judgment on evaluating it. Overall, the reproducibility
of these observed VSC effects remains an open experimental challenge and
needs to be addressed in the future. Nevertheless, a good overview of
technical concerns with the VSC flow cell experiment is given in ref. 21. In a
different direction, recent experimental investigations22,23 on CN radical-
hydrogen atom abstraction reaction do not reveal any noticeable change in
the rate constant, even though the molecular system is under the strong
coupling condition.However, these seemingly null results on theVSC effect
have the potential to indirectly inform the fundamental mechanism and
limitations of the VSC-induced rate constant modifications, and provide
insights into when VSC will not be able to change rate constants.

From the theoretical side, a clear mechanistic understanding of VSC-
modified ground-state chemical reactivity remains elusive, despite the
recent theoretical developments24–31. In particular, there is no well-accepted
mechanism or analytic rate theory31. There are many previous attempts to
apply the existing rate theories (such as transition state theory (TST),
Grote–Hynes theory27,32, quantum TST33, Pollak–Grabert–Hänggi
theory28,30, andmolecular dynamics simulations34, etc.), with the conceptual
hypothesis that the cavitymode canbe viewed and treated as regular nuclear
vibrations27. However, none of them have successfully predicted the correct
resonance condition or the sharp resonance peak of the rate constant
distribution27,28,33,34. The fact that the VSC-influenced dynamics is sensitive
to the quantum frequencyω0 also explains why theGH theory27,32, the PGH
theory28, or q-TST rate theory33 cannot correctly predict the resonance
condition because these theories are often based on a partition function
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expression that effectively sumsover all possible vibrational frequencies, and
does not explicitly contain the information of ω0, or they are more sensitive
to the curvature of the potential which is not directly related to the quantum
optical frequency. This suggests that the analytic rate theory of VSC
Chemistry if that exists, might have a completely new analytic form31 that
one has not encountered before in the theoretical chemistry literature.

Recent theoretical studies using a full quantum description of the
vibrational degrees of freedom (DOF) and photonic DOF have successfully
captured the resonance behavior under the single-molecule strong
light–matter coupling regime35,36. We have used quantum dynamics simu-
lations to reveal how cavity modes enhance the ground state reaction rate
constant36,37. Specifically, we considered a double well potential coupled to a
dissipative phonon bath35,36 as a generic model for chemical reaction,
depicted in Fig. 1a. A simplified mechanism for the barrier crossing is
described as follows

∣νL
��!k1 ∣ν0L

��!k2 ∣ν0R
��!k3 ∣νR

�
; ð1Þ

where k1 is the rate constant for the vibrational excitationof the reactant (left
well), k2 is the rate constant of transition between the vibrational excited

states of the left and right well, and k3 corresponding to the vibrational
relaxation process in the right well. Through exact quantum dynamics
simulation, we observed that36 k1≪ k2, k3, making ∣νL

�! ∣ν0L
�
rate-

limiting. Further, we found that the role of the cavitymode q̂c is to promote
vibrational excitation and enhancek1.Using the steady-state approximation
and Fermi’s Golden Rule (FGR) rate theory, the overall rate constant is
approximated as k ≈ k1 = k0+ kVSC, where k0 is the outside cavity rate
constant (which means in the absence of cavity modes throughout this
paper), and kVSC is the cavity-enhanced rate constant. Including the cavity
mode and its loss environment in an effective spectral density36, kVSC can be
evaluated using FGR, expressed as

kVSC ¼ Ω2
R � τ�1

c ωcω0

ðω2
c � ω2

0Þ2 þ τ�2
c ω2

0

� nðω0Þ; ð2Þ

where τc is the cavity lifetime,ΩR is the Rabi splitting (for a single molecule
coupled to the cavity, see Eq. (8)), ω0 is the vibrational frequency, and

nðωÞ ¼ 1=ðeβ_ω � 1Þ≈e�β_ω ð3Þ

is the Bose–Einstein distribution function, where β≡ 1/(kBT) is the
inverse of temperature T, kB is the Boltzmann constant. In typical
VSC experiments1,10, ω0 ≈ 1200 cm−1 and room temperature 1/
β = kBT ≈ 200 cm−1, such that βℏω0≫ 1 and n(ω) can be approximated as
Boltzmann distribution. Under the lossy regime (τc ≪Ω�1

R ), Eq. (2) agrees
well with the numerically exact HEOM results, and has a sharp peak at

ωc ¼ ω0: ð4Þ

However, kVSC in Eq. (2) breaks downwhen τc ≫Ω�1
R (the lossless regime)

as it disagreeswith theHEOMresults (see Fig. 5 in ref. 36). This suggests that
there will be a different mechanism for the VSC-modified rate constant
under the lossless regime.

In this work, we present a completemechanistic picture to understand
a single molecule strongly coupled to a cavity and how VSC enhances the
rate constant. In particular, we investigate how cavity lifetime τc influences
the rate constants and derive a new analytic expression of the VSC rate
constant under the lossless regime, based on amechanistic observation that
the rate-limiting step is the photonic excitation and the subsequent exci-
tation transfer between photonic and vibrational DOFs. The resulting
analytic rate theory, denoted as ~kVSC (see Eq. (17)), successfully described
the VSC rate constant in the lossless regime and is in excellent agreement
with the numerically exact results. Not only it predicts the correct resonance
behavior at ωc =ω0, but also gives a clear explanation for the intimate
connection between the VSC-modified rate constant and the optical line-
shapeAνðω� ω0Þ (Eq. (14)). To the best of our knowledge, this is the first
analytic theory that explains the close connection between rate constant
changes and lineshape of the vibrations.

Under the resonance condition (Eq. (4)),~kVSC is proportional to τ
�1
c in

the lossless regime (τc ≫Ω�1
R ), whereas kVSC (Eq. (2)) is proportional to τc

in the lossy regime (τc ≪Ω�1
R ).Moreover, we proposed an interpolated rate

expression between kVSC and ~kVSC to describe the crossover phenomenon
for intermediate τc, and predicted that the maximal enhancement will be
reached at τc ¼ Ω�1

R . These analytic expressions provide a complete
description for the τc turnover behavior of the VSC rate constant. Particu-
larly, it provides a novel understanding of the physical role of cavity lifetime
in VSC-modified chemical dynamics, that τ�1

c can be viewed as a friction
parameter based on the Kramers theory38,39. Under the low friction regime
(τ�1

c ≪ΩR), the reaction rate is limited by photonic excitation (which
resembles energy diffusion) and ~kVSC / τ�1

c , while under the high friction
regime (τ�1

c ≫ΩR), the reaction rate is limited by light–matter conversion
(which resembles spatial diffusion), and kVSC / 1=ðτ�1

c Þ. Further, we dis-
cussed the temperature dependence of theVSC-modified rate constants and
derived expressions of the effective change in activation enthalpy and
entropy4, which also agree well with the numerical exact simulations.

Fig. 1 | Schematic illustration of the VSC-modified reactions and the possible
mechanisms. Top: Schematic illustration of molecules coupled to the radiation field
inside a FP optical cavity. Bottom: Schematics of the VSC enhanced reaction
mechanism, which we consider four vibrational diabatic states
f∣νL

�
; ∣νR

�
; ∣ν0L

�
; ∣ν0R

�g (see “Method”, Eqs. (38) and (39)). a Cavity mode promotes
the transition ∣νL

�! ∣ν0L
�
, leading to the rate constant enhancement36.

bConsidering the photon-dressed vibrational states f∣νL; 0
�
; ∣νL; 1

�
; ∣ν0L; 0

�g (aswell
as the corresponding states for the right well), the cavity-loss environment promotes
the photonic excitation ∣νL; 0

�! ∣νL; 1
�
, and then the photonic excitation is con-

verted into vibrational excitation through ∣νL; 1
�! ∣ν0L; 0

�
, being an additional

channel provided by coupling to the cavity. The phonon bath still enables the
mechanism under panel (a).
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Finally, we discussed the resonance condition at the normal incidence for a
Fabry–Pérot (FP) cavity with one or two-dimensional in-plane momenta31.

Results and discussions
Theoretical model
The molecule-cavity Hamiltonian is expressed as

Ĥ ¼ ĤM þ Ĥν þ ĤLM þ Ĥc; ð5Þ

where ĤM is themolecularHamiltonian, Ĥν describes the phonon coupling
to the molecular reaction coordinate, ĤLM describes the light–matter cou-
pling (cavity-molecule interactions), and Ĥc describes the cavity loss bath.
Inparticular, ĤM ¼ P̂

2

2M þ VðR̂Þ, whereM is the effectivemass of thenuclear
vibration, VðR̂Þ is the ground electronic state potential energy surface
modeled as a double-well potential (see “Methods”, Eq. (37) for details), and
R̂ is the reaction coordinate. The light–matter interaction term is expressed
as16,35,36,40

ĤLM ¼ 1
2

p̂2c þ ω2
c q̂c þ

ffiffiffiffiffi
2
ωc

s
ηcR̂

 !2
2
4

3
5; ð6Þ

where q̂c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_=ð2ωcÞ

p
ðâþ âyÞ and p̂c ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffi
_ωc=2

p
ðây � âÞ are the pho-

tonmode coordinate andmomentum operators, respectively, where ây and
â are the creation and annihilation operators for a cavitymode, andωc is the
cavity mode frequency. Further, the single molecule, single mode
light–matter coupling strength is35,36

ηc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ð2_ωcϵ0VÞ

p
; ð7Þ

where ϵ0 is the permittivity inside the cavity, and V is the effective
quantization volume of that mode. In Eq. (6), we had explicitly assumed
that the ground state dipole moment μðR̂Þ is linear and always aligned
with the cavity polarization direction27,35, such that μðR̂Þ ¼ R̂. Based on
the two diabatic states ∣νL

�
and ∣ν0L

�
in the left well (see Eqs. (38) and (39)

in “Method”), we define the quantum vibration frequency of the reactant
as ω0 � E0 � E ¼ 1172:2 cm�1, which is directly related to the quantum
transition of ∣νL

�! ∣ν0L
�
and can be determined by spectroscopy

measurements (IR or transmission spectra). The Rabi splitting from
the spectral measurements is related to the light–matter coupling

strength as follows

ΩR ¼ 2ηcωcμLL0 ; ð8Þ

where the transition dipole matrix element is defined as μLL0 ¼ hνLjR̂jν0Li.
See “Methods”, Eqs. (41) and (42) for a detailed description of the other
terms in theVSCHamiltonian. In thiswork, wewill use ηc in Eq. (7) andΩR

in Eq. (8) as interchangeable phrases.
A schematic illustration of the model system is provided in the top

panel of Fig. 1. Figure 1a–b presents the potential V(R) for the ground state
along the reaction coordinate R, as well as key quantum states associated
with the two different mechanisms of the VSC-modified kinetics. Specifi-
cally, Fig. 1a shows the four diabaticmatter states ∣νL

�
(blue), ∣νR

�
(orange),

∣ν0L
�
(red), ∣ν0R

�
(green), in which the cavity is included in the bath and

described by an effective spectral density Jeff(ω) (see Supplementary Note 2,
Section A). The major VSC enhanced reaction channel is shown in Eq. (1),
in which k1 is the rate-limiting step. This mechanism is confirmed for the
lossy regime using the exact quantumdynamics simulations in our previous
work36,37. Figure 1b shows several keyphoton-dressed vibration states. These
states include ∣νL; 0

�
(blue), ∣νR; 0

�
(orange), ∣νL; 1

�
(magenta), ∣νR; 1

�
(green-yellow), ∣ν0L; 0

�
(red), ∣ν0R; 0

�
(green) for both the reaction coordi-

nate R̂ and the cavitymode q̂c, in which the cavity is included in the system
and coupled to the photon-loss environment characterized by the spectral
density Jc(ω) (see Supplementary Note 2, Section B). The VSC-enhanced
reaction channel is shown later in Eq. (11), in which the photonic excitation
∣νL; 0

�! ∣νL; 1
�
and the conversion to vibrational excitation ∣νL; 1

�!
∣ν0L; 0

�
are sequential steps which together act as the rate-limiting steps.

Later, we will see that the FGR rate theory constructed using Eq. (1) works
for the lossy regime while using Eq. (11) works for the lossless regime.

FGR rate theory in the lossy regime
For the lossy regime (τ�1

c ≫ΩR), the VSC modified rate constant is
expressed in Eq. (2) based on our recent work36, which sharply peaks at
ωc =ω0. Under the resonance condition (ωc =ω0), Eq. (2) reduces to

kVSC ¼ Ω2
Rτcnðω0Þ / τc; ð9Þ

suggesting that a larger enhancement of the rate constant will be reached
with a longer τc. Eq. (2) provides an excellent agreement withHEOMunder
this lossy regime, as is verified in the previous work36. When τc further

Fig. 2 | Effect of cavity lifetime τc on the VSC-modified rate constant. Compar-
isons are made between the numerically exact HEOM results (open circles with thin
guiding lines) and the FGR rate constants (both kVSC and ~kVSC) which are re-scaled
by a factor of 0.5 (solid lines). The light–matter coupling strength is fixed at ηc = 0.05
a.u. aResonance peaks of k/k0 for VSC effect under the lossy regime (τc ≪Ω�1

R ). The
FGR rates using kVSC in Eq. (10) (thick solid lines) are compared to the HEOM
results (open circles with thin guiding lines) under a variety of τc values. bThe values

of k/k0 under the resonance condition ωc = ω0 as a function of τc. The results of
HEOM (blue open circles), FGR rates using kVSC in Eq. (10) (red solid line), FGR
rates using ~kVSC in Eq. (17) (blue solid line), and FGR rates using kintVSC in Eq. (20)
(gold dashed line) are presented. c Resonance peaks of k/k0 for VSC effect under the
lossless regime (τc ≫Ω�1

R ). The FGR rates using ~kVSC in Eq. (17) (thick solid lines)
are compared to the HEOM results (open circles with thin guiding lines) under a
variety of τc values.
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increases, Eq. (2) needs to include phonon broadening effect36 to avoid
divergence when τc→∞, resulting in

kVSC ¼
Z 1

0
dω

Ω2
Rτ

�1
c ωcω � nðωÞ

ðω2
c � ω2Þ2 þ τ�2

c ω2
Aνðω� ω0Þ; ð10Þ

which is a convolution between Eq. (2) and the broadening function
Aνðω� ω0Þ (see Eq. (14)), and the fundamental scaling suggested in Eq. (9)
is preserved.

Figure 2a presents the results of k/k0 using both the numerically exact
HEOM simulations (open circles with thin guiding lines) and the analytic
FGRrate theory (thick solid curves),with the light–matter coupling strength
ηc = 0.05 a.u. For the analytic FGR rate theory, we present the results
k/k0 = 1+ 0.5kVSC/k0, where kVSC is evaluated using Eq. (10) and k0 is
directly obtained from HEOM simulations, and an empirical re-scaling
factor 0.5 is applied (see “Method”, rate constant calculations). One can see
that Eq. (10) provides an excellent agreement with the HEOM results when
τc < 100 fs. Both the resonance peak position and the width of the rate
constant modifications are well captured.

Figure 2b presents the τc-dependence of k/k0 under the resonance
condition (ωc =ω0), with ηc = 0.05 a.u., corresponding to a Rabi splitting of
ΩR ≈ 25.09 cm−1 (based on Eq. (8)) or equivalently, the time scale of Rabi
oscillationΩ�1

R ≈211:6 fs. The numerically exact HEOM results (blue open
circles) show a turnover behavior on k/k0 when increasing τc from the lossy
limit to the lossless limit. One can observe that the FGR curve using kVSC
(Eq. (10), red) agrees well with the left-hand side of the HEOM turnover
curve, corresponding to the lossy regime where τc < 100 fs. This is because
when the cavity is lossy (with a small τc), the cavity mode thermalizes fast
with the photon-loss bath, and τc serves as a broadening parameter in the
effective spectral density36. The fundamentalmechanismof the rate constant
enhancement is the vibrational excitation ∣νL

�! ∣ν0L
�
under the influence

of the effective bath (see schematic in Fig. 1a).
However, Eq. (9) cannot described the VSC kinetics when further

increasing τc so that the lossy regime τc ≪Ω�1
R is no longer satisfied. This is

because as τc increases, the photon-loss bath Ĥc no longer plays the simple
role of (homogeneous) broadening, breaking the fundamental mechanistic
assumption in Eq. (1). A new analytic theory for this lossless regime is
needed.

FGR rate theory in the lossless regime
When the cavity is under the lossless regime (τc ≫Ω�1

R ), the rate-limiting
step of the reaction becomes the photonic excitation ∣0i ! ∣1i and the
subsequent excitation energy transfer (see Fig. 1b). The VSC enhancement
thus originates from the enhancement of the photonic excitation caused by
the photon-loss bath Ĥc, as proposed in Ref. 35. Under this regime, the
numerically exact HEOM simulations suggest the following reaction
mechanism (schematically depicted in Fig. 1b)

∣νL; 0
��!~k1 ∣νL; 1

��!~k2 ∣ν0L; 0
��!~k3 ∣ν0R; 0

��!~k4 ∣νR; 0
�
; ð11Þ

and ~k1; ~k2 ≪~k3; ~k4. Note that the phonon bath Ĥν can still promote the
transition ∣νL

�! ∣ν0L
�
, and Eq. (1) is still one of the main mechanism for

the reaction, either outside or inside the cavity.
According to FGR (with the system-bath partition described in Sup-

plementary Note 2, Section B), the photonic excitation ∣νL; 0
�! ∣νL; 1

�
rate constant ~k1 can be evaluated using FGR, resulting in

~k1 ¼
nðωcÞ
τc

; ð12Þ

where n(ω) is the Bose–Einstein distribution in Eq. (3). Details of the
derivation are provided in SupplementaryNote 5, sectionA.Note that there
is no resonance behavior in ~k1, and it becomes unbounded when τc→ 0.
The resonance behavior and boundedness of the rate constant will be
ensuredby~k2 associatedwith the ∣νL; 1

�! ∣ν0L; 0
�
transition,which canbe

evaluated as

~κ2≈
π

2
Ω2

Rδðωc � ω0ÞnðωcÞ; ð13Þ

Details of the derivation are provided in Supplementary Note 5, Section B.
Due to the molecular phonon bath Ĥν , one needs to further consider the
broadening effect in the vibration frequency ω0, described by a lineshape
function Aνðωc � ω0Þ. Under the homogeneous limit, Aνðωc � ω0Þ has a
Lorentzian form as follows41

Aνðω� ω0Þ ¼
1
π

Γν
ðω� ω0Þ2 þ Γ2ν

; ð14Þ

with the broadening parameter36,42

Γ2ν ¼ ðϵ2z=πÞ
Z 1

0
dω JνðωÞ cothðβω=2Þ; ð15Þ

where ϵz � hν0LjR̂jν0Li � hνLjR̂jνLi. Note that Aνðω� ω0Þ in Eq. (14) is
also an approximate IR spectra function under the homogeneous broad-
ening limit (see ref. 41, Eq. (6.67)),with thewidthΓν. Theparameters used in
this study give Γν ≈ 30.83 cm−1, which is in line with the typical values of the
molecular systems investigated in the recent VSC experiments1,10. As such,
the rate constant ~k2 can be evaluated as convolution between ~κ2 (Eq. (13))
and Aνðω� ω0Þ (Eq. (14)) as

~k2 ¼
Z 1

0
dω

π

2
Ω2

Rδðωc � ωÞnðωcÞ �Aνðω� ω0Þ

¼ π

2
Ω2

RAνðωc � ω0ÞnðωcÞ:
ð16Þ

Further, the population dynamics from HEOM (see Supplementary
Fig. 2) suggests that ~k1 and ~k2 steps can be regarded as sequential kinetic
steps, and the populations of ∣νL; 1

�
and ∣ν0L; 0

�
both reach to a steady state

behavior (plateau in time). Making the steady-state approximation for the
mediating state, the overall rate constant for the ∣νL; 0

�! ∣νL; 1
�!

∣ν0L; 0
�
steps is expressed as follows

~kVSC ¼
~k1 � ~k2
~k1 þ ~k2

¼
π
2Ω

2
RAνðωc � ω0Þ � nðωcÞ

1þ π
2Ω

2
RAνðωc � ω0Þτc

; ð17Þ

which contains both the resonance structure (due to the line shape function
Aνðωc � ω0Þ) and the boundedness with respect to τc. Because that
∣νL; 0

�! ∣νL; 1
�! ∣ν0L; 0

�
is rate-limiting for the entire reaction process

in Eq. (11), the VSC-modified rate constant can also be evaluated as k ¼
k0 þ ~kVSC under the lossless regime (τ�1

c ≪ΩR), being valid under the FGR
limit43,44. Similar to the lossy regime, we report

k=k0 ¼ 1þ α � ~kVSC=k0; ð18Þ

where k0 is the outside cavity rate constant, and α is an ad hoc rescaling
factor due to the inaccuracy of the FGR level of theory. Practically, we found
α = 0.5 will match the numerically exact results from HEOM45.

Eq. (17) is the first main theoretical result in this work. This analytic
theory~kVSC (aswell as in Eq. (10) for kVSC) implies that the optical lineshape
of the molecule described by Aνðω� ω0Þ is intimately connected to the
VSC kinetics modifications, due to the fact that both are sensitive to the
vibrational quantum transition. The current theory in Eq. (17) provides an
analytic answer to the early numerical observations35,36 from HEOM
simulations. Under the resonance condition (ωc =ω0), Eq. (17) becomes

~kVSC ¼ Ω2
RΓ

�1
ν

2þΩ2
RΓ

�1
ν τc

� nðω0Þ / τ�1
c ; ð19Þ

https://doi.org/10.1038/s43246-024-00551-y Article

Communications Materials |           (2024) 5:110 4



which implies~kVSC increases as τc decreases, beingopposed toEq. (9) (under
the lossy regime).When the cavity approaches the lossless regime (τc→∞),
~kVSC ! 0 so that there will be no cavity modifications.

One can observe in Fig. 2b that the ~kVSC curve (Eq. (19), blue) agrees
well with the right-hand side of the HEOM turnover curve, corresponding
to the lossless regime where τc > 500fs, although a re-scaling factor of 0.5 is
multiplied to ~kVSC. The τc→∞ limit has been numerically investigated in
Ref. 35, suggesting that k/k0 increases as τc decreases. The τc→ 0 limit has
been numerically checked in ref. 36, suggesting that k/k0 increases as τc
increases. Combining the knowledge of Eq. (9) and Eq. (19), we can predict
that there will be a turnover behavior for the VSC-modified rate constant.
Equivalently speaking, when τ�1

c ! 0 (small friction limit), ~kVSC / τ�1
c ,

and when τ�1
c ! 1 (large friction limit) kVSC∝ τc. The scaling of the VSC

rate constant as a function of τ�1
c coincides with the well-known Kramers

turnover38,39. As such, one can regard τ�1
c as the friction parameter for the

photon-loss environment. A similar crossover phenomenon has also been
discovered in spin relaxation kinetics in semiconductors, e.g., the
D’yakonov–Perel’ mechanism under different momentum scattering
rates46–51.

Figure 2c presents the ωc-dependence of k/k0 from the numerically
exactHEOMresults (open circleswith thin guiding lines), and the FGR rate
constant using ~kVSC in Eq. (17) (thick solid lines). One can see that ~kVSC
agrees well with the exact results for τc > 500 fs, and the resonance peak
positions are well captured by FGR (with a re-scaling factor of 0.5 applied).
In addition, the widths given by ~kVSC are in agreement with the HEOM
results for a wide range of τc. We also note that the long tails towards lower
cavity frequencies in the FGRresults disagreewith theHEOMresults, due to
the Lorentzian lineshape function decaying slowlywhilen(ωc) increases fast
when decreasing ωc.

VSC-modified rate constant and the optical lineshape
Apart from predicting the correct resonance condition (ωc =ω0), ~kVSC in
Eq. (17) also predicts that the width of the rate constant profile is deter-
mined by the lineshape function of the molecular vibration spectra
Aνðωc � ω0Þ, with width Γν (see Eq. (15)). Note that ~kVSC is slightly
broader than Aνðω� ω0Þ due to the Bose–Einstein distribution function
n(ωc) (see Eq. (3)). Figure 3a presents k/k0 obtained byHEOMsimulations
(light blue open circle and shaded area) and FGR from Eq. (17) (dark blue
solid line), respectively, aswell as the IR spectra of the baremolecule system
obtained from HEOM simulation (red solid line with shaded area). The
rate profile is the same as the magenta curve in Fig. 2c, where ηc = 0.05 a.u.
and τc = 1000 fs. The IR spectra are simulated by HEOM, with details
presented in Supplementary Note 6. The optical spectra can be well

approximated as Aνðω� ω0Þ in Eq. (14) (red open circles), which is
visually identical to the HEOM results. The similar trend of the vibration
spectra for the molecular system outside the cavity and the VSC-modified
rate constant profile are a ubiquitous feature for most of the VSC experi-
ments so far1,5,10,14, with the peaks both located at ωc =ω0 and the widths
roughly at Γν (although there are counter-examples, such as Fig. 3a of
ref. 2). This feature is observed in current numerical simulations, as well as
in the previous work35, which can be explained by the ~kVSC expression in
Eq. (17).

FGR rate theory in the intermediate regime
Under the intermediate regime (τc ∼Ω�1

R ), it is difficult to have a simple
reactionmechanism and derive an analytical rate constant expression. This
is indeed the case for Kramers turnover when the friction parameter is in
between the energy and spatial diffusion limits38. A similar situation also
occurs for the theory of electron transfer under the non-adiabatic limit
(golden rule,Marcus Theory) or adiabatic limit (Born–Oppenheimer,Hush
Theory), where well-defined rate theories are available in both regimes52–55,
but there is no analytic theory for the entire crossover region. Nevertheless,
one can apply an adhoc approach by interpolating the two FGRexpressions
in Eqs. (2) and (17) as follows53,55

kintVSCðτcÞ ¼
kVSCðτcÞ � ~kVSCðτcÞ
kVSCðτcÞ þ ~kVSCðτcÞ

; ð20Þ

which is the second main theoretical result in this work. The numerical
result of FGR rates using kintVSC in Eq. (20) is presented in Fig. 2b (golden
dashed line), with a re-scaling factor of 0.5 applied to both kVSC (Eq. (10))
and ~kVSC (Eq. (17)). One can see that Eq. (20) correctly captured the
turnover behavior in the τc-dependence of VSC rate constant, which
maximizes at around τc = 200 fs and agrees with the HEOM simulations,
although being less accurate than either Eq. (2) in the lossy regime or Eq.
(17) in the lossless regime. As a corollary of kintVSC, the maximum
enhancement of the VSC rate constant can be reached when τc ¼ Ω�1

R .
This is because under the resonance condition ωc =ω0, Eq. (20) becomes
(c.f. Eqs. (9) and (19))

kintVSCðτcÞ ¼
Ω2

Rnðω0Þ
Ω2

Rτc þ τ�1
c

≤
1
2
ΩRnðω0Þ; ð21Þ

where the equal sign is satisfied under τc ¼ Ω�1
R .

Figure 3b presents the τc-dependence of VSC rate constants under
different Rabi splittings ΩR, obtained from the numerically exact HEOM

Fig. 3 | Influence of cavity frequency, cavity lifetime, and light–matter coupling
strength on ~kVSC. a The rate profile k/k0 obtained from HEOM simulations (blue
open circles) and the FGR expression using Eq. (17) (blue thick line), as well as the IR
spectra of the baremolecule system fromHEOM (thick solid line) and using Eq. (14)
(open circles). The rate profile is the same as the violet curve in Fig. 2c. b Cavity
lifetime τc-dependence of the VSC rate constant k/k0 under various ΩR obtained
from HEOM simulations (open circles with thin guiding line) as well as the

interpolated expression in Eq. (20) (solid lines), and the cavity frequency is fixed at
the resonance conditionωc = ω0. The dashed vertical lines denote the position where
τc ¼ Ω�1

R . c Relation between k/k0 at resonance (ωc = ω0) and the Rabi splittingΩR,
with results obtained fromHEOM(red circles) and FGR (red solid line) using~kVSC in
Eq. (19). The change of the effective free energy barrier height Δ(ΔG‡) is also pre-
sented, with HEOM (blue circles) and the FGR (blue solid line) using Eq. (22).

https://doi.org/10.1038/s43246-024-00551-y Article

Communications Materials |           (2024) 5:110 5



simulations (open circles with thin guiding line) as well as the interpolated
expression in Eq. (20) (solid lines). All pairs of curves show a similar
turnover behavior along τc but differ in the peak positions. The dashed
vertical lines denote the position where τc ¼ Ω�1

R at the correspondingΩR

value, which coincides with the peak positions of the turnover curves. As a
result, the expression of kintVSC predicts that the maximum enhancement of
VSC rate constants is reached when τc ¼ Ω�1

R , in agreement with the
numerically exact simulations.

Effect of the Rabi splitting
We further explore the effect of the light–matter coupling strength on the
VSC rate constant and the accuracy of the FGR expression in Eq. (19) (Eq.
(17) under the resonance condition) in the lossless regime. By doing so, we
fix the cavity lifetime as τc = 1000 fs. Figure 3c presents the relation between
k/k0 at resonance (ωc =ω0) under various Rabi splittingΩR, obtained from
theHEOM simulations (red circles) and the FGR expression (red solid line)
using ~kVSC in Eq. (19) with a re-scaling factor of 0.5 on ~kVSC. Over up to
100 cm−1 Rabi splitting, the FGRexpression (Eq. (19)) correctly captures the
ΩR-dependence thatfirst scales as~kVSC / Ω2

R, thenplateau (saturated).This
is because whenΩR becomes large, only ~k1 (Eq. (12)) is rate limiting, which
is ΩR-independent.

Figure 3c furtherpresents the change of the effective free energy barrier
Δ(ΔG‡), directly calculated from the rate constant ratio k/k0 obtained from
HEOM simulations. To account for the “effective change” of the Gibbs free
energy barrier Δ(ΔG‡) as follows4,11,36

ΔðΔGzÞ ¼ ΔGz � ΔGz
0 ¼ �kBT ln k=k0

� �
: ð22Þ

Note that this is not an actual change in the free-energy barrier, but rather an
effective measure of the purely kinetic effect. Here, one can see a non-linear
relation ofΔ(ΔG‡) withΩR that has been observed experimentally6, and the
theory in Eq. (19) provides a semi-quantitative agreement with the
numerically exact results from HEOM simulations.

Temperature dependence of the VSC rate constant
Experimentally, it was found that VSC induces changes in both effective
activation enthalpy and activation entropy when using the Eyring equation
to interpret the change of the rate constant1,10,11, which remains to be the-
oretically explained. We emphasize that based on our current theory, the
VSC modification mechanism is not due to the direct modification of the
Entropy or Enthalpy, but rather through the mechanisms summarized in
Eq. (11) (for the lossless regime) andEq. (1) (for the lossy regime).However,
if one chooses to interpret the change of the rate constant through these
enthalpy and entropy changes, then the current theory in Eq. (17) can
indeed explain both changes. Using the Eyring equation, the temperature

dependence of the reaction rate constant is

k ¼ kBT
2π_

exp �ΔHz

kBT
þ ΔSz

kB

� �
; ð23Þ

where ΔH‡ and ΔS‡ are the effective activation enthalpy and entropy,
respectively, which canbe extracted by plotting lnðk=TÞ as a function of 1/T.
We further denote the effective activation enthalpy and entropy inside the
cavity as ΔHz

c and ΔSzc , respectively, and the corresponding values outside
the cavity as ΔHz

0, ΔS
z
0, respectively. One can further define their difference

asΔΔHz � ΔHz
c � ΔHz

0, andΔΔS
z � ΔSzc � ΔSz0, which characterizes the

pure cavity induced effects. According to the assumption that k = k0+ kVSC,
they can be evaluated analytically as follows

ΔΔHz ¼ � kVSC
k0 þ kVSC

ΔHz
0 þ 1� _ω0

kBT

� �
kBT

� 	
; ð24aÞ

ΔΔSz ¼ ΔΔHz

T
þ kB ln 1þ kVSC

k0

� �
; ð24bÞ

where the detailed derivations are provided in Supplementary Note 7. Eq.
24a-b can be evaluated by using HEOM results, or the FGR expressions,
either kVSC in Eq. (2) (or Eq. (10) to be more accurate) for the lossy case or
~kVSC inEq. (17) for the lossless case.Thepreviousworkbasedon the classical
Grote–Hynes rate theory15 can only explain the change inΔΔS‡. The current
FGR-based theory can explain changes in both ΔΔH‡ and ΔΔS‡, which has
been observed in experiments4,6.

Figure 4a presents the temperature dependence of the VSC rate
constant, plotting as lnðk=k0Þ as a function of 1/T. The cavity lifetime is
fixed as τc = 1000 fs, and the cavity frequency is ωc = ω0. Figure 4a shows
the Eyring-type plots for reactions outside the cavity (black points) and
inside a resonant cavity under various light–matter coupling strengths.
The rate constants were obtained from HEOM simulations (dots), and
fitted by the least square to obtain linearity (thin lines). One can see that
asΩR increases, the slope of the Eyring plots becomes more negative (an
increasing the effective activation enthalpy). Meanwhile, the effective
entropy also increased significantly as one increase ΩR. The current
theory explains both changes of ΔΔH‡ and ΔΔS‡, and the temperature-
dependence in Fig. 4a has been experimentally observed (e.g., Fig. 4
in ref. 56).

Figure 4b presents the change of the effective activation enthalpyΔΔH‡

as increasingΩR. The HEOM results for ΔΔH‡ (blue open circles with thin
guiding lines) are extracted from the slopes of the fitted lines in Fig. 4a.
Further, the FGR results (gold dashed line) are presented, in which kVSC is
calculated using Eq. (17) (re-scale by a factor of α = 0.5) and plug-in
Eq. (24a) to obtain the cavity induced change ΔΔH‡. When kVSC is small,

Fig. 4 | Temperature dependence of the VSC rate constant.The cavity lifetime τc is
fixed at 1000 fs, and the cavity frequency is kept at the resonance condition ωc = ω0.
a Eyring-type plots for lnðk=k0Þ as a function of 1/T, for reaction outside the cavity
(black points) and inside the resonant cavity under various light–matter coupling
strengths. b Effective activation enthalpy under different ΩR values, with the results

obtained from the exact HEOM simulations (blue open circles) and the FGR results
(gold dashed line) using Eq. (17) (where the value of ~kVSC in Eq. (17) is re-scaled by a
factor of 0.5). c Effective activation entropy under differentΩR values obtained from
the exact HEOM simulations (blue open circles) and the FGR results (gold dashed
line) using Eq. (17) (where the value of ~kVSC in Eq. (17) is re-scaled by a factor of 0.5).
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Eq. (24a) is proportional to kVSC, i.e., proportional to Ω2
R according to the

analytic FGR rate theory (see Eq. (17)). One can see that from Fig. 4b when
ΩR < 15 cm

−1, ΔHz
c increases quadratically with ΩR, and the FGR results

agree with the HEOM results. When ΩR > 15 cm
−1, the behavior deviates

from quadratic scaling, and FGR results still closely match the trend of
HEOM results. Figure 4c presents the change of the effective activation
entropy ΔΔS‡, with results obtained from HEOM (blue open circles with
thin line) andFGR(goldendashed line),where theFGRalsoprovidesa good
agreement with the exact results. Note that Eq. 24a-b also works well in the
lossy regime, where the results with τc = 100 fs and k/k0 evaluated using Eq.
(10) are presented in Supplementary Fig. 3.

Resonance condition at the normal incidence
The dispersion relation of a Fabry–Pérot (FP) microcavity6,16,57 is

ωkðkkÞ ¼
c
nc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2? þ k2k

q
¼ ck?

nc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2θ

p
; ð25Þ

where c is the speed of light in vacuum, nc is the refractive index inside the
cavity, c/nc is the speed of the light inside the cavity, and θ is the incident
angle, which is the angle of the photonic mode wavevector k relative to the
norm direction of the mirrors. For simplicity, we explicitly drop nc
throughout this paper (because of the experimental value nc ≈ 1). The
many-mode Hamiltonian is provided in Supplementary Note 8. When
k∥ = 0 (or θ = 0), the photon frequency is

ωc � ωkðkk ¼ 0Þ ¼ ck?; ð26Þ

which is the cavity frequency we introduced in the previous discussions (Eq.
(4)). Experimentally, it is observed that only when ωc =ω0 (known as the
normal incidence condition) will there be VSC effects2,4,6,10,31. For a red-
detuned cavity (ωc <ω0), there are still afinite number ofmodes (with afinite
valueofk∥), such thatωk =ω0.This is referred to as theoblique incidence, but
there is no observed VSC effect even though polariton states are formed1,6,31.
As mentioned in ref. 2, “Tuning the cavity so that VSC occurs at normal
incidence is essential to observe the modification of chemical properties. In
this condition, the system is at theminimumenergy in thepolaritonic state2”.
Despite recent theoretical progress58,59, there is no accepted theoretical
explanation for VSC effect only observed at the normal incidence, although
intuitively, the group velocity ∂ωk/∂k∥ = 0 at k∥ = 0 and make that point
special, as hinted byEbbesen and co-workers2.Our recentwork suggests that
for the analytic expression kVSC (Eq. (2)), it is possible to explain such a
normal incidence effectwhenconsideringmanycavitymodes45. In thiswork,
we theoretically explore such normal incidence conditions for the new
analytic expression ~kVSC (Eq. (17)) under the lossless regime.

For k∥ > 0, the mode has a finite momentum in the in-plane direction.
Because of this in-plane propagation, the photon leaving the effective mode
area is characterized by the following effective lifetime45

τkðkkÞ ¼
D

c � sin θ ¼ D
c
� ωkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2
k � ω2

c

p ; ð27Þ

where D characterizes the spatial extent of a given mode (along the k∥
direction). Using the experimental molecular density and the effective
number of molecules coupled to a given mode, one can estimate
D≈ 10�1 ∼ 100 μm, with details provided in Supplementary Note 10, sec-
tion A. We want to emphasize that τ∥ differs from the cavity lifetime τc
which considers the photon loss in the k⊥ direction due to leaking outside
the cavity. As a result of τ∥, the thermal photon number should bemodified
as45n(ωk)→ neff(ωk) with the following expression

neff ðωkÞ � τ�1
c nðωkÞ=ðτ�1

c þ τ�1
k Þ; ð28Þ

due to the detailed balance relation.

Using the same procedure of the FGR derivation (as used
for Eq. (17)), the VSC enhanced rate constant under the lossless
regime is

~k
D
VSC ¼

X
k

2πg2ccos
2ϕkωkAνðωk � ω0Þ � neff ðωkÞ

1þ 2πg2ccos
2ϕkωkAνðωk � ω0Þτc

; ð29Þ

where gc ¼ μLL0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ð2_ϵ0VÞ

p
is the Jaynes–Cummings60 type

light–matter coupling strength that does not depend on ωk. Note that in
the literature, ΩR ¼ 4g2cωc for the resonance condition. When there is
only one mode, Eq. (29) reduces back to Eq. (17). Further, ϕk describes
the angle between the molecular dipole and the kth cavity mode. For the
1D FP cavity (one dimensional for the k∥ direction), cos ϕk ¼ 1. For the
2D FP cavity (two dimensional for the k∥ direction), we assume an iso-
tropic average cos2ϕk ! hcos2ϕki ¼ 1=2. As such, the rate constant in
Eq. (29) can be evaluated by replacing the summation with an integral as
follows

X
k

f ðkÞ !
Z

dω gDðωÞf ðωÞ; ð30Þ

where gD(ω) is the DOS for the cavity modes. Using the cavity dispersion
relation inEq. (25), thephotonic density of states (DOS) for a 1DFPcavity is
expressed as follows45,

g1DðωÞ ¼
2

cΔkk
� ωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2 � ω2
c

p � Θðω� ωcÞ; ð31Þ

where Θ(ω− ωc) is the Heaviside step function, Δk∥ is the spacing of
the in-plane wavevector k∥ (or the k-space lattice constant). Note
that g1D(ω) has a singularity at ω = ωc, which is known as (the first type
of) the van-Hove-type singularity61. The DOS for a 2D FP cavity is
expressed as45

g2DðωÞ ¼
2π

ðcΔkkÞ2
� ω � Θðω� ωcÞ; ð32Þ

which does not have any singularity.
For a 1D FP cavity, using g1D(ω) in Eq. (31) and evaluating the integral

in Eq. (30) (see details in Supplementary Note 9) results in

~k
1D
VSC≈M � 2πg

2
cωcAνðωc � ω0Þ � nðωcÞ

1þ 2πg2cωcAνðωc � ω0Þτc
; ð33Þ

which is identical to Eq. (17) (withΩR ¼ 4g2cωc), with an additionalM ¼R
g1DðωÞdωwhich is the number of cavitymodes. Thus, for a 1D FP cavity,

the peak of the expression in Eq. (33) is located atωc =ω0 where k∥ = 0, due
to the presence of the van-Hove singularity. This means that VSC
modification occurs only when ωc =ω0 for a 1D FP cavity. We have also
numerically evaluated Eq. (30) and compared it with Eq. (33) for the VSC-
modified rate constant, presented in Supplementary Fig. 4, which shows a
nearly identical behavior.

On the other hand, all of the known VSC experiments1,6,10,31 have been
performed in 2D FP cavities. For a 2D FP cavity, using g2D(ω) in Eq. (32) to
evaluate Eq. (29), the VSC rate constant becomes

~k
2D
VSC ¼ C

Z ωm

ωc

dωω � πg
2
cωAνðω� ω0Þ � neff ðωÞ

1þ πg2cωAνðω� ω0Þτc
; ð34Þ

where C ¼ 2M=ðω2
m � ω2

c Þ, M ¼ R g2DðωÞdω is the number of modes,
ωm is the integration cutoff frequency (which is treated as a convergence
parameter), and τkðωÞ ¼ ðD=cÞ � ω= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2 � ω2
c

p
(c.f. Eq. (27)). See Sup-

plementary Note 9 for detailed derivations. As a crude estimation, one can
approximateAνðω� ω0Þ≈ δðω� ω0Þ, such that the integral inEq. (34) can
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be evaluated analytically, leading to

~k
2D
VSC ≈ C

ω0 � Θðω0 � ωcÞ

1þ cτc
D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ωc

ω0


 �2r � πg
2
cω0 � nðω0Þ

1þ πg2cω0τc
: ð35Þ

Since usually cτc=D≫ 1, Eq. (35) has a sharp maximum value at ωc =ω0

and tails toward the ωc <ω0 side.
Figure 5 presents the VSC-enhanced rate constant using the FGR

expression under different Rabi splittingΩR values inside (a) a 1D FP cavity
and (b) a 2D FP cavity, where the cavity lifetime is τc = 1000 fs. Figure 5a

presents k=k0 ¼ 1þ 0:5 ~k
1D
VSC=Mk0, where the number of modes M has

been divided to present a normalized result. This is identical to the single-
mode expression (Eq. (17)) due to the van-Hove-type singularity in the 1D

DOS (see Eq. (31)). Figure 5b presents k=k0 ¼ 1þ 0:5~k
2D
VSC=k0 value for a

single molecule coupled to many modes inside a 2D FP cavity, where ~k
2D
VSC

was evaluated by performing direct sum using Eq. (29) (solid lines), as well
as by using k2DVSC expression in Eq. (34) (open circles), which are identical to

each other.Note that both~k
1D
VSC and~k

2D
VSC are re-scaledby a factor of 0.5 to be

consistent with Fig. 2. Here, we choose D ¼ 1 μm for the effective mode
diameter, the effective cavity sizeL ¼ 1mm (probing area) to discretize the
2D cavity dispersion relation when using Eq. (29) (solid lines), with
ωm = 5ωc which generates a total number ofM≈106 modes for the 2D FP
cavity. We use the same ωm value to perform integration using Eq. (34)
(open circles). Thedetails are provided in SupplementaryNote 10, sectionB.
One can observe that the resonance peak is still centered aroundωc =ω0 but
slightly red-shifted, demonstrating the normal incidence condition. The

approximate analytic expression of ~k
2D
VSC in Eq. (35) gives a similar long tail

for ωc <ω0 but a much sharper decay for ωc ≥ω0. Overall, the resonance
peak is asymmetric as it tails toward the lower energy regions. Future VSC
experiments are required to explore if there is any asymmetry in the rate
constant profile.

Experimental connections
The current theory is valid forN = 1 or a fewmolecules strongly coupled to
the cavity, such that the individual light–matter coupling ηc is strong.
Experimentally, it is now possible to achieve strong (or even ultra-strong62)
light–matter couplings between a plasmonic nanocavity and a few vibra-
tional modes62,63, such that ΩR ≫ τ�1

c (for N = 1). In these experimental
setups62,63, the current theory (~kVSC in Eq. (17)) can be directly applied, and
all of the predictions could be verified experimentally, e.g., the τc behavior in
Fig. 2 and various scaling relations in Fig. 3.

On the other hand, in all existing VSC experiments1,2,10,14, the Rabi
splitting is achieved through a collective light–matter coupling between
N vibrational modes with the cavity, such that Eq. (8) should be

modified as16,31,64,65

ΩR;N ¼ 2
ffiffiffiffi
N

p
ηcωcμLL0 : ð36Þ

It was estimated that N ≈ 106 ~ 1012 per effective cavity mode64, and
ΩR,N ≈ 100 cm−1 for the typical VSC experiments4,10. The strong coupling
condition in the experiments is achieved whenΩR;N ≫ τ�1

c and the optical
spectra of themolecule-cavity hybrid systemhave a peak splitting.However,
the fundamental mechanism of the experimentally observed VSC effect
(which happens under the collective coupling regime, Eq. (36)) remains to
be explained.

If all molecules are perfectly aligned with the cavity field, the coupling
strength per molecule ηc is bound to be very weak (∼ΩR;N=

ffiffiffiffi
N

p
). Recent

theoretical work66 suggests that disorders of the molecular dipole distribu-
tion along the field polarization will create local strong coupling spots66, and
in these “hot spots”, only a fewmolecules are strongly coupled to the cavity66

(which resembles a form of spin glass). If this is the case in the VSC
experiments, then combining the ~kVSC in Eq. (17) with the disorder-
enhanced local coupling theory in Ref. 66 would likely explain the VSC
enabled effect. On the other hand, the VSC-induced rate constant changes
could originate from a non-trivial collective effect even though the indivi-
dual ηc is tiny

31. In this case, one has the scenario that ΩR ≪ τ�1
c (where

ΩR ~ ηc) butΩR;N ≫ τ�1
c (due to the largeN). As such, one would expect to

use the kVSC (Eq. (2) orEq. (10)) todescribe the rate constant associatedwith
a singlemolecule, addup all contributions in FGRandnormalize it with 1/N
(to avoid a simple concentration effect). This, however, will not give any
significant change in the VSC-modified rate constant45, due to the large 1/N
normalization factor. Future work needs to address this challenge, which
might emerge from non-trivial collective effect due to non-local collective
light–matter coupling67,68.

Nevertheless, our current theory suggests that measuring the τc-
dependence of k/k0 could be the key to unraveling the fundamental
mechanism in VSC. For example, under the strong coupling regime, if k/k0
decreases as τc increases, then themechanism is likely to be ~kVSC in Eq. (17)
with the disorder-enhanced local coupling theory66. On the other hand,
under the strong coupling condition ΩR;N ≫ τ�1

c , if k/k0 increases as τc
increases, then it implies that under the single molecule levelΩR≪ τc, and
theVSCmechanism is likely to be kVSC (Eq. (2) or Eq. (10)) with a collective
mechanism yet to be discovered. Experimentally, the cavity lifetime (or the
quality factor) for the distributed Bragg reflector (DBR) FP cavity can be
modified by changing the number of coating layers69 or the curvature of the
mirrors70. Other possible cavity structures that could achieve various Q
factors are the “open” photonic structures71,72, whichmight bemore suitable
for polaritonic chemistry than planar cavities, as these mirror-free open
structures generally support lower quality photonic modes than the stan-
dard FP cavity design. In either case, experimental measurements on the

Fig. 5 | Normal Incidence effect. FGR rate profiles
of k/k0 as a function ofωc, where the cavity lifetime is
τc = 1000 fs. Results under various light–matter
coupling strengths are presented. a FGR rate using
~k
1D
VSC (Eq. (33)) where the number of modes M is
divided, which is identical to the single mode case in
Eq. (17). b FGR rate profiles for many mode cases
inside a 2D FP cavity, where the results obtained by
performing direct sum using Eq. (29) (solid lines)
and by performing integration using ~k

2D
VSC in Eq. (34)

(open circles) are presented.
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cavity lifetime dependence of the rate constant will provide invaluable
insights into the nature of the VSC effects.

Further, going back to the experimental details, when comparing the
theoretical results of k/k0 (cavity effect for inside and outside the cavity) to
experiments, one will need to compare the results for two systems with
different cavity lifetimes, and the outside cavity case could be the experi-
mental set up of FP cavity with a τc→ 0 limit (as our theoretical results
suggested). This is because, in the real world, all planar wavelength scale
structures support well-defined photonic modes. A final note is that many
existing experiments compare reaction rate constants formolecules inside a
cavity and outside a cavity (or on-resonance cavity and off-resonance cav-
ity). If the on-resonance cavity sample has a different reaction rate to the
non-cavity and/or off-resonance cavity sample, it is assumed that this
changemust be caused by strong coupling. This is a strong assumption and,
if incorrect, could easily lead to false positives21,73. More careful experiment
designs are needed in the future to differentiate between changes in reaction
rate constant caused by polaritonic and non-polaritonic effects21,73. As
pointed out by Thomas and Barnes74, it is also possible that cognitive bias
could significantly influence the interpretation of strong coupling experi-
ments and caution is needed to prevent false positive results.

Conclusion
We developed an analytic theory for the VSC-modified rate constant ~kVSC
(Eq. (17)) for a single molecule strongly coupled to the cavity, under the
lossless regime (when τ�1

c ≪ΩR). This analytic theory is based on the
mechanistic observation of sequential rate-determining steps ∣νL; 0

�!
∣νL; 1

�! ∣ν0L; 0
�

(outlined in Eq. (11)), which are observed in our
numerically exact quantum dynamics simulations (see Supplementary
Note 4). The theory ~kVSC (Eq. (17)) explains the resonance condition
ωc =ω0 and the close connection between the rate constant modification
~kVSC and the optical lineshapeAνðω� ω0Þ (Eq. (14)). This explainswhy the
VSC-modified rate distribution closely follows the optical spectra as
observed in the VSC experiments1,2,10,14. This analytic theory ~kVSC provides
accurate ωc-dependence of the VSC rate constant enhancement compared
to the numerically exact results from HEOM simulations.

The current analytic theory~kVSC (Eq. (17)) also explainswhy under the
lossless regime (ΩR ≫ τ�1

c ), the rate constant increase when decreasing the
cavity lifetime τc (seeEq. (19)), agreeingwith the previous numerically exact
simulations35. Under the lossy regime (ΩR ≪ τ�1

c ), our previous work36

provides an analytic theory kVSC (Eq. (2)), which predicts that the rate
constant will increase as τc increases (see Eq. (9)). Both kVSC and ~kVSC agree
well with the numerical exact HEOM results under their specific regimes.
The combination of ~kVSC (Eq. (17)) and kVSC (Eq. (2)) provides a complete
picture of the τc-dependence of the VSC rate constant modification and
suggests there should be a turnover behavior. The physical picture of the
cavity enhancement effect for the rate constant is clarified by the reaction
mechanisms in Eq. (1) (limited by vibrational excitation) under the lossy
regime and Eq. (11) (limited by photonic excitation) under the lossless
regime. The cavity loss parameter τ�1

c can thus be viewed as a friction
parameter associated with the cavity mode q̂c and the turnover behavior of
the rate constant is essentially the Kramers turnover. We also provided an
interpolating scheme (Eq. (20)) for the description of the turnover phe-
nomenon and predicted that the maximal enhancement will be reached
when τc ¼ Ω�1

R (see Eq. (21)), all agree well with the exact simulations.
The analytic theory ~kVSC (Eq. (17)) predicts that the VSC rate

enhancement (Eq. (19)) scales as ~kVSC=k0 / Ω2
R as the light–matter cou-

pling increases, then plateaus when ΩR becomes large. This is in excellent
agreement with the numerically exact HEOM simulations and provides a
non-linear relation between the change of the effective free energy barrier
and the light–matter coupling strength (Fig. 3c), which has beenobserved in
the VSC experiments4,6. The theory ~kVSC (Eq. (17)) also predicts changes in
both effective activation enthalpy and entropy (as observed in the
experiments6), which agrees well with the numerical exact HEOM results
within all theparameter regimeswe explored.Althougha re-scaleparameter
α = 0.5 is needed to bring the numerical values of the FGR rate constants in

consistency with the HEOM exact results, the overall scaling relations with
respect to ΩR, ωc, τc, and T reported in the paper are rather general and
impressive, which should not be restricted to the detailed shape of the
potential energy surface or environmental spectral density functions. We
further generalized the ~kVSC expression to consider the many mode effects,
and the resulting theories (Eq. (33) for 1D FP cavity and Eq. (34) for 2D
cavity) predict the normal-incidence resonance condition: the peak of the
rate constant enhancement occurs when k∥ = 0 and ωc =ω0. Last but not
least, our current theory also predicts that for two chemically similar reac-
tions, if one satisfies k1≪ k2, k3 but the other does not (due to the low
reaction barrier), then there will be a VSC effect for the first reaction but not
for the second one. This is because for the second reaction, ∣νL

�! ∣ν0L
�
is

no longer rate limiting, and the cavity modification of this process will no
longer influence the apparent rate constant. This might be the explanation
for the recently observed null effects in VSC experiments22,23.

Despite the successes of the theory, it is limited to the situation of a
singlemolecule strongly coupled to the cavity. Inmost of the experiments, a
large collection of molecules (N = 106 ~ 1012) are collectively coupled to the
cavity, and the coupling strength per molecule is rather weak. In the future,
we aim to generalize the current analytic rate constant expression to explain
the resonance suppression and the collective effect, to build a unified theory
for the VSC-modified rate constant. Future efforts shall be focused on
applying the current simulation approach and theory to realistic reaction
systems with atomistic details26,75.

Methods
Model Hamiltonian
We use a double-well (DW) potential to model the ground state chemical
reaction76,77

VðR̂Þ ¼ �Mω2
b

2
R̂
2 þM2ω4

b

16Eb
R̂
4
; ð37Þ

where M is chosen as the proton mass, ωb = 1000 cm−1 is the barrier fre-
quency, and Eb = 2120 cm−1 is the barrier height. For the matter Hamilto-
nian ĤM ¼ T̂ þ V̂ , the vibrational eigenstates ∣νi

�
and eigenenergiesEi are

obtained by solving ĤM∣νi
� ¼ Ei∣νi

�
numerically using the discrete vari-

able representation (sinc-DVR) basis78 with 1001 grid points in the range of
[− 2.0, 2.0]. To facilitate the mechanism analysis, we diabatize the two
lowest eigenstates and obtain two energetically degenerate diabatic states

∣νL
� ¼ 1ffiffiffi

2
p ∣ν0

�þ ∣ν1
�� �
; ∣νR

� ¼ 1ffiffiffi
2

p ∣ν0
�� ∣ν1

�� �
; ð38Þ

both with energies of E ¼ ðE1 þ E0Þ=2 and a small tunneling splitting of
Δ = (E1− E0)/2 ≈ 1.61 cm−1. Similarly, for the vibrational excited states
f∣ν2
�
; ∣ν3

�g, we diabatize them and obtain the first excited diabatic vibra-
tional states in the left and right wells as follows

∣ν0L
� ¼ 1ffiffiffi

2
p ∣ν2

�þ ∣ν3
�� �
; ∣ν0R

� ¼ 1ffiffiffi
2

p ∣ν2
�� ∣ν3

�� �
; ð39Þ

with degenerate diabatic energy of E0 ¼ ðE3 þ E2Þ=2 and a tunneling
splitting of Δ0 ¼ ðE3 � E2Þ=2≈64:05 cm�1. A schematic representation of
these diabatic states are provided in Fig. 1a. Based on the two diabatic states
∣νL
�
and ∣ν0L

�
in the left well, we define the quantum vibration frequency of

the reactant as

ω0 � E0 � E ¼ 1172:2 cm�1; ð40Þ

which is directly related to the quantum transition of ∣νL
�! ∣ν0L

�
.

Further, Ĥν in Eq. (5) is the system-bath Hamiltonian that describes
the linear coupling between reaction coordinate R̂ and its phonon bath,
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expressed as

Ĥν ¼
1
2

X
i

p̂2i þ ω2
i x̂i �

ci
ω2
i
R̂

� �2
" #

; ð41Þ

characterized by the spectral density JνðωÞ � ðπ=2ÞPjðc2j =ωjÞδðω� ωjÞ.
Here, we use the Drude–Lorentz model JνðωÞ ¼ 2λνγνω=ðω2 þ γ2νÞ, with
γν = 200 cm−1 for the bath characteristic frequency and λν = 83.7 cm−1 for
the reorganization energy. In addition, Ĥc describes the loss of cavity
photons, through the non-cavity modes f~xjg that directly coupled to the
cavity q̂c, expressed as

Ĥc ¼
1
2

X
j

~̂p
2

j þ ~ω2
j ~̂xj �

~cj
~ω2
j

q̂c

 !2" #
; ð42Þ

and the photon-loss bath spectral density is
JcðωÞ � ðπ=2ÞPjð~c2j =~ωjÞδðω� ~ωjÞ ¼ ðω=τcÞ expð�ω=ωmÞ, where τc is
the cavity lifetime36, and we had assumed that photon loss satisfies strict
Ohmic dissipation. In other words, as the cutoff frequency ωm→∞, the
photon bath dynamics reach the Markovian limit36,79. By performing a
normal mode transformation, one can obtain a simple system-bath model
that is described by an effective spectral density (which is of the Brownian
oscillator form36). Details are provided in Supplementary Note 2, Section A.

Rate constant calculations
We use hierarchical equations of motion (HEOM) to simulate the popula-
tion dynamics and obtain the VSC-modified rate constant, see details in
Supplementary Note 1. Here, we treat ĤM as the quantum subsystem and
represent it using the vibrational eigenstates f∣ν0

�
; ∣ν1

�
; . . .g, and the rest

terms in the Hamiltonian are treated as the bath in HEOM, see details in
Supplementary Note 2. The population dynamics of the “reactant” is com-
puted as PRðtÞ ¼ TrS½ð1� ĥÞρ̂SðtÞ�, where the trace TrS is performed along
the systemDOF (which is the reaction coordinate R̂), and ĥ ¼ hðR̂� RzÞ is
theHeaviside operatorwithR‡ = 0as thedividing surface formodel potential
VðR̂Þ (in Eq. (37)). The forward rate constant is obtained by evaluating35,36

k ¼ �limt!tp

_PRðtÞ
PRðtÞ þ χeq � ½PRðtÞ � 1� ; ð43Þ

where χeq � PR=PP denotes the ratio of equilibriumpopulation between the
reactant and product, see Supplementary Note 3. For the symmetric double
potential model considered in this work, χeq = 1. The limit t→ tp represents
that the dynamics have already entered the rate process regime (linear
response regime) and tp represents the “plateau time” of the time-dependent
rate which is equivalent to a flux-side time correlation function formalism27,36.
Details of the simulations are provided in SupplementaryNote 3, and example
flux-side time correlation functions are provided in Supplementary Fig. 1.

For the FGR-based theory, we use the value of the k0 (outside the cavity
rate constant) obtained from the HEOM simulation and report
k/k0 = 1+ α ⋅ kVSC/k0, where the α = 0.5 is an ad hoc re-scaling factor nee-
ded to bring the value of FGR rate constant to the consistent range with the
HEOM results.

Data availability
Thedata that support thefindingsof thiswork are available at https://github.
com/Okita0512/VSC_HEOM.

Code availability
The source code for HEOM used in this study is available at https://github.
com/hou-dao/OpenQuant. The source code for simulating the FGR rate
constants, temperature dependence, and resonance condition at the normal
incidence is available at https://github.com/Okita0512/VSC_HEOM.
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