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Several approximate methods for propagating the density matrix of systems coupled to baths based on
linearized approximations have been presented. Using influence functional formalism this approximation
is explored in various limits for a condensed phase model. A new iterative stochastic propagation scheme
is introduced that integrates out some of the bath degrees of freedom giving an effective evolution resem-
bling Brownian dynamics. We show that this approach satisfies the fluctuation–dissipation theorem in
various limits. The method is compared with alternative approximate full dimensional propagation
schemes for the spin-boson model. The accuracy of the results is surprising since the scheme makes
approximations about initialization at each iteration. This accuracy is encouraging since these kind of
approaches hold significant potential computational saving for condensed phase quantum dynamics sim-
ulations as they give a systematic way of eliminating the explicit integration of a large number of envi-
ronmental degrees of freedom.
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1. Introduction

Recent work in the field of mixed quantum-classical dynamics
[1–8] has employed linearized approximations to the evolution
of the full system. The linearized approximation is applied in par-
ticular when calculating the time dependent density matrix of a
non-equilibrium system or equilibrium time correlation functions.
The general idea is to first separate the interacting degrees of free-
dom of the condensed phase system of interest into a quantum
subset and a classical bath based on relative thermal wavelength
or energy considerations. The forward and backward time propa-
gators in the evolution of the density matrix, or of the correlation
function, are represented as path integrals. The phase in the inte-
grands of these expressions is then expanded to linear order in
the difference between the forward and backward paths of the
bath. The resulting approximate form still contains the full evolu-
tion of the quantum subsystem. If an appropriate representation
for this dynamics is available (e.g. the mapping Hamiltonian or
some semiclassical formulation) the linearized approximation
can be computed using classical trajectories. While the benefits
ll rights reserved.
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of the truncation to linear order in the difference paths for the bath
variables are well known and have been exploited in a number of
applications [9–13], work is still in progress to obtain a general
understanding of the conditions under which the approximation
is reliable [14].

Depending on the interplay between the parameters in the
Hamiltonian, the linearized expression can provide a good approx-
imation for evolving the density matrix over different periods of
time. When the linearized approximation is reliable only for short
times, correction schemes can be applied. Recently, an iterative
scheme employing the linearized approximation for the mixed
quantum-classical propagator in the mapping Hamiltonian formu-
lation as a short time approximation in a path integral expression
for long time propagation has been suggested [15]. The approach
provides a systematic way to extend the linearized approximation
to longer times but this comes at a numerical cost that can be sub-
stantially reduced in conditions where linearization is reliable for
longer times. Similar computational problems affect the work of
other groups that have proposed employing approximate short
time propagators to iteratively evolve the density matrix. For
example, Kapral, Ciccotti, and co-workers have developed an itera-
tive solution for the mixed quantum-classical Wigner-Liouville
equation [16–18] based on the Dyson series. The term that is low-
est order in the interaction between the quantum and classical
subsystems in the propagator gives the classical Liouvillian. Higher
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order terms are represented as combinations of classical dynamics
and transitions among states.

Given the computational advantages of the fully linearized
scheme, an appreciation of how it becomes accurate for model sys-
tems important in condensed phase chemical physics is crucial. In
this work we consider and explore one such model: a quantum
system is coupled to a local bath, which in turn interacts with an
environment represented as a set of harmonic oscillators with
bilinear coupling. Such multi-level baths have been studied in var-
ious contexts from the early work of Garg et al. [19], who used a
very similar path integral influence functional approach to the
one we employ here, to explore the qualitative effects of environ-
mental friction and solvent modes (the global bath) on the nuclear
reaction coordinates (the local bath) in determining, for example,
electron transfer rates (the quantum subsystem). The various ap-
proaches we develop here, however, offer a general methodology
for developing mixed quantum-classical trajectory based methods,
built on these ideas, to propagate an approximation to the density
operator for such systems. The same basic ideas underlie the
Brownian oscillator models [20,21] that have been so pivotal in
the development of the theory of nonlinear spectroscopy of com-
plex systems. More recently [22,23], the spin-boson model with a
hierarchical, Brownian oscillator-like bath was employed to devel-
op an approach that combines accurate quantum dynamics for the
local bath together with a master equation for the global bath. This
marriage of different quantum dynamics methodologies to treat
different parts of a system is the powerful idea that forms the basis
of the methods we develop in this paper.

A similar model, employing only one harmonic local bath mode,
has been used by Shiokawa and Kapral [24] to study the emergence
of quantum-classical dynamics in an open quantum environment.
These authors showed how the relative time-scales of the quantum
subsystem and local bath coherent dynamics change depending on
the couplings and on the choice of the model for the spectral den-
sity (Ohmic and super-Ohmic) for the baths. In particular, they
found that, at high temperatures and for weak couplings, the onset
of decoherence can be much faster for the local bath than for the
quantum subsystem thus enabling a mixed quantum-classical
description of the combined system. This analysis was based on
the influence functional formalism [25], which has a long history
of development and application, starting in the context of open
system dynamics with the early work of Caldeira and Leggett
and others [26,27] who investigated the dissipative dynamics of
a quantum system coupled to a harmonic bath. In simulations,
the influence functional approach has also been used by Makri
and co-workers to study the reduced (quantum or semiclassical)
dynamics of such systems [28]. As an alternative Pollak and co-
workers have extended semiclassical initial value ideas and devel-
oped continuum limit methods for treating the quantum dynamics
of open dissipative systems [29–31]. Shi and Geva [32], on the
other hand, employed a path integral formalism to show how the
mixed quantum-classical Liouville equation can be obtained, for gi-
ven choices of the quantum subsystem basis (diabatic and adia-
batic), from linearization of an influence functional. In all these
numerical applications, the quantum subsystem was directly cou-
pled to the harmonic bath. In this work we rely on the influence
functional formalism to identify conditions in which our linearized
dynamics is accurate for the hierarchical bath model outlined
above. In the theory section we summarize the most relevant as-
pects-some known from the literature [27], some based on our
developments of the influence functional approach and explore
the characteristics of the dynamics of the system when an Ohmic
spectral density is used for the local and global baths. As expected
from the previous work [24], we find that the critical parameters
that control the accuracy of the linearized dynamics for this system
are the temperature, the cutoff frequencies of the bath’s spectra,
and the relative strength of the coupling among the various
subsystems.

In addition to this analysis we present a new algorithm to effi-
ciently simulate the evolution of this type of hierarchical bath
model. The scheme takes advantage of the influence functional to
integrate out the degrees of freedom of the global, harmonic, envi-
ronment. The evolution of the quantum subsystem and of the local
bath is thus reduced to a scheme that has similarities to Brownian
dynamics. We show that this new approach satisfies the fluctua-
tion–dissipation theorem in appropriate limits. The new algorithm
is potentially very useful for reducing the numerical effort needed
to compute the properties of condensed phase systems for which
the hierarchical bath model is reasonable. The accuracy of the
new algorithm will be tested in benchmark calculations exploring
the relevant range of parameters in the special case of a spin cou-
pled to a local harmonic bath (spin-boson), that is bilinearly cou-
pled to a global harmonic environment.

2. Theory

2.1. Hierarchical system-bath model: an influence functional analysis

2.1.1. The model
Condensed phase chemical systems can often be represented in

terms of a quantum system (e.g. electrons, protons, or high fre-
quency vibrations, etc.) that may be influenced by its local environ-
ment, the ‘‘local bath”. This local bath essentially screens the
quantum subsystem from the rest of the environment or ‘‘global
bath”. For simplicity we will thus assume that there is no direct
interaction between the quantum subsystem and the global bath,
but the local environment and the quantum subsystem are cou-
pled. The local and global baths also of course can interact in our
model.

For convenience we will define the system-local bath interac-
tion Hamiltonian

ĥðŝ; r̂Þ ¼ bHs þ Vbðr̂Þ þUs�bðŝ; r̂Þ ð1Þ

where bHs is the quantum subsystem Hamiltonian, including the ki-
netic energy operator, ŝ and r̂ are the system and local bath coordi-
nate operators respectively, and the full Hamiltonian for the
condensed phase models we will consider is thus

bH ¼ p̂2

2Mb
þ ĥðŝ; r̂Þ þ

X
J

bP2
J

2MB
þ 1

2
MBX

2
J
bR2

J þ CJ
bRJr̂

" #
ð2Þ

Here the last square bracketed term on the right hand side rep-
resents the global bath with phase space operators fPJ;RJg as a set
of harmonic oscillators that are bilinearly coupled to the local bath
coordinate operators r̂, which, in principle, could be highly dimen-
sional. While the Hamiltonian above is a well defined model when
the values of the parameters CJ are small, it is known [27,24] that it
can exhibit pathological behavior in the limit of strong coupling
between the local and global bath. This behavior is usually cor-
rected by modifying the Hamiltonian via the introduction of the
so-called ‘‘counter-term”, thus

bHct ¼
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The counter-term completes the square in the bilinear coupling
between the baths and makes the hessian in the bath degrees of
freedom positive definite for this model. The motion of all degrees
of freedom is thus bound and this ensures that the coupling be-
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tween the baths does not change the nature of the local bath-quan-
tum subsystem problem. In the following, we describe our devel-
opments for the case of the simpler Hamiltonian Eq. (1) for
notational convenience. The introduction of the counter-term, an
additive term that depends only on the local bath coordinates, does
not modify these developments since the necessary algebra is
made possible by the structure of the Hamiltonian in the global
bath variables. To stress this fact, we shall point out after the
appropriate steps the, trivial, changes in the equations due to the
possible presence of the counter-term. In the Results section, on
the other hand, we shall perform calculations for both models to
illustrate the onset of the pathological behavior and show how
the introduction of the counter-term corrects it.

We represent the quantum subsystem in terms of a basis set of
diabatic states, jni. The local and global baths are described in the
coordinate basis, and the composite system states are tensor prod-
ucts jr;R;ni, where r and R are, in principle, vectors of local and glo-
bal bath variables respectively.

Time dependent properties of the system can be obtained from
the density operator q̂ðtÞ, with matrix elements

hr;R; njq̂ðtÞjr0;R0;mi ¼ hr;R;nje�ibHt=�hq̂ð0ÞeibHt=�hjr0;R0;mi ð4Þ

Suppose the initial density operator has the product form:
q̂ð0Þ ¼ q̂sq̂bq̂B. There has been considerable theoretical work aimed
at understanding the ramifications of these types of initial condi-
tions [33]. Exactly how to realize the factored bath initial condition
in general is non-trivial. For our purposes we will suppose that the
local bath variables are strongly coupled to the quantum subsystem
but initially are only weakly coupled to the global environment
making the factored bath initial condition reasonable (e.g. a few
molecular vibrational degrees of freedom that are strongly coupled
to an electronic transition but that are only weakly coupled to a sol-
vent environment). For the purpose of exploration we can initialize
the system any way we like and the factored initial condition is the-
oretically convenient [26,24,27]. In the following we shall focus on
non-equilibrium experiments for which the quantum subsystem is
initially prepared in some non-thermal mixture of states jw0i by, for
example, interaction with a fast laser pulse. We will thus be inter-
ested in the evolution of the initial quantum subsystem density ma-
trix q̂sð0Þ ¼ jw0ihw0j ¼

P
n0

P
m0 c�m0 cn0 jn0ihm0j, where the cn0 are the

amplitudes of the different basis states comprising the initial quan-
tum subsystem state jw0i. We shall consider experiments that
probe the quantum subsystem states. The quantity of interest is
thus the reduced density matrix, whose elements are obtained from
the full density by tracing over all the bath degrees of freedom

qred
nmðtÞ ¼

Z
drN

Z
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X
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c�m0 cn0 ðqred
nmÞ

n0m0
ðtÞ ð5Þ

Let us focus on just one of the contributing terms ðqred
nmÞ

n0m0
ðtÞ.

The path integral representation of the forward propagator ma-
trix elements in the above expression is

hrN ;RN; nje�ibHt=�hjr0;R0;n0i ¼
Z rðtÞ¼rN

rð0Þ¼r0
D½rðtÞ�

Z RðtÞ¼RN

Rð0Þ¼R0

�D½RðtÞ�ei
�hS0 ½rðtÞ;RðtÞ�Tnn0 ½rðtÞ� ð6Þ
with a similar result for the backward propagator. The environmen-
tal action along the forward path, for example, is

S0½rðtÞ;RðtÞ� ¼ S½rðtÞ� þ r½rðtÞ;RðtÞ�

¼
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and the forward transition amplitude is

Tnn0 ½rðtÞ� ¼ hnje� i
�hĥðrN�1Þ� � � � e� i

�hĥðr0Þ�jn0i ð8Þ

Note that, in the case of the Hamiltonian that includes the coun-
ter-term, Eq. (3), the only change in the equations above is that the
definition of the function S½rðtÞ� must be modified to include the
quadratic term in the local bath potential, i.e. Sct ½rðtÞ� ¼R t

0 dt0½12 Mb _r2ðt0Þ �
P

J
C2

J

2MBX2
J

r2ðt0Þ�. Using the results in Eqs. (7) and

(8), the matrix element becomes

ðqred
nmÞ

n0m0
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Z
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rð0Þ¼r0
D½rðtÞ�

�
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ð9Þ

where F½rðtÞ;~rðtÞ� is the influence functional [25,34] that contains all
the information concerning the global bath

F½rðtÞ;~rðtÞ� ¼
Z

dRN
Z

dR0
Z

deR0
Z RðtÞ¼RN

Rð0Þ¼R0
D½RðtÞ�

�
Z eRðtÞ¼eR0
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D½eRðtÞ�

� hR0jq̂BjeR0iei
�hðr½rðtÞ;RðtÞ��r½~rðtÞ;eRðtÞ�Þ ð10Þ

Here, due to our chosen partitioning of the system, this influ-
ence functional is independent of quantum subsystem state, but
this is not in general required [35].

2.1.2. The Caldeira–Leggett influence functional approach
Assuming that the global bath oscillators are initially in thermal

equilibrium Feynman and Vernon [25] gave the following, well
known, analytic expression for the influence functional:

F½rðtÞ;~rðtÞ�¼exp � 1
�h

Z t

0
dt0
Z t0

0
ds0½rðt0Þ�~rðt0Þ�aRðt0 � s0Þ½rðs0Þ�~rðs0Þ�

" #

�exp � i
�h

Z t

0
dt0
Z t0

0
ds0½rðt0Þ�~rðt0Þ�aIðt0 � s0Þ½rðs0Þþ~rðs0Þ�

" #

¼exp � 1
�h

w½rðtÞ;~rðtÞ�
� �

exp � i
�h

/½rðtÞ;~rðtÞ�
� �

ð11Þ

The kernels aRðt0 � s0Þ and aIðt0 � s0Þ specify the temporal non-
locality of the local bath variables that results from coupling to
the global bath. There is a rich literature exploring approximations
to the influence functional that involve localizing the integrands in
time. Much of this work is described in reference [27]. In the fol-
lowing we will detail one specific way to localize the integrands
that takes advantage of the explicit form of the kernels. These
can be written in terms of the local bath-global bath spectral
density

JðXÞ ¼ p
2

X
J

C2
J

MBXJ
dðX�XJÞ ð12Þ
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and are given by

aRðt0 � s0Þ ¼ 1
p

Z 1

0
dXJðXÞ cothðb�hX=2Þ cos Xðt0 � s0Þ ð13Þ

and

aIðt0 � s0Þ ¼ � 1
p

Z 1

0
dXJðXÞ sin Xðt0 � s0Þ ð14Þ

With the model cutoff Ohmic spectral density

JðXÞ ¼ gX; if X 6 Xc

¼ 0; if X > Xc ð15Þ

or the exponentially truncated version

JðXÞ ¼ gX exp½�X=Xc�; ð16Þ

for example, the coupling constants have the following frequency
dependence

C2ðXÞ ¼ 2
p

MBgX2

and the frequencies are sampled from the uniform or exponential
distributions, respectively [28]. The developments outlined below
employ the exponentially truncated Ohmic spectral density.

Making the simplifying approximation that

gX cothðb�hX=2Þ ¼ 2g
b�h

; if X 6
2
b�h

¼ gX; if X >
2
b�h

ð17Þ

we readily obtain the following approximate expression for
aRðt0 � s0Þ

paRðsÞ
gX2

c

� 1

½1þ ðXcsÞ2�

"
2

b�hXc
þ e

� 2
b�hXc

� 	
½1þ ðXcsÞ2�

� ½1� ðXcsÞ2� cos
2s
b�h

� �
� 2Xcs sin

2s
b�h

� �� ��
ð18Þ

for this situation. Here we have made use of the following integral
and its derivatives with respect to various parametersZ

dxe�ax cos bx ¼ e�ax

½a2 þ b2�
½b sin bx� a cos bx�; Re a > 0 ð19Þ

We can proceed in a similar fashion [26] to evaluate the inte-
grals in the phase factor in Eq. (11). Writing

/½rðtÞ;~rðtÞ� ¼
Z t

0
dt0
Z t0

0
ds0½rðt0Þ � ~rðt0Þ�aIðt0 � s0Þ½rðs0Þ þ ~rðs0Þ�; ð20Þ

recognizing that with the exponentially truncated Ohmic spectral
density

aIðsÞ ¼
g
p

d
ds

Z 1

0
dXe�X=Xc cos Xs ¼ g

p
dL
ds
; ð21Þ

where

LðsÞ ¼
Z 1

0
dXe�X=Xc cos Xs ¼ Xc

1þ ðXcsÞ2
ð22Þ

and changing variables to s ¼ ðt0 � s0Þ and t0, we have

/½rðtÞ;~rðtÞ� ¼ g
p

Z t

0
dt0½rðt0Þ � ~rðt0Þ�

Z t0

0
ds½rðt0 � sÞ þ ~rðt0 � sÞ� dL

ds
ðsÞ

ð23Þ
Evaluating the s integral by parts gives

/½rðtÞ;~rðtÞ� ¼ g
p
½rð0Þ þ ~rð0Þ�

Z t

0
dt0Lðt0Þ½rðt0Þ � ~rðt0Þ�

�
�Xc

Z t

0
dt0½r2ðt0Þ � ~r2ðt0Þ� þ

Z t

0
dt0½rðt0Þ � ~rðt0Þ�

�
Z t0

0
dsLðsÞ½_rðt0 � sÞ þ _~rðt0 � sÞ�

)
ð24Þ

where _r indicates the derivative of r with respect to its argument.
We proceed by defining mean �rðtÞ ¼ ½rðtÞ þ ~rðtÞ�=2 and differ-

ence zðtÞ ¼ ½rðtÞ � ~rðtÞ� paths and simplify the above expression to
obtain

/½�rðtÞ; zðtÞ� ¼ 2g
p

Z t

0
dt0½�rð0ÞLðt0Þ �Xc�rðt0Þ þ lðt0Þ_�rðt0Þ�zðt0Þ ð25Þ

where we have assumed that the properties of the local bath-global
bath coupling are such that the spectral density is characterized by
a cutoff frequency, Xc , that is sufficiently large so that the lorentzian
function LðsÞ, which is strongly peaked around s ¼ 0, decays rapidly
from its peak value compared to the slowly varying mean velocity,
_�rðt0 � sÞ ¼ ½_rðt0 � sÞ þ _~rðt0 � sÞ�=2, at various points along the paths
[27]. If these conditions are satisfied we can replace the variation
of any such slowly varying function that appears under an integral
with the fast decaying lorentzian by its value at s ¼ 0, and pull it
out of the integral. This is how we evaluated the s integration in
the above enabling us to define lðt0Þ ¼

R t0

0 dsLðsÞ. We find that
limt0!1lðt0Þ ¼ p=2.

We can proceed in a similar fashion to simplify the real expo-
nential amplitude modulation term in Eq. (11) controlled by the
kernel aRðsÞ. We can write this exponent in terms of the difference
path, zðt0Þ, using the same transformations outlined above as

w½�rðtÞ; zðtÞ� ¼
Z t

0
dt0
Z t0

0
ds0zðt0ÞaRðt0 � s0Þzðs0Þ

¼
Z t

0
dt0zðt0Þ

Z t0

0
dszðt0 � sÞaRðsÞ ð26Þ

The approximate form of aRðsÞ in Eq. (18), while not as simply
behaved as the lorentzian function used in the above manipula-
tions, is still a rapidly decaying function of time over a range of
parameters, in particular in the large Xc limit as demonstrated in
Fig. 1. Thus, assuming that zðt0 � sÞ is a slowly varying function
of s compared with the kernel aRðsÞ, we again evaluate the integral
over s by approximating the path difference function with its value
at the maximum of aR (i.e. for s ¼ 0). The path difference function
then becomes independent of s and can be pulled out of the inte-
gral giving

w½�rðtÞ; zðtÞ� �
Z t

0
dt0z2ðt0Þaðt0Þ ð27Þ

where aðt0Þ ¼
R t0

0 dsaRðsÞ.
Recall that aR is a parametric function of b;g, and Xc , (see Eq.

(18)) so aðt0Þ, is also dependent on these parameters.

2.1.3. A discrete path integral form, and the multi-state mapping
Hamiltonian representation

With the above simplifications, the influence functional takes
the form F½�rðtÞ; zðtÞ� ¼ e�UIF , where UIF ¼ ðwþ i/Þ=�h. This result will
be used in Eq. (9) but, to set the stage for the linearization approx-
imation that we will perform below, two more preliminary steps
are necessary. First, we express the path integral for the local bath
in discrete form, dividing the total time into N steps of duration
� ¼ t=N. Second, we use the mapping Hamiltonian formulation



-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  1  2  3  4  5  6  7  8  9  10
-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  1  2  3  4  5  6  7  8  9  10

Fig. 1. Plots of paR=gX2
c as functions of Xcs. Left panel has b ¼ 3, right panel has b ¼ 12:5, red curve is Xc ¼ 1, green curve is Xc ¼ 2, blue curve is Xc ¼ 5. (For interpretation of

the references to colour in this figure legend, the reader is referred to the web version of this article.)

P. Huo et al. / Chemical Physics 370 (2010) 87–97 91
[36–39] to give a convenient, exact, representation of the transition
amplitude, Tnn0 ðfrkgÞ. A detailed description of these two steps can
be found in Bonella and Coker [6], here we use the results derived
in that reference to write

ðqred
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n0m0
ðtÞ ¼

Z
drN

Z
dr0

Z
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In the expression above, and in the following, we set �h ¼ 1. The
expression for the transition amplitude

Tnn0ðfrkgÞ ¼
Z

dp0
qdq0an;tðfrkgÞeiHn;tðfrkgÞan0 ;0e�iHn0 ;0 G0 ð29Þ

(the notation frkg indicates parametric dependence on the local
bath path ðr0; . . . ; rNÞ) is obtained within the framework of the map-
ping Hamiltonian using a semiclassical representation of the quan-
tum subsystem propagator. The probability amplitude, Tnn0 ðfrkgÞ, to
evolve the quantum subsystem from jn0i to jni in a time t, while the
local bath follows its path, is described in terms of the evolution of
the mapping variable phase space ðpt

q; q
tÞ. This time evolution is

determined by propagating a set of initial conditions sampled
according to the probability density G0 ¼ e�

1
2

P
k
½ðp0

qk
Þ2þðq0

k
Þ2 �. The clas-

sical dynamics of these initial conditions is governed by the
Hamiltonian
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In the equation above, the sum runs over all relevant states of
the quantum subsystem and hk;k0 ðfrkgÞ are the matrix elements of
the quantum Hamiltonian (ĥ in Eq. (1)). Each trajectory contributes
to Tnn0 ðfrkgÞ (see Eq. (29)) through the combination of an ampli-

tude an;tðfrkgÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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Both these factors depend parametrically on the local bath
evolution, frkg, which at this stage is still expressed at the full
quantum level as a path integral. Note also that in the mapping
Hamiltonian approach the evolution of the quantum subsystem
is obtained from that of an auxiliary dynamical system whose
Hamiltonian is quadratic in the mapping variables. Since semi-
classical expressions such as the one in Eq. (29) are exact for
Hamiltonians of this form, the reduced density matrix element
does not contain any approximations other than those employed
to evaluate the influence functional. With this exact rewriting,
however, the evolution of the quantum subsystem can be imple-
mented using trajectories. On the other hand, as mentioned
above, the local bath evolution is still fully quantum and cannot
in general be treated exactly.

2.1.4. Linearization, a Langevin Equation, and the fluctuation–
dissipation theorem

To obtain a computable result, we now employ a linearized
approximation scheme [2,1,5,4,40] to evaluate the path integrals
in the expression of the reduced density matrix. Similar to the
manipulations of the influence functional above we change vari-
ables to the mean, �rk ¼ ðrk þ ~rkÞ=2, and difference, zk ¼ rk � ~rk, local
bath coordinates (with similar transformations for the local bath
momenta, �pk ¼ ðpk þ ~pkÞ=2 and yk ¼ pk � ~pk). The kinetic action dif-
ference term in the phase of the integrand in Eq. (28) is readily
written exactly in these mean and difference variables as

½SðfrkgÞ � Sðf~rkgÞ� ¼ �pNzN � �p1z0 �
XN�1

k¼1

ð�pkþ1 � �pkÞzk

�
XN

k¼1

�
Mb

�pk � ð�rk � �rk�1Þ
� �

yk ð32Þ

If the counter-term Hamiltonian is considered, the expansion
of this part of the action, while no longer purely kinetic, is still
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exact and given by ½SctðfrkgÞ � Sctðf~rkgÞ� ¼ ½SðfrkgÞ � Sðf~rkgÞ��PN
k¼1ð

P
JC

2
J =MBX

2
J Þ�rkzk�, where the sum on J runs over the global

bath oscillators. Similarly, UIF , in the influence functional can be
rewritten in terms of the mean and difference discrete local bath
paths yielding:

UIF ¼ �
XN

k¼1

akz2
k þ i

2g
p
ð�r0Lk �Xc�rk þ lk�pk=MbÞzk

� �
ð33Þ

Here ak is the value of the function aðtÞ, defined under Eq. (27),
at the kth time slice, with similar definitions for the other time
dependent functions.

The central approximation in the linearization approach in-
volves expanding the remaining part of the phase difference
Hn;tðf�rk þ zk=2gÞ � ~Hm;tðf�rk � zk=2gÞ in Eq. (28) and truncating this
expansion at linear order in the local bath path difference vari-
ables, zk, thus

Hn;tðf�rk þ zk=2gÞ � ~Hm;tðf�rk � zk=2gÞ

¼ �
X

k

½hnð�rkÞ � hmð�rkÞ� þ
1
2
½rhnð�rkÞ þ rhmð�rkÞ� � zk

� �
ð34Þ

Combining the above results in Eq. (28), the linearized approx-
imation to the reduced density matrix element at time t becomes:
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In the case of the counter-term Hamiltonian, the additional
term in the action difference discussed below Eq. (32) is linear in
the path difference zk so can be incorporated into the phase factor
term that is linear in zk in the above Eq. (35) (the second last line).
This phase factor for the counter-term Hamiltonian thus takes the
form: e�iv, where

v ¼ �
XN�1

k¼1

ð�pkþ1 � �pkÞ
�

þrhnð�rkÞ þ rhmð�rkÞ
2
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2
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�rk þ
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p
ð�r0Lk �Xc�rk þ lk�pk=MbÞ

#
zk ð36Þ

Combining the terms in the square brackets that represent
forces that are linear in the mean local bath path �rk we see they
have the form

�2g
p Xc �

p
2g
X

J

C2
J

MBX
2
J

 !
�rk ð37Þ

Equating the discrete expression for the spectral density given
in Eq. (12) with the exponentially truncated Ohmic form of Eq.
(16), and integrating the result over the frequency range
0 6 X 61 we readily find that

p
2g
X

J

C2
J

MBX
2
J

¼ Xc ð38Þ

so in the above expression for the linear phase term, the counter-
term exactly cancels the divergent linear force that results from
the inverted harmonic potential (i.e. Fbathð�rÞ ¼ 2g

p Xc�r). In the remain-
ing results presented below we will leave out the explicit counter-
term consideration as we now know its effect is to simply to cancel
the inverted harmonic linear force term.

The linearization approximation makes it possible to perform
all integrals over the difference variables, zk, in Eq. (35) explicitly
[2,12]. To proceed we define the Wigner transformed initial local
bath density as

ðq̂bÞWð�r0; �p1Þ ¼
Z
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2
jq̂b0j�r0 �

z0

2
ie�i�p1z0 ð39Þ

We use the fact that
R1
�1 dk exp½ikðx� aÞ� ¼ 2pdðx� aÞ andZ 1

�1
dxe�ax2þbx ¼

ffiffiffiffi
p
a

r
e

b2
4a ð40Þ

to evaluate the integrals over the various local bath difference coor-
dinates and momenta in Eq. (35). The result is
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As described more in detail in the next subsection, the integrals
over f�rk; �pkg in the expression above can now be performed and
interpreted as a time-stepping algorithm that realizes a stochastic,
Brownian-like, dynamics. The delta functions, in fact, specify a
fully deterministic evolution for the mean positions of the local
bath. The Gaussians, on the other hand, are akin to stochastic
propagators in which the values of the momenta at the different
times along the mean path are sampled according to a distribution
whose mean value is given by the systematic force at that instant
plus a frictional dissipative term given by �2glk�pk=pMb. In the long
time limit, since limt0!1lðt0Þ ¼ p=2, this term reduces to the usual
velocity dependent frictional force of the Langevin equation
�gp=Mb.

As required by the fluctuation–dissipation theorem, the dissipa-
tive term described above must be accompanied by a random fluc-
tuating force contribution, and the properties of the random
fluctuating force distribution must be related in the usual way to
the characteristics of the frictional force. This important feature
arises in the approach outlined above from the stochastic Gaussian
propagator term appearing in Eq. (41). As summarized in the next
section, the algorithm we have developed for implementing Eq.
(41), involves sampling a Gaussian distributed random number,
n, at each step, and equating it to the term that is squared in the
argument of the Gaussian in that equation. The result of this equal-
ity can be written in the form of a stochastic differential equation
as follows:

d�p
dt
¼ �1

2
½rhnð�rðtÞÞ þ rhmð�rðtÞÞ� �

2g
p
½�rð0ÞLðtÞ �Xc�rðtÞ

þ lðtÞ�pðtÞ=Mb� þ nðtÞ ð42Þ

From Eq. (41) we see that when we increment the solution by a
discrete time step, the standard deviation of the distribution of
fluctuations in the random force during the kth step of duration
� is r2

nk ¼ 2ak=�. Let the random fluctuation of the force at time t
from its mean value be dFðtÞ ¼ FðtÞ � hFi. Then the usual form of
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the fluctuation–dissipation theorem states that the random fluctu-
ating force is uncorrelated on sufficiently long time-scales com-
pared to the typical fast relaxation times, and that the magnitude
of its correlation function is related to the friction constant, g,
and the inverse temperature, b ¼ 1=kBT , according to the following
classical result:

hdFðtÞdFð0Þi ¼ 2g
b

dðtÞ ð43Þ

Integrating this expression on the range ��=2 6 t 6 �=2 and
assuming that the correlation function is constant at its zero time
value over this time interval, we can write the integrated form of
this result as hd2Fð0Þi� ¼ 2g=b. Substituting for the standard devi-
ation of the random fluctuating force obtained above from Eq.
(41) we find that the fluctuation–dissipation theorem requires that
ak ¼ g=b. Recalling the result under Eq. (27) we have

ak ¼ aðtkÞ ¼
Z tk

0
dsaRðsÞ ð44Þ

Taking the high temperature limit of Eq. (18) we readily find
(with �h ¼ 1) that

lim
b!0

aRðsÞ ¼
2g
pb

Xc

½1þ ðXcsÞ2�
ð45Þ

Thus, since
R1

0 dsXc=½1þ ðXcsÞ2� ¼ p=2, we see that the fluctua-
tion–dissipation theorem result is recovered when we take the
long time limit of the integral as a1 ¼ g=b.

Before describing the evolution scheme that corresponds to the
above combination of Green functions, however, let us further ana-
lyze the linearization approximation. There are three contributing
factors that can keep the zk deviations small and make the linear-
ization approximation reliable: (1) If the total propagation time, t,
is short the forward and backward paths must remain close to one
another as there is insufficient time for them to evolve in signifi-
cantly different ways. Generally, as the propagation time becomes
longer the deviations between forward and backward paths can
grow resulting in linearization providing a poorer approximation
for long time evolution. (2) In a condensed phase environment, like
that modeled by the harmonic global bath used in the above devel-
opments, the real exponential part of the influence functional con-
tribution results in the gaussian form in the forward-backward
local bath path difference, i.e. the term exp½��

PN
k¼1akz2

k � appearing
in Eq. (35). As discussed earlier, see Eq. (18), ak depends linearly on
the friction appearing in the coupling between the local and global
baths. If the global environmental friction, g, is strong making ak

large, the gaussian term will limit the size of the fluctuations in
zk, thus improving the reliability of the linearization approxima-
tion. (3) Finally, aðtÞ also becomes large with increasing tempera-
ture so the linearization approximation should improve in this
limit. The numerical results presented in Section 3 explore the
interplay of these various contributing effects on the reliability of
the linearization approximation for a spin-boson (system-local
bath) model.
2.2. A mixed quantum-classical Brownian dynamics approach

The approximate form of the density matrix dynamics devel-
oped in Eq. (41) can be implemented using a stochastic Brownian
dynamics procedure that we summarize as follows:

1. Initial and final quantum subsystem density matrix state labels
(jn0ijm0i, and jnijmi respectively) are selected and initial values
of the mapping variables are assigned accordingly. We use the
‘‘focusing” approach for this purpose which amounts to per-
forming the integrations over initial mapping variables using
a steepest descent approximation (see reference [41] for
details).

2. Initial values of the local bath positions and momenta (�r0; �p1)
are sampled from the Wigner transformed initial distribution
ðq̂bÞWð�r0; �p1Þ. This sampling performs the �r0; �p1 integrals by a
Monte Carlo procedure.

3. Next, the integral over d�r1 is performed, determining �r1 from
the argument of the d-function as
�r1 ¼ �r0 þ �
�p1

Mb
4. The mapping variables can be advanced to the next step using
�r1 to compute the matrix elements in Eq. (30). This provides
all the necessary information to compute new values of the
functions hnð�r1Þ that are used in the mapping Hamiltonian and
defines the mapping variable equations of motion.

5. Now all the quantities necessary to specify the new time step’s
gaussian momentum distribution, exp½� 1

4a2�
ð�p2 � �p�2Þ

2�, are
available. Here
�p�2 ¼ �p1 � �
rhnð�r1Þ þ rhmð�r1Þ

2
þ 2g

p
�r0L1 �Xc�r1 þ l1

�p1

Mb

� �� �
ð46Þ
is the center of the new gaussian momentum distribution. It is
determined by a force term arising from the gradients of the
functions hn and hm, a time dependent force, 2g�r0

L1
p , an inverted

harmonic force term, �2gXc
p

�r1, coming from the interaction be-
tween the local and global bath degrees of freedom (this term
is cancelled in the counter-term Hamiltonian), and finally a
frictional dissipative term, 2gl1

pMb
�p1, in which the force depends

on the current velocity and the strength of the friction g arising
from the coupling to the global bath. As discussed above, in ac-
cord with the fluctuation–dissipation theorem, this dissipative
term is accompanied by gaussian momentum fluctuations that
are incorporated by sampling �p2 values from this shifted gauss-
ian distribution. Thus the integral over �p2 is performed by a di-
rect gaussian sampling procedure. The width of the distribution
of momentum fluctuations in this Brownian dynamics scheme
is r2 ¼

ffiffiffiffiffiffiffiffiffiffiffi
2a2�
p

. We compute a2 by numerical integration (see
Eq. (18), and the definition after Eq. (27)).

6. The sampled value of �p2 determines �r2 according to the next d-
distribution when the cycle repeats starting at step (3).

The approach outlined above employs the linearization approx-
imation for the entire propagation. In this respect it is similar to the
earlier LANDmap approach we developed, and is detailed in refer-
ence [6]. In LANDmap the evolution of all degrees of freedom is
treated explicitly and linearization of the path integrals for the local
and global bath variables results in a deterministic dynamics in
contrast to the stochastic approach we develop here in which the
global bath degrees of freedom are integrated out. A comparison be-
tween the performance of these approaches will be presented in the
results section. The linearized dynamics can be used iteratively as a
short time approximation to improve the accuracy of this approach
for longer time propagation (this is the ISLAND-map algorithm
[15]). An analogous iterative procedure can be developed for the
stochastic approach outlined above. In this iterative scheme many
short time propagation segments represented by Eq. (41) are con-
catenated. Thus, for example, the reduced density matrix at time
2t is obtained as:
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In constructing the Brownian dynamics propagator we have as-
sumed that the global bath is initially in thermal equilibrium en-
abling us to integrate out these variables and include their
effects on the local bath dynamics in terms of the dynamically
non-local influence functional. The same assumption has been
implicitly made for the density matrix at the beginning of each
time segment to obtain the above iterative scheme. This assump-
tion should not hold in general, however, we will show in model
studies reported below that reasonable results can often be ob-
tained. In future work we will explore the conditions under which
this approach provides a good approximation, and develop means
to correct for energy dissipation to the global bath that is not ac-
counted for correctly in the current scheme.
3. Results

3.1. Spin-Boson Local bath coupled to independent boson global bath

The goal of the model calculations we describe below is two-
fold: First we will explore how the linearized propagator becomes
accurate for longer times in a condensed phase environment as a
function of the critical environmental parameters identified in
the theoretical analysis namely g;Xc , and b. Here the focus will
be on comparing fully linearized approximate results with con-
verged ISLAND-map calculations. This multi-state iterative density
matrix propagation scheme should provide exact results in the
limit of many iterations. Second, we will assess the performance
of the stochastic scheme derived in this paper by comparing the re-
sults of the iterative Brownian dynamics approach that integrates
out the global bath variables analytically, with results from full
dimensional ISLAND-map calculations.

The form of our model Hamiltonian is

bH ¼ bHs�b þ bHb�B ð48Þ

where the quantum system-local bath Hamiltonian, bHs�b is the
standard symmetric spin-boson form
bHs�b ¼
Xm

j¼1

1
2
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j þx2
j r2

j Þ1̂þ
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j¼1

cjrjr̂z þ Dr̂x ð49Þ

A simple model system to which we can readily apply the influ-
ence functional approach outlined in Section 2 involves coupling
each local bath oscillator to its own independent global bath. In
this case the local bath-global bath Hamiltonian has the form:
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As discussed in the Theory section and shown below, this model
Hamiltonian, with bilinear coupling between the local and global
baths, exhibits some curious behavior in the limit of strong cou-
pling [27,24]. The ‘‘counter-term” modified Hamiltonian corre-
sponding to the model above takes the form:
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In the following we will present results both for the ‘‘standard”
and the counter-term modified Hamiltonian.

For convenience we choose each of the independent global
bath-local bath oscillator spectral densities to be identical, though
this simplification is unnecessary. Thus, in our calculations, the CðjÞJ

and XðjÞJ are sampled from the smooth, exponential cutoff Ohmic
spectral density, JðXÞ ¼ gX exp½�X=Xc�, for a global bath medium
with damping constant g.

The quantum system-local bath coupling constants, cj, and local
bath frequencies, xj, are determined by a similar exponential cut-
off Ohmic spectral density, JlocðxÞ ¼ glocx exp½�x=xc�, with differ-
ent damping constant gloc , and cutoff frequency xc . In the studies
presented below these parameters were assigned the following
values: gloc ¼ 0:5;xc ¼ 1:0. The off-diagonal coupling in the spin-
boson Hamiltonian was D ¼ 0:333. In all the figures below various
quantities are plotted as functions of reduced time, s ¼ tD.

The model studies presented below explore the general predic-
tion of the influence functional theory arguments made in Section 2
which suggest that the reliability of the linearization approxima-
tion for longer times in condensed phase applications depends
on the coupling between the local and global baths controlled by
g, and the temperature. The approximation that enables simplifica-
tion of the multiple time integrals using the strongly peaked nature
of the kernels, aR, and aI , will also be explored by varying the cutoff
frequency Xc . As these quantities increase linearization becomes
accurate for longer times. This will be tested by comparing linear-
ized results with those obtained using the full dimensional itera-
tive scheme that provides a benchmark. We will also explore the
reliability of the Brownian dynamics scheme introduced in the pre-
vious section and its approximate iterative implementation.

In Fig. 2 (see caption for details) we explore the influence of glo-
bal bath cutoff frequency Xc , and temperature for a fixed small va-
lue of global bath friction g ¼ 0:05. The results compared are for
the standard Hamiltonian (not including the counter-term). The
general trend observed is that the linearized approximation be-
comes more accurate with increasing values of Xc . This improve-
ment is more pronounced at higher temperatures. Both these
observations are consistent with the theoretical analysis presented
in Section 2.1. The figure also demonstrates the good agreement
between the iterative scheme Brownian dynamics results and con-
verged ISLAND-map calculations. Generally the linearized Brown-
ian results agree well with linearized full system dynamical
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results, and the same is true when the iterative algorithm is em-
ployed though differences appear at longer times.

The results presented in Fig. 3 extend the analysis to larger val-
ues of global bath friction (g ¼ 0:5), and for a range of cutoff fre-
quencies (Xc ¼1.0, 2.0, and 5.0). The trends observed for smaller
friction are confirmed: linearization becomes even more accurate
both at high and low temperature with increasing Xc , and the
Brownian dynamics scheme is again seen to give reliable results.
For this strong global bath friction limit, however, we observe that
the spin population difference does not equilibrate to zero. This
behavior is unphysical since the model we are studying is a sym-
metric spin-boson (the two diabatic state energies are degenerate
so at thermal equilibrium the populations should be the same).
This occurs because of the nature of the coupling between the local
and global baths in the standard model Hamiltonian used in these
calculations, and arises from evolving the non-equilibrium initial
conditions used in studies with this Hamiltonian, in the strong fric-
tion limit. Analogous unphysical behavior has been discussed at
length in the literature [27]. When the global bath friction, and
therefore the couplings CðjÞJ , are sufficiently large, the bilinear cou-
pling term in Eq. (50) dominates the dynamics of the local bath
variables which becomes unbounded. The off-diagonal term in
the spin-boson Hamiltonian (Dr̂x) also becomes negligible com-
pared to this unbounded term, and population equilibration is
compromised. The counter-term modified Hamiltonian in Eq.
(51) gives bounded dynamics and thus avoids these problems.

The effect of the counter-term is demonstrated in Fig. 4 where
we present results for both diagonal (populations) and off-diagonal
density matrix elements (coherences). In the left panel, in the ab-
sence of the counter-term, the unstable local bath dynamics results
in rapid decay of the coherence elements and the population differ-
ence does not equilibrate for strong global bath friction. The results
presented in the center and right panels are obtained with the
same global bath parameters but now, with the counter-term mod-
ified Hamiltonian, the stable local bath dynamics gives long lived
coherences and the populations can relax to equilibrium. From
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legend, the reader is referred to the web version of this article.)
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the right hand panel we see that the iterative scheme gives a more
accurate account of this long lived coherent dynamics.
4. Conclusion

In this paper we explore how the linearized approximation be-
comes accurate for a model condensed phase system, composed of
a quantum subsystem coupled to a local environment which in
turn is coupled to a global bath. The results presented in Section 3
support the theoretical analysis given in Section 2 and confirm that
linearization is accurate for the long time dynamics of this system
when the coupling between the local and global environments is
strong, and the global bath has a broad frequency distribution.

We have also introduced a new linearized stochastic density
matrix propagation algorithm. We explored the properties of this
approach and demonstrated that it satisfies the fluctuation–dissi-
pation theorem in various limits. Results of calculations using this
new approach are essentially as accurate as those obtained with
the full system linearized propagation approach. In the new
scheme, however, the global bath degrees of freedom are inte-
grated out and the reduction of the number of degrees of freedom
that must be evolved explicitly provides a potential advantage
with this approach. The accuracy of the approach for longer times
can be improved using an iterative implementation. This imple-
mentation contains an additional approximation: it assumes a
‘‘product form” density matrix in which the global bath is in ther-
mal equilibrium, at a fixed temperature, at the beginning of each
iteration. Our results provide numerical evidence suggesting that
these approximations, that appear reasonable in the weak coupling
limit, can be reliable even for moderate to strong local bath-global
bath coupling. Future work will focus on further exploring theoret-
ically and numerically the origins and reliability of these
observations.

Systematic procedures for partitioning the bath into its constit-
uent local and global components that influence the short time
dynamics, and longer time dissipative effects, respectively, have
been discussed [22,23]. With hierarchical approaches that make
assumptions about separations of time-scales often one must ab-
sorb the local bath degrees of freedom into the definition of the
quantum subsystem due of the fast timescale on which these de-
grees of freedom evolve. This added complication may not be nec-
essary with the linearized dynamics procedure described in this
paper and it will be useful to compare our approach with other
hierarchical methods that require this separation of time-scales.
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