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ABSTRACT

When matter is strongly coupled to an optical cavity, new hybrid light–matter states are formed, the so-called polariton states. These polari-
tons can qualitatively change the physical properties of the matter coupled to the cavity by completely altering its energy eigenspectrum.
Fueled by experimental innovations in recent years, much progress has been made in simulating the intrinsic quantum behavior of these
hybrid states. At the heart of each simulation is the choice of Hamiltonian to represent the total light–matter hybrid system. Even at this fun-
damental level, there has been significant progress in developing new gauges and representations for this Hamiltonian, whether exact or
under approximations. As such, this review aims to discuss several different forms of Hamiltonians for the researcher trying to enter this field
by clearly and concisely deriving each different representation from the fundamental Minimal Coupling Hamiltonian. In addition, this review
provides commentary on the optimal usage and extent of approximations for each individual representation to assist the reader in choosing
the appropriate Hamiltonian for their work.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0225932
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I. INTRODUCTION

Recent progress in enabling new chemical reactivities by strongly
coupling molecular systems to quantized radiation1–12 has stimulated
theoretical developments in molecular quantum electrodynamics (see
Fig. 1).13–29 In particular, light–matter interactions beyond the weak–
strong coupling regime, such as the ultra-strong coupling28 (USC) and
the deep-strong coupling30 (DSC) regime, are currently an active field
of theoretical research.13,18,20,30–37 Such coupling regimes lead to new
exciting physical phenomena that cannot be described with the widely
used approximate light–matter Hamiltonians such as the Rabi and
Jaynes–Cumming Hamiltonians18,19,21,24,38 of quantum optics. In this
manner, it is crucial to strategically choose which light–matter
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Hamiltonian to use to model your system by understanding the differ-
ent benefits and shortcomings of each representation.

As this field of cavity quantum electrodynamics (cQED) is highly
interdisciplinary, drawing from both quantum optics and physical
chemistry, the appropriate choice of Hamiltonian can be obfuscated
for those new to the field. Often, the relationships between
Hamiltonians and exact levels of approximation consequentially
become unclear. In this review, we seek to put in one place all the
major gauges and representations commonly used in the field with
detailed derivations that relate them to each other, helping to bridge
the gap between quantum optics and physical chemistry.

This review is organized such that exact Hamiltonians for matter
coupled to a single mode are initially introduced in Sec. II, and
Secs. III–V layer on approximations, going all the way to the semiclassi-
cal approximation. As such, Sec. II introduces different forms of the full
Hilbert space Hamiltonian, derived from the fundamental Minimal
Coupling Hamiltonian. Then, in Sec. III, the truncation of the full
Hilbert space is considered, with discussions of the various methods for
addressing the gauge ambiguities caused by such projections. In Sec. IV,
the simplified quantum optics models are discussed and benchmarked
relative to the truncated matter Hamiltonians. Then, Sec. V provides a
brief comparison of cQEDmethods with Floquet theory, which is under
the semiclassical approximation. Using insights from this path, Sec. VI
extends the formalism to more generalized forms of cQED
Hamiltonians for systems with many modes and many molecules. The
future perspectives and analysis are provided in Sec. VII.

II. CAVITY QED HAMILTONIANS

Before directly discussing various exact cavity QED
Hamiltonians, we define the formalism used in the rest of the review
for the two primary degrees of freedom (DOF) covered in this review,

namely, the molecular Hamiltonian and the photonic Hamiltonian.
Following this brief overview of these independent Hamiltonians, the
rest of this section focuses on different representations of QED
Hamiltonians that describe light–matter interactions: the minimal cou-
pling Hamiltonian (Sec. II A), the dipole gauge Hamiltonian (Sec. II B),
and the asymptotically decoupled Hamiltonian (Sec. II C).

We introduce the matter Hamiltonian in its most fundamental
form as an ensemble of charged particles interacting with some poten-
tial. In our notation, we formulate this as

ĤM ¼ T̂ þ V̂ ðx̂Þ ¼
X
j

1
2mj

p̂2
j þ V̂ ðx̂Þ; l̂ ¼

X
j

zjx̂ j; (1)

where j is the index of the jth charged particle (including all electrons
and nuclei), with the corresponding mass mj and charge zj. In addi-
tion, x̂ � x̂ j

� � ¼ R̂; r̂
� �

with R̂ and r̂ representing the sets of nuclear
and electronic coordinates, respectively, p̂ � p̂R; p̂rf g � p̂ j

� �
is the

mechanical momentum operator as well as the canonical momentum
operator, such that p̂j ¼ �i�hrj. Further, T̂ ¼ T̂R þ T̂r is the kinetic
energy operator, where T̂R and T̂r represent the kinetic energy opera-
tor for nuclei and for electrons, respectively, and V̂ ðx̂Þ is the potential
operator that describes the Coulombic interactions among electrons
and nuclei. Note that this fundamental form does not make any Born–
Oppenheimer approximations and is in general, exact and impossible
to solve for real systems. It is, however, perfectly well suited for toy
model systems where an electron is interacting with some external
potential, and this representation allows us to most clearly show the
fundamental light–matter coupling as a starting point. For the purpose
of this review, we do not focus on solving the matter system itself,
instead highlighting how coupling to the cavity affects said matter sys-
tem. For a more in-depth review of molecular Hamiltonians, see
Appendix A.

For the majority of Hamiltonians discussed in this review, the
matter system is assumed to already be solved, and the light–matter
Hamiltonian is framed in the eigenbasis of the matter Hamiltonian.
Additionally, the light–matter coupling terms are written as functions
of other matter observables that are accessible from electronic structure
methods and assumed to be expressed in the matter eigenbasis.
Namely, these are the particles’ momenta and the molecular dipole,
which is more common for molecular systems.

As light is a many-mode ensemble of simple harmonic oscillators,
the cavity Hamiltonian for a single mode is

Ĥph ¼ �hxc â†â þ 1
2

� �
¼ 1

2
ðp̂2c þ x2

c q̂
2
cÞ; (2)

where xc is the frequency of the mode in the cavity, â† and â are
the photonic creation and annihilation operators, and q̂c
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

�h=2xc

p ðâ† þ âÞ and p̂c ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�hxc=2

p ðâ† � âÞ are the photonic
coordinate and momentum operators, respectively. This is the simplest
picture of a cavity’s Hamiltonian. In principle, a given cavity can have
many modes that couple to matter. Such situations are discussed in
Secs. III E and VI; however, for the sake of clarity and concision, we
introduce each major representation of the Hamiltonian with only one
cavity mode with the understanding that all can be extended to many
modes.

Aside from just the photonic Hamiltonian, another important cav-
ity operator for gauge theory is the mode’s vector potential. Choosing

FIG. 1. Characteristic examples of polariton photochemistry. (a) Schematic illustra-
tion of Rabi splitting due to strong coupling for a single atom in a cavity. (b)
Eigenspectra for a diatomic molecular system both outside and inside a cavity. (c)
Properties of a formaldehyde molecule inside a cavity, demonstrating more complex
polariton eigenspectra and changes in transition densities due to the cavity.39

(Weight et al., J. Phys. Chem. Lett. 14, 5901–5913, 2023; licensed under a Creative
Commons Attribution (CC BY 4.0) license.)
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the Coulomb gauge, $ � Â ¼ 0, the vector potential becomes purely
transverse Â ¼ Â?. Under the long-wavelength approximation,

Â ¼ A0ðâ þ â†Þ ¼ A0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2xc=�h

p
q̂c; (3)

where A0 ¼
ffiffiffiffiffiffiffiffiffiffiffi

�h
2xce0V

q
ê for a Fabry–P�erot cavity, with V as the quanti-

zation volume inside the cavity, e0 as the permittivity, and ê is the unit
vector of the field polarization. This long-wavelength approximation
explicitly assumes that the vector potential does not vary with its spa-
tial coordinate. In practice, it is crucial to consider the length scales of
the mode and the matter to be justified in making this approximation.
For example, for a single small molecule system (�1 nm spatial extent)
coupled to a cavity mode in the visible range (2pc=xc � 400 nm), this
level of approximation is valid. However, when considering extended
matter systems such as 2D materials or a large ensemble of molecules,
this level of approximation can break down.40

As with the single-mode approximation, we also make this long
wavelength approximation throughout our derivations in Sec. II–V for
clarity. Section VI acts as an example of how to relax both of these
approximations. For a more in-depth review of quantum optics, see
Appendix B.

A. The minimal coupling Hamiltonian

We begin our discussion of QED with the most fundamental
light–matter Hamiltonian in QED, the minimal coupling
Hamiltonian. This will act as the starting point for all derivations in
this review. The minimal coupling QED Hamiltonian in the Coulomb
gauge (the “p � A” form) is expressed as

Ĥp�A ¼
X
j

1
2mj

ðp̂ j � zjÂÞ2 þ V̂ ðx̂Þ þ Ĥph; (4)

where p̂ j ¼ �i�h$j is the canonical momentum operator for the jth
particle.

This p � A Hamiltonian can be directly thought of as the photonic
DOF performing a unitary boost on the matter DOF. We can formal-
ize this boost as a unitary operator, the so-called Power–Zienau–
Woolley (PZW) gauge transformation operator,41,42 expressed as

Û ¼ exp � i
�h
l̂ � Â

� �
¼ exp � i

�h
l̂ � A0ðâ þ â†Þ

� �
; (5)

or equivalently Û ¼ exp½� i
�h

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2xc=�h

p
l̂A0q̂c� ¼ exp½� i

�h ð
P

j zjÂx̂ jÞ�.
Recall that a momentum boost operator Û p ¼ e�

i
�hp0 q̂ displaces p̂

by the amount of p0, such that Û pÔðp̂ÞÛ †

p ¼ Ôðp̂ þ p0Þ. Hence, Û is

a boost operator for both the photonic momentum p̂c by the amount

of
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2xc=�h

p
l̂A0, as well as for the matter momentum p̂j by the

amount of zjÂ. Using Û
†
to boost the matter momentum, one can

show that

Ĥp�A ¼ Û
†
ĤMÛ þ Ĥph; (6)

hence Ĥp�A can be obtained31 by a momentum boost with the amount
of �zjÂ for p̂ j, then adding Ĥph. It should be noted that while we are
using staying in the single-particle, single photonic mode picture for
simplicity, the PZW operator in principle can be expressed for many

particles and many modes beyond any long-wavelength approxima-
tion (see Sec. III F).42–44

B. The dipole gauge Hamiltonian

Now that we have introduced our starting point, we perform a
unitary gauge transformation on the minimal coupling Hamiltonian to
arrive at the more common dipole gauge Hamiltonian.41,45 This QED
Hamiltonian is similarly found using the PZW operator from Eq. (5) as

Ĥd�E ¼ Û Ĥp�AÛ
† ¼ Û Û

†
ĤMÛ Û

† þ Û ĤphÛ
†

¼ ĤM þ �hxc â†â þ 1
2

� �
þ ixcl̂ � A0ðâ† � âÞ þ xc

�h
ðl̂ � A0Þ2;

(7)

where we have used Eq. (6) to express Ĥp�A, and the last three terms of

the second line are the results of Û ĤphÛ
†
. Note that upon applying

Û
†
to Ĥp�A, we are boosting the matter and photonic momenta such

that p̂ j ! p̂ j � zjÂ and p̂c ! p̂c �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2xc=�h

p
l̂A0. This effectively

pushes the interaction terms from matter the kinetic energy term to
the photonic kinetic energy term. This can be explicitly seen by rewrit-
ing Ĥd�E in terms of q̂c and p̂c,

Ĥd�E ¼ ĤM þ 1
2
x2

c q̂
2
c þ

1
2

p̂c þ
ffiffiffiffiffiffiffiffi
2xc

�h

r
l̂A0

 !2

; (8)

because the PZW operator boosts the photonic momentum p̂c byffiffiffiffiffiffiffiffiffiffiffiffiffi
2xc=�h

p
l̂A0. Additionally, the term

xc
�h ðl̂A0Þ2 is commonly referred

to as the dipole self-energy (DSE). Note that in the literature, Eqs. (7)
and (8) are sometimes written in the multipolar gauge, where the
transverse polarization field is used instead of the dipole operator.43,46

The widely used Pauli–Fierz (PF) QED Hamiltonian17,21,39,47–54

in recent studies of polariton chemistry can be then obtained by using
the following unitary transformation

Û/ ¼ exp �i
p
2
â†â

� �
: (9)

Note that Û/â
†âÛ

†

/ ¼ â†â, Û /âÛ
†

/ ¼ iâ, and Û/â
†Û

†

/ ¼ �iâ†.

By applying Û/ on Ĥd�E, we have the PF Hamiltonian as follows:

ĤPF ¼ Û/Ĥd�EÛ
†

/

¼ ĤM þ �hxc â†â þ 1
2

� �
þ xcl̂ � A0ðâ þ â†Þ þ xc

�h
ðl̂ � A0Þ2

¼ ĤM þ 1
2
p̂2c þ

1
2
x2

c q̂c þ
ffiffiffiffiffiffiffiffi
2

�hxc

r
l̂ � A0

 !2

: (10)

The above PF Hamiltonian has the advantage as a pure real
Hamiltonian and the photonic DOF can be viewed21,47 and computa-
tionally treated55,56 as an additional “nuclear coordinate.”

We emphasize that both the operators and the wavefunctions
should be gauge transformed (though Û ), in order to have a gauge
invariant expectation values. This means that

Ô ! Û ÔÛ
†
; jWi ! Û jWi; (11)
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such that hÔi ¼ hWjÔjWi ¼ ðhWjÛ †ÞðÛ ÔÛ
†ÞðÛ jWiÞ. In the case

of global unitary transforms (no spatial or momentum dependence),
this is equivalent to simply writing the matrix/vector expressions of the
operator/wavefunction in the new basis. Even though gauge transfor-
mations are not as simple as a basis change, the same principle applies.

For cavity QED, this principle is particularly salient for the pho-
ton number operator, as it is commonly asked, “how many photons
are in the cavity?”18,20 In response to this, the Coulomb gauge result is
taken to be the physical photon number18 and is defined as

N̂ p�A ¼ â†â ¼ 1
2�hxc

p̂2c þ
xc

2�h
q̂2c �

1
2
: (12)

Under the dipole gauge, it should be

N̂ d�E ¼ Û â†âÛ
† ¼ Û â†Û

†
Û âÛ

† � d̂
†
d̂ ;

¼ 1
2�hxc

p̂c þ
ffiffiffiffiffiffiffiffi
2xc

�h

r
l̂A0

 !2

þ xc

2�h
q̂2p�A � 1

2
; (13)

where d̂
† ¼ Û â†Û

† ¼ ffiffiffiffixc
2�h

p
Û q̂c � i

x p̂c
	 


Û
† ¼ ffiffiffiffixc

2�h

p ½q̂c � i
x p̂c
	

þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
2xc=�h

p
l̂A0Þ�. For the PF Hamiltonian, the photon number opera-

tor should then be

N̂ PF ¼ Û/Û â†âÛ
†
Û

†

/ ¼ ðÛ/Û â†Û
†
Û

†

/ÞðÛ/Û âÛ
†
Û

†

/Þ � ĉ†ĉ

¼ 1
2�hxc

p̂2c þ
xc

2�h
q̂c þ

ffiffiffiffiffiffiffiffi
2

�hxc

r
l̂ � A0

 !2

� 1
2
; (14)

where

ĉ† ¼ Û/Û â†Û
†
Û

†

/ ¼
ffiffiffiffiffiffi
xc

2�h

r
q̂c þ

ffiffiffiffiffiffiffiffi
2xc

�h

r
l̂A0

 !
� i
xc

p̂c

" #
; (15)

and the physical number operator is

N̂ ¼ Û /Û â†âÛ
†
Û

†

/ ¼ ĉ†ĉ 6¼ â†â: (16)

This has been pointed out extensively in Refs. 18 and 20. Using the
incorrect expression â†â under the dipole gauge will overestimate the
actual photon number, causing inaccurate and misleading results.

C. Asymptotically decoupled Hamiltonian

While the Coulomb and dipole gauges are by far the most com-
mon representations for light–matter couplings, in recent works, the
asymptotically decoupled AD Hamiltonian was introduced to increase
the simulation accuracy for models with arbitrarily strong coupling
strengths.35,40 We begin by rewriting Ĥp�A from Eq. (4) in its expanded
form

Ĥp�A ¼ ĤM þ �hxcâ
†â þ p̂ � A0

m
ðâ† þ âÞ þ jA0j2

2m
ðâ† þ âÞ2; (17)

where the zero point energy of the photonic mode is omitted for sim-
plicity. Then we perform a Bogoliubov transformation on the photonic
degrees of freedom to rewrite Ĥp�A as

Ĥp�A ¼ ĤM þ �hXb̂
†
b̂ � xXg � p̂ðb̂† þ b̂Þ; (18)

where X ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

c þ 2Njgj2
q

is the dressed photon frequency with a

particle number N, g ¼ qA0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xc=m�h

p
is the coupling strength, and

xX ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
�h=mX

p
is a characteristic length. The Bogoliubov transform

used in Eq. (18) is of the form, b̂ þ b̂
† ¼ ffiffiffiffiffiffiffiffiffiffiffi

X=xc

p ðâ þ â†Þ to remove
the linear term in ðâ þ â†Þ from Eq. (17).

Recall that a position shift operator, Û q ¼ e�
i
�hq0 p̂ displaces q̂ by

the amount q0, such that Û qÔðq̂ÞÛ †

q ¼ Ôðq̂ þ q0Þ. With this in
mind, a shift operator in both photonic and matter coordinates is
introduced, which transforms Eq. (18) into the AD representation

ÛAD ¼ exp � i
�h
ng � p̂p̂

� �
; (19)

where p̂ ¼ iðb̂† � b̂Þ is the photonic momentum in the Bogoliubov
transformed space and ng ¼ gxX=X is an effective coupling parameter
in the AD representation. This leads to the introduction of the AD
Hamiltonian, ĤAD ¼ Û

†

ADĤp�AÛAD,

ĤAD ¼
X
j

1
2mj

p̂2
j þ V̂ ðx̂ j þ ngp̂Þ þ �hXb̂

†
b̂ �

X
j

�h2g2

mjX
2 p̂

2
j : (20)

By rescaling the mass of each particle to an effective mass,
meff

j ¼ mj½1þ 2jg=xcj2�, this asymptotically decoupled Hamiltonian
is then simplified to

ĤAD ¼
X
j

1

2meff
j

p̂2
j þ V̂ ðx̂ j þ ngp̂Þ þ �hXb̂

†
b̂: (21)

This is simply a photonic Hamiltonian added to a matter Hamiltonian
with an effective mass scaling in the kinetic energy and a shift in coor-
dinates in the potential energy. Note that the coupling is mediated by
the shifting of each xj by the photonic operator weighted by an effec-
tive coupling term ng. However, jngðgÞj has a finite peak and then
asymptotically approaches zero for large jgj. In other words, in this
representation, the photonic and matter degrees of freedom asymptoti-
cally decouple at arbitrarily high coupling strength. For this reason,
this representation was put forward as a convenient Hamiltonian
when considering systems in the deep strong coupling regime and
beyond.

This AD Hamiltonian has also been expanded upon in recent
work for solid-state materials in reciprocal space in Ref. 40, but is
beyond the scope of this review as we are focused on molecular QED
(Fig. 1).

III. QED HAMILTONIANS IN TRUNCATED HILBERT
SPACES

Investigating the cavity QED computationally always requires a
truncation of electronic states applied to the QED Hamiltonians,31,33

as the electronic Hilbert space in principle has an infinite basis size for
any real system. Additionally, as these matter electronic states are often
difficult to obtain, one typically projects the QED Hamiltonian to a
few physically relevant electronic states, which can still produce accu-
rate results in the low energy regime. However, when dealing with
strong light–matter coupling, the manner in which the truncation of
the Hilbert space is performed drastically changes the accuracy and
consequentially the convergence of results with basis size. In the con-
text of this review, we assume that simulations are done via direct diag-
onalization of the Hamiltonian (instead of perturbative or similarly
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approximate approaches), benchmarking the different Hamiltonians
by the minimum basis size required for their eigenenergies to
converge.

Additionally, as with any truncation, the choice of basis is funda-
mental in determining the validity of said truncation. While for the
photonic DOF, we always choose to truncate in the Fock basis, for
matter DOFs there are a few commonly chosen bases that are dis-
cussed in this review. Foremost among these is the adiabatic basis.
These are the eigensolutions to the electronic Hamiltonian (the matter
Hamiltonian excluding the nuclear kinetic energy). While these are
convenient states to obtain via electronic structure, they are in princi-
ple parameterized by the nuclear DOFs. In contrast to these are the
diabatic states, which are independent of the nuclear coordinate.
However, these diabatic states are difficult to obtain with exact solu-
tions not existing beyond simple systems. As such, the Mulliken–Hush
quasi-diabats can be used as approximate diabatic states for small
changes in the nuclear configuration. In this section, all three of these
basis choices are used to demonstrate the behavior of truncating the
light–matter Hamiltonians, but the fundamental idea of gauge ambigu-
ities and how to properly truncate the matter DOF is independent of
the matter basis choice.

As such, this section reviews the recent literature results on trun-
cating the Hilbert space of these QED systems. Sections III B and III C
discuss two different ways to truncate the matter DOF of the dipole
and Coulomb gauge Hamiltonians from Secs. IIA and II B. Then, Sec.
IIID discusses a new representation of the light–matter coupling in a
truncated Hilbert space, the polarized Fock state (PFS) Hamiltonian.
Finally, Secs. III E and III F briefly discuss how performing truncations
applies for more general systems with many modes and beyond the
long-wavelength approximation, respectively (Note that the full
descriptions for these generalized systems are found in Sec. VI.)

A. Benchmark model computational details

To accurately illustrate the performance of different truncated
QED Hamiltonians, we test the accuracy of the Hamiltonians dis-
cussed in this review on a model molecular system inside a cavity of
frequency xc ¼ 400meV. Figure 3 shows the potential energy

surfaces, diabatic potentials, and dipole matrix elements of the model
system that we use to benchmark these Hamiltonians, the so-called
Shin–Metiu proton-transfer model system.

This Shin–Metiu model molecular system57 contains two fixed
ions, one moving electron, and a proton (whose position is R), all
interacting with each other through modified Coulombic potentials.
These model potentials are characterized by a total Hamiltonian of
ĤM ¼ T̂ R þ Ĥ el, where T̂ R ¼ P̂

2
R=2mp is the kinetic energy of the

transferring proton, with the proton mass mp. Ĥ el is the electronic
Hamiltonian

Ĥ el ¼ T̂ r þ V̂ eN þ V̂NN; (22)

where T̂ r ¼ p̂2r=2me represents the kinetic energy operator of the sin-
gle electron with mass me. As this is a single-dimensional model

FIG. 2. Block diagram describing the relationships between various Hamiltonians
discussed in this article. Hamiltonians in the top row have poor matter state conver-
gence properties. Hamiltonians in the second row have poor Fock state conver-
gence properties. Hamiltonians in the bottom row have good matter and Fock state
convergence properties.

FIG. 3. Shin-Metiu model molecular system using parameters listed in Table I. (a)
Potential energy surfaces of the first four molecular states. (b) Diabatic potentials
(dashed curves) Vd�EðRÞ (red) and VAðRÞ (blue), with diabatic coupling VAD (gold).
(c) Matrix elements of l̂ in the adiabatic representation (solid) lgg (green), lee
(orange), and leg (light blue), as well as in the diabatic representation (dashed
curves) ld�E (red) and lA (blue).
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system, the electron-nuclei potential term, V̂ eN is a modified Coulomb
potential expressed as

V̂ eN ¼ �zpe
2
erf

jr � Rj
Rc

� �
jr � Rj � zDe

2
erf

jr � RDj
Rc

� �
jr � RDj

� zAe
2
erf

jr � RAj
Rc

� �
jr � RAj ; (23)

where r is the electronic coordinate and e ¼ 1 a.u. is the fundamental
charge, R is the proton coordinate, while RD and RA are the positions
of the static donor and acceptor ions, respectively. Furthermore, zp, zD,
and zA represent the charge of the proton, donor ion, and acceptor
ion, respectively. Additionally, Rc characterizes the degree of shielding
of the modified Coulomb interaction between the electron and the
ions, where under the limit of Rc ! 0, we recover the unshielded
Coulomb potential.

The nuclear–nuclear interaction potential VNN is similarly a
modified Coulomb potential between the proton and the ions,
expressed as

VNN ¼ zpzDe
2
erf

jR� RDj
Rn

� �
jR� RDj þ zpzAe

2
erf

jR� RAj
Rn

� �
jR� RAj ; (24)

where Rn is the nuclear–nuclear analog to Rc. The parameter values of
the Shin–Metiu model used in this review are tabulated in Table I. All
numerical results in this review assume this model system for the mat-
ter Hamiltonian.

B. Dipole and Coulomb gauge Hamiltonians

We begin with the simplest case of matter truncation. Consider a
finite subset of electronic states jaif g, where the projection operator
P̂ ¼Pa jaihaj defines the truncation of the full electronic
Hilbert space 1̂r ¼ P̂ þ Q̂ to the corresponding subspace P̂ . This
truncation reduces the size of the Hilbert space from originally 1̂r �
1̂R � 1̂ph to now P̂ � 1̂R � 1̂ph, where 1̂R and 1̂ph represent the
identity operators of the nuclear and photonic DOF, respectively. The
truncated matter Hamiltonian is

ĤM ¼ P̂ĤMP̂ ¼ P̂ T̂P̂ þ P̂ V̂ ðx̂ÞP̂ : (25)

Throughout this review, we use calligraphic symbols (such as ĤM) to
indicate operators in the truncated Hilbert space.

The simplest way to then write the QED Hamiltonians from Secs.
IIA andII B in this truncated subspace would then be to truncate each
matter operator by P̂ . Truncating the momentum operator and dipole
operator as P̂ p̂jP̂ and P̂ l̂P̂ , the QED Hamiltonians under the trun-
cated subspace are commonly defined as

Ĥ0
p�A ¼ P̂ Û

†
ĤMÛ P̂ þ Ĥph

¼ ĤM þ Ĥph þ
X
j

� zj
mj

P̂ p̂ jP̂ Â þ z2j Â
2

2mj

 !
; (26a)

Ĥd�E ¼ ĤM þ Ĥph þ ixcP̂ l̂P̂A0ðâ† � âÞ þ xc

�h
ðP̂ l̂P̂A0Þ2:

(26b)

Note that Ĥ0
p�A ¼ P̂Ĥp�AP̂ ¼ P̂ Û

†
ĤMÛ P̂ þ Ĥph. It is well known

that the above two Hamiltonians do not generate the same polariton
eigenspectrum31,33,37,58–62 under the ultra-strong coupling regime,28

explicitly breaking down the gauge invariance. This leads to the gauge
ambiguity33,63,64 as to which Hamiltonian, Ĥ0

p�A or Ĥd�E, is viable to
compute physical quantities when applying P̂ . This is attributed33,56 to
the fact that Ĥ0

p�A usually requires a larger subset of the matter states
to converge or generate consistent results with Ĥd�E, and apparently,
under the complete basis limit, they are gauge invariant [see Figs. 4(a)–
4(d)]. Further, this fundamentally different behavior of Ĥ0

p�A and Ĥd�E
upon state truncation is also attributed to the fundamental asymmetry
of the operators p̂ and l̂ ¼Pj zjx̂ j.

33 This gauge ambiguity histori-
cally sources from the mid-20th century with studies on the two-level
approximation for atom systems.65 Figures 4(a)–4(d) show these con-
vergence properties of both the dipole and Coulomb gauge
Hamiltonians, demonstrating that for this Shin–Metiu model system,

FIG. 4. Comparison of the polariton potential energy surfaces of the Shin–Metiu
model generated from four different QED Hamiltonians under different levels of trun-
cation for A0 ¼ 0:15 a.u. and xc ¼ 400 meV. (a) Pauli–Fierz Hamiltonian with 2
matter states and 4 Fock states. (b) Coulomb gauge Hamiltonian with 2 matter
states and 4 Fock states. (c) Pauli–Fierz Hamiltonian with 2 matter states and 10
Fock states. (d) Coulomb gauge Hamiltonian with 18 matter states and 6 Fock
states. (e) Properly truncated Coulomb gauge Hamiltonian with 2 matter states and
4 Fock states. (f) Polarized Fock state (PFS) Hamiltonian with 2 matter states and 4
Fock states. This shows how the latter two Hamiltonians require less matter and
Fock states to converge compared to the former two.

TABLE I. Parameters used in the molecular Hamiltonian ĤM.

Parameter Model

zp; zD; zA 1 (unitless)
RD �3.5 Å
RA 3.5 Å
Rc 1.75 Å
Rn 1.0 Å
mp 1836 a.u.
me 1 a.u.
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Ĥ0
p�A requires 9 times more matter states to converge [see Figs. 4(c)

and 4(d)].
Performing the same truncation scheme, the PF Hamiltonian in

the truncated electronic basis, ĤPF ¼ Û hĤd�EÛ
†

h ¼ ĤM

þÛ hÛ ĤphÛ †
Û

†

h, is expressed as

ĤPF ¼ ĤM þ Ĥph þ xcP̂ l̂P̂ � A0ðâ þ â†Þ þ xc

�h
ðP̂ l̂P̂ � A0Þ2

¼ ĤM þ 1
2
p̂2c þ

1
2
x2

c q̂c þ
ffiffiffiffiffiffiffiffi
2

�hxc

r
P̂ l̂P̂ � A0

 !2

: (27)

Note that Û h is only a function of the photonic DOF, thus it does not
bring any matter operator that was originally confined in P̂ to Q̂.
Therefore, ĤPF provides consistent results with Ĥd�E, ensuring that
there are no ambiguities between Ĥd�E and ĤPF.

C. Properly truncated Coulomb gauge Hamiltonian

Reference 36 contends that the gauge ambiguity between the

Coulomb and dipole gauges emerges because the P̂Û
†
and Û P̂ in

Ĥ0
p�A [Eq. (26a)] do not consistently constrain light–matter interaction

operators in the same electronic subspace as do those corresponding
operators in Ĥd�E. The source of this ambiguity lies in how much

information of the full system is constrained in the subspace P̂ and
how much is neglected upon truncation, center in the subspace

Q̂ ¼ 1̂r � P̂ , even when the matter eigenspectrum is converged for a

truncation in P̂ . Naturally, in the limit of P̂ ! 1̂r, both Ĥ0
p�A and

Ĥd�E have the same results, but in using Û P̂ to create Ĥ0
p�A, informa-

tion on the light–matter coupling is cast into the subspace Q̂. Namely,

the diamagnetic term z2j Â
2
=2mj in Ĥ0

p�A that is effectively evaluated in

the full space31,33 1̂r (based on the Thomas–Reiche–Kuhn sum rule),

hence is not properly confined in P̂ . As such, it overestimates its con-
tribution in the subspace,31,33 and by confining it within P̂ , the results
can be significantly improved.31 Reference 36 proposes that the best
way to confine the diamagnetic term to the projected subspace is to
reformulate Û as a unitary operator in said subspace. As such, using

P̂Û P̂31,58 does not resolve this gauge ambiguity either.
Based on the above conjecture, the gauge ambiguity in the trun-

cated electronic subspace will be resolved by defining the following
unitary operator:

Û ¼ exp � i
�h
P̂ l̂P̂ � Â

� �
� exp � i

�h
~lðx̂; p̂Þ � Â

� �
; (28)

such that all terms in Û ¼P1
n¼0

1
n! ð� i

�hÞnðP̂ l̂P̂ÞnÂn
are properly

confined within the subspace P̂ , and upon gauge transformation, all

light–matter interaction operators are now consistently confined in P̂
for both gauges. Here, Û is defined analogously to the PZW gauge

operator Û in the full space [Eq. (5)], and P̂ l̂P̂ � ~lðx̂; p̂Þ in princi-
ple is a function of both x̂ and p̂, due to the finite level projection that
ruins the locality of x̂ .31,66 Further, Û is a unitary transformation oper-

ator in the P̂ subspace and the identity operator in the subspace of

1̂r � P̂ , such that we still have Û Û † ¼ 1̂r � 1̂R � 1̂ph ¼ Û Û
†
.

Using Û , one can define the following Coulomb gauge Hamiltonian:36

Ĥp�A ¼ Û †ĤMÛ þ Ĥph; (29)

analogous to Ĥp�A in Eq. (6) in the full space. One can then formally

show that Ĥp�A [Eq. (29)] and Ĥd�E [Eq. (26b)] are related through Û
[Eq. (28)] as follows: Û Ĥp�AÛ † ¼ ĤM þ Û ĤphÛ † ¼ Ĥd�E. Note that

to establish the last equality, we have used the fact that Û ĤphÛ †

¼ Û 1
2x

2
c q̂

2
c þ 1

2 p̂
2
c

� �
Û † ¼ 1

2x
2
c q̂

2
c þ 1

2 ðp̂c þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2xc=�h

p P̂ l̂P̂A0Þ2. The
unitary relation between Ĥd�E and the new Ĥp�A formally proves that
there are no gauge ambiguities between these two gauges when follow-
ing this truncation scheme.

While the above formulation is general and exact, it may not be
immediately clear to the reader how to apply it. As such, we will walk
through performing this truncation scheme for molecular QED, where
the nuclear kinetic energy, T̂R is typically separated from the electronic
Hamiltonian Ĥ el ¼ ĤM � T̂R. The adiabatic electronic states jaðRÞi
are the eigenstates of Ĥ el through Ĥ eljaðRÞi ¼ ðT̂r þ V̂ ÞjaðRÞi
¼ EaðRÞjaðRÞi. Using P̂ ¼Pa jaðRÞihaðRÞj, the projected elec-

tronic Hamiltonian is Ĥel ¼ P̂Ĥ elP̂ ¼Pa EaðRÞjaihaj.
Alternatively, diabatic electronic states67–70 jui; j/if g can be obtained
by the unitary transform67–71 from the adiabatic states jaðRÞi. The
character of the diabatic states do not depend on R, such that
huj$Rj/i ¼ 0. With P̂ ¼Pu juihuj, Ĥel ¼ P̂Ĥ elP̂ ¼Pu VuuðRÞ
�juihuj þPu 6¼/ Vu/ðRÞjuih/j, where Vu/ðRÞ ¼ hujĤ elj/i is a

diabatic matrix element of Ĥ el.
By splitting the matter Hamiltonian as ĤM ¼ T̂R þ Ĥ el, then the

resulting molecular QED Hamiltonian in this gauge is

Ĥp�A ¼ Û †P̂ T̂RP̂ Û þ Û †P̂Ĥ elðp̂r ; x̂ÞP̂ Û þ Ĥph

¼
X
j2R

1
2mj

P̂ ðp̂j �rj~lÂ þ ~P jÞ2P̂ þ Û †ĤelÛ þ Ĥph; (30)

where the sum over j only includes nuclei, ~l � P̂ l̂P̂ , and ~P j repre-

sents the residue momentum ~P j � 1
2 ð i�hÞ2½~lÂ; ½~lÂ; p̂ j�� þ � � �. In the

above expression, we did not specify the choice of P̂ , which could be
either adiabatic or diabatic. Under the limiting case when A0 ¼ 0 or

~l � Â ¼ 0, both the �$j~lÂ and ~P j terms become 0, and Û †

¼ Û ! P̂ � 1̂R � 1̂ph. As one would expect, the zero-coupling limit

returns to just the addition of the two DOFs, Ĥp�A ! ĤM þ Ĥph.
When using adiabatic states for the truncation, one can show

that70,72 P̂ p̂2
j P̂ ¼ ðp̂ j � i�h

P
a;b d

j
abjaihbjÞ2, where djab � hajrjjbi

are the well-known derivative couplings. In addition to these adiabatic
derivative couplings, the light–matter interaction also induced addi-
tional “derivative”-type couplings,�rj~lÂ and ~P j.

When using the Mulliken–Hush diabatic states,68,73 which are the
eigenstates of the ~l � P̂ l̂P̂ operator, such that ~l ¼P/ l/j/ih/j,
one can prove that ~P j ¼ 0 for all nuclei. This is because that

rj~l ¼P/ rjl/j/ih/j, thus both ~lÂ and ½~lÂ; p̂ j� become purely
diagonal matrices, hence all of the higher order commutators in
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Û †
p̂jÛ become zero, resulting in ~P j ¼ 0 for j 2 R. This is analogous

to the diabatization criteria for pure matter systems, where dj/u ¼ 0,

furthering the analogy of rj~lÂ and ~P j being similar to a derivative
coupling.

This scheme of properly truncating the matter DOF thus yields
gauge invariant results for this matter truncation, regardless of the
matter basis. Additionally, it preserves the favorable Fock state conver-
gence behavior of the Coulomb gauge Hamiltonian. Consequently, it
requires fewer matter and Fock states than either of the Hamiltonians
discussed above. This convergence behavior is demonstrated numeri-
cally in Fig. 4(e) for the Shin–Metiu molecular model.

D. Polarized Fock-state Hamiltonian

The polarized Fock-state Hamiltonian takes advantage of the dis-
appearance of ~P j when the Hamiltonian is expressed in the Mulliken–
Hush diabatic basis to form an equivalent Hamiltonian that provides
additional physical intuition. In the Mulliken–Hush diabatic basis, the
matter Hamiltonian is expressed as

ĤM ¼ T̂R þ
X
/

V/ðRÞj/ih/j þ
X
/ 6¼u

V/uðRÞj/ihuj; (31)

where V/ðRÞ represents the diabatic potentials, V/uðRÞ represents the
diabatic coupling. The PF Hamiltonian in Eq. (10) under the j/i basis
is expressed as

ĤMH
PF ¼ Û †

lĤPFÛ l

¼ ĤM þ p̂2c
2
þ
X
/

x2
c

2
ðq̂c þ q0/ðRÞj/ih/jÞ2; (32)

where q0/ðRÞ ¼
ffiffiffiffiffiffi
2

�hxc

q
A0 � l/ðRÞ, l/ is eigen-dipole value for j/i, and

Û l is the unitary operator that changes the basis to the eigenbasis of l̂.
In this representation, the photonic DOF is simply a displaced har-
monic oscillator centered about �q0/ðRÞ. This displacement can be
viewed as a polarization of the photon field due to the presence of the
molecule-cavity coupling, such that the photon field corresponds to a
non-zero (hence polarized) vector potential, in contrast to the vacuum
photon field.

We can then rewrite this displaced harmonic oscillator term in
Eq. (32) in its own Fock basis, diagonalizing it as

1
2

p̂2c þ x2
cðq̂c þ q0/ðRÞÞ2

h i
jn/ðRÞi

� b̂
†

/b̂/ þ 1
2

� �
�hxcjn/ðRÞi ¼ n/ þ 1

2

� �
�hxcjn/ðRÞi; (33)

where the polarized Fock state (PFS) jn/ðRÞi � jn/i is the Fock state
of a displaced Harmonic oscillator, with the displacement �q0/

¼ �
ffiffiffiffiffiffi
2

�hxc

q
A0 � l/ðRÞ specific to the diabatic state j/i such that

jn/i ¼ e�ið�q0/Þp̂=�hjni ¼ eiq
0
/ p̂=�hjni, and n/ ¼ 0; 1; 2…;1 is the quan-

tum number for the PFS. Further, b̂
†

/ ¼ ðq̂ 0/ þ ip̂Þ= ffiffiffi
2

p
and b̂/

¼ ðq̂0/ � ip̂Þ= ffiffiffi
2

p
are the creation and annihilation operators of the

PFS jn/i, with the photon field momentum operator p̂ and polarized
photon field coordinate operator q̂0/ ¼ q̂ þ q0/ðRÞ. Note that in

contrast to a noninteracting photonic system, the PFS l/ðRÞ has an
explicit dependence on the eigen-dipole of the molecule for each given
nuclear coordinate. As such PFS’s corresponding to different MH dia-
bats are not in general, orthogonal, i.e., hn/jmui 6¼ d/u Under the spe-
cial case of the atomic cavity QED, the PFS representation reduces to
the qubit-shifted Fock basis jnþi; jm�if g, which has been used to
solve the polariton eigen-spectrum for the quantum Rabi model74–77

throughout the range of light–matter coupling and to derive the gener-
alized rotating-wave approximation.74,75,78 These non-orthogonal
Fock states and their overlap hm�jnþi have shown to effectively cap-
ture the light–matter interactions in a quantum Rabi model.74,75

To express the full light–matter Hamiltonian in the PFS represen-
tation, the PF Hamiltonian [Eq. (32)] undergoes a unitary shift opera-
tor (similar to a polaron transformation15) Û pol of the form

Û pol ¼ exp
i
�h

X
/

q0/ðRÞj/ih/jp̂c
" #

; (34)

such that it unshifts that displaced Harmonic oscillator in Eq. (32)
when applied to ĤPF. Note that this is also similar to the coherent state
transformation49,79–100 or the Lang–Firsov transformation79,88,89,101

that are used in ab initio QED calculations; however, for the purpose
of those calculations, the matter DOF is not represented in the
Mulliken–Hush basis, and the general form of l̂ is used instead of the
matrix elements, q0/. Consequently, these ab initio techniques also
show the same computational advantages for the photonic DOF as
PFS but solve the matter DOF self-consistently.

Upon the transformation by Û pol, we then have the PFS
Hamiltonian as

ĤPFS ¼ Û †

polĤ
MH
PF Û pol

¼ Û †

polT̂RÛ pol þ
X
/;n/

ðV/ðRÞ þ n/ þ 1
2

� �
�hxcÞj/; n/ihn/;/j

þ
X

n/ ;mu ;/6¼u

hmujn/iV/uðRÞj/; n/ihmu;uj: (35)

In contrast to other representations such as those discussed in Sec. II,
this Hamiltonian does not have an explicit light–matter interaction
term. Instead, all interactions are mediated via the overlap of the
shifted Fock states through the hmujn/iV/uðRÞ term and the
Û †

polT̂RÛ pol term.
We can further express the Û †

polT̂RÛ pol term in the j/; n/i basis
as

Û †

polT̂RÛ pol ¼ 1
2M

P̂ � i�h
X

/;n/ ;m/

dm/n/ j/;m/ihn/;/j
� �2

; (36)

where dm/n/ ¼ hm/jrRjn/i originates from the R-dependence of
PFS. Note that there is no non-adiabatic couplings between states
with different diabatic characters, since h/; n/jrRju;mui
¼ hn/jrRjmuih/jui ¼ 0 (because we assume that j/i and jui are
strict diabatic basis), and they are orthogonal h/jui ¼ 0 for / 6¼ u.
The polaritonic non-adiabatic coupling can be analytically evaluated as
follows:

hm/jrRjn/i ¼ � 1
�h
A0 � rRl/ðRÞhm/jb̂† � b̂jn/i: (37)
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Thus, these terms couple off-resonant states that are separated by �hxc

through the ðb̂† � b̂Þ term. This non-adiabatic coupling is reminiscent
of the vector potential boost of matter momentum in the Coulomb
gauge.

Intuitively, this PFS representation strives to improve the Fock
state convergence of the d � E Hamiltonian by using a shifted harmonic
oscillator basis instead of the traditional Fock basis of the pure light
Hamiltonian. This is because the light–matter coupling itself causes a
shift in the photonic Hamiltonian [as shown in Eq. (33)]. Thus, a shifted
harmonic oscillator basis is a more natural basis in which to represent
this system. This leads to a significant improvement in Fock state con-
vergence over the d�E Hamiltonian, as shown numerically in Fig. 4.
Additionally, Fig. 5 shows in further detail the advantageous conver-

gence properties of the PFS representation compared to Ĥd�E and Ĥ0
p�A.

In fact, this PFS representation is equivalent to the properly trun-
cated Coulomb gauge Hamiltonian in Eq. (30). To see this, we first
look at how Û h rotates q̂c,

Û
†

hq̂cÛ h ¼
ffiffiffiffiffiffiffiffi
�h

2xc

s
ðÛ †

hâÛ h þ Û
†

hâ
†Û hÞ ¼ � p̂c

xc
: (38)

This relation directly leads to

Û †

lÛ
†

hÛ Û hÛ l ¼ Û †

lÛ
†

h exp � i
�h

ffiffiffiffiffiffiffiffi
2xc

�h

r
l̂ � A0q̂c

" #
Û hÛ l

¼ Û †

l exp
i
�h

ffiffiffiffiffiffiffiffi
2

�hxc

r
l̂ � A0p̂c

" #
Û l

¼ exp
i
�h

X
/

ffiffiffiffiffiffiffiffi
2

�hxc

r
l/ � A0j/ih/jp̂c

" #
¼ Û pol: (39)

With the properties shown in Eqs. (38) and (40), we can directly show
that ĤPFS and Ĥp�A differ only by a change in basis for the matter
Hilbert space and a phase rotation in the photonic Hilbert space by the
following relationship:

ĤPFS ¼ Û †

polĤ
MH
PF Û pol ¼ Û †

polðÛ
†

lĤPFÛ lÞÛ pol

¼ Û †

pol Û †

l Û
†

hĤd�EÛ h

h i
Û l

� �
Û pol

¼ ðÛ †

lÛ
†

hÛ
†
Û hÛ lÞ Û †

l Û
†

hĤd�EÛ h

h i
Û l

� �
ðÛ †

lÛ
†

hÛ Û hÛ lÞ
¼ Û †

lÛ
†

hÛ
†Ĥd�EÛ Û hÛ l

¼ Û †

lÛ
†

hĤp�AÛ hÛ l: (40)

FIG. 5. Comparison of the PFS Hamiltonian (red) energy eigenspectrum with that of the Coulomb (blue) and dipole (green) gauge Hamiltonians (xc ¼ 400meV) for the Shin–
Metiu model at different R values (denoted at the top of each column). The top panels (a–d) graph the eigenenergies of each Hamiltonian using 2 matter states and 4 Fock
states against the exact (gray). The bottom panels (e–h) plot the eigenenergies of the dipole gauge Hamiltonian vs the PFS Hamiltonian at different R values with an
A0 ¼ 0:15 and two matter states as a function of the number of Fock states used.
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Note that ½Û h; Û l� ¼ 0 since they act on different degrees of freedom.
In this way, ĤPFS and Ĥp�A are intrinsically related. It follows naturally
that they would have very similar convergence properties.
Consequentially, in the full basis limit, the PFS representation is equiv-
alent to the p⸱AHamiltonian. This is shown in Sec. III E.

Figure 2 summarizes the relationships between all the
Hamiltonians discussed thus far.

E. Truncation of the photonic mode for the Coulomb
and dipole gauges

All the Hamiltonians previously discussed in this review are
under the single mode approximation; however, many types of cavities
such as the Fabry–P�erot cavity has infinite number of quantized modes
(see Sec. VI). It is then pertinent to consider how to truncate this
many-mode Hilbert space to a more computable space with a small
finite number of modes. Whenever a truncation occurs, the gauge
invariance condition may become ambiguous.

Although less ubiquitous than the gauge ambiguities present
under matter truncation, it should be noted that the truncation of pho-
tonic modes also leads to gauge ambiguities that can be resolved in a
manner similar to the process discussed in Sec. III C.102 However,
unlike in the case of matter truncation, for mode truncation, the dipole
gauge Hamiltonian leads to ambiguities. To see this, recall how Ĥp�A
and Ĥd�E can be written in terms of the PZW operator:

Ĥp�A ¼ Û
†
ĤMÛ þ Ĥph; (41)

Ĥd�E ¼ ĤM þ Û ĤphÛ
†
: (42)

However, now Ĥph ¼
P1

k¼0 �hxkâ
†
kâk, where âk is the photonic anni-

hilation operator for the kth mode.
It is convenient to define a projection operator, P̂ ðmÞ

, that trun-
cates this many-mode Hilbert space to anm-mode Hilbert space:

P̂ ðmÞ ¼ ÎM � �m�1

k¼0

X1
n¼0

jnkihnkj �1
k0¼m

j0k0 ih0k0 j
 !

; (43)

where jnki is the nth Fock state in the kth mode and ÎM is the identity
operator for the matter Hilbert space.

For the case of matter truncation, it was argued that to properly
truncate polariton systems in a truncated subspace, the pure matter
and photonic operators should be truncated first and then transformed
with a properly truncated PZW operator. As discussed in Ref. 102, the
same procedure must be used for mode truncation. In this manner,
the newm-mode PZW operator is

Û ðmÞ ¼ e�
i
�hP̂

ðmÞðl̂�ÂÞP̂ ðmÞ
¼ exp � i

�h
l̂ �
Xm�1

k¼0

Akðâ†k þ âkÞ
" #

: (44)

If we formulate the equivalents to Eqs. (41) and (42) in this m-mode
subspace as

Ĥp�A ¼ Û †P̂ĤMP̂ Û þ P̂ĤphP̂ ; (45)

Ĥd�E ¼ P̂ĤMP̂ þ Û P̂ĤphP̂ Û †
; (46)

which always guarantees gauge invariant results through Ĥd�E
¼ ÛĤp�AÛ †

. We can find the Coulomb gauge Hamiltonian under an
m-mode truncation by using Eq. (45)

ĤðmÞ
p�A ¼ Û ðmÞ†P̂ ðmÞ

ĤMP̂ ðmÞÛ ðmÞ þ P̂ ðmÞX1
k¼0

�hxkâ
†
kâkP̂

ðmÞ

¼ ĤM þ
Xm�1

k¼0

�hxkâ
†
kâk þ

p̂ � Ak

m
ðâ†k þ âkÞ

� �

þ 1
2m

Xm�1

k¼0

jAkjðâ†k þ âkÞ
" #2

: (47)

Since ĤM is a pure matter operator, it is invariant upon mode trunca-

tion and therefore commutes with P̂ , P̂ ðmÞ
ĤMP̂ ðmÞ ¼ ĤMP̂ ðmÞ

. In
the case of a single mode m ¼ 1, Eq. (47) reduces to the well-known
single-mode minimal coupling Hamiltonian [see Eq. (4)].

Interestingly, if we apply a simple mode truncation, Ĥ0ðmÞ
p�A

¼ P̂ðmÞ
Ĥp�AP̂ ðmÞ

has the same form of Eq. (47) up to a constant that
represents the zero-point energy of all modes.

Since the minimal coupling Hamiltonian is formed by boosting
the matter Hamiltonian, a naive mode truncation has a minimal effect,
only causing a zero-point energy (ZPE) shift.

Ĥ0ðmÞ
p�A ¼ P̂ðmÞ

Ĥp�AP̂ ðmÞ

¼ P̂ ðmÞ
Û

†
ĤMÛ P̂ ðmÞ þ P̂ ðmÞX1

k¼0

�hxkâ
†
kâkP̂

ðmÞ

¼ ĤM þ
Xm�1

k¼0

�hxkâ
†
kâk þ

p̂ � Ak

m
ðâ†k þ âkÞ

� �

þ 1
2m

Xm�1

k¼0

jAkjðâ†k þ âkÞ
" #2

þ EP̂ðmÞ
; (48)

where E ¼P1
k¼n jAkj2=2m is ZPE of the other projected modes com-

ing from P̂ ðmÞðâ†k þ âkÞ2P̂ ðmÞ ¼ P̂ðmÞ
for k 	 m (note that the only

surviving term is P̂ ðmÞ
âkâ

†
kP̂

ðmÞ ¼ P̂ ðmÞ
). This is very different from

what happens in the case of a matter truncation.
Now, the Hamiltonian that fails under a simple mode truncation

is the dipole gauge Hamiltonian.

Ĥ0ðmÞ
d�E ¼ P̂ðmÞ

Ĥd�EP̂ ðmÞ

¼ ĤM þ P̂ðmÞ
Û

X1
k¼0

�hxkâ
†
kâk

 !
Û

†P̂ ðmÞ

¼ ĤM þ
Xm�1

k¼0

�hxkâ
†
kâk þ ixkAk � l̂ðâ†k � âkÞ


 �

þ
X1
k¼0

xk

�h
ðAk � l̂Þ2: (49)

This procedure breaks the gauge invariance and generate different
results from ĤðmÞ

p�A , because the dipole self-energies for all the
modes are still explicitly present, even for the modes k 2 ½m;1�,
which are supposed to be projected away. Thus, the dipole gauge
Hamiltonian should be truncated using the scheme presented in
Eq. (46),
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ĤðmÞ
d:E ¼ ĤM þ Û ðmÞP̂ ðmÞ X1

k¼0

�hxkâ
†
kâk

 !
P̂ ðmÞÛ ðmÞ†

¼ ĤM þ
Xn�1

k¼0

�hxkâ
†
kâk þ ixkAk � l̂ðâ†k � âkÞ þ xk

�h
ðAk � l̂Þ2

� �
:

(50)

This provides gauge invariant results with Eq. (48) and reduces to the
well-known single mode case [see Eq. (7)] when m ¼ 1. In this man-
ner, one should carefully consider the proper manner of truncation
even for mode truncation.

F. Generalization of truncation scheme beyond the
long-wavelength approximation

In a recent work,43 a generalized scheme for resolving gauge
ambiguities beyond the long-wavelength approximation and for arbi-
trary gauges. In this picture, the matter is no longer approximated as a
dipole and instead must be described as a charge density function,
qðxÞ,

q̂ðx; r̂ j
� �Þ ¼X

j

qjdðx � r̂ jÞ; (51)

where j indexes over all charged particles of charge qj and position r̂j
and x is the global Cartesian coordinate system. This charge density
function is used to fix the longitudinal (curl-free) component of the
auxiliary polarization field, P̂

gðx; r̂ j
� �Þ, such that

r̂ � P̂gðx; r̂ j
� �Þ ¼ �q̂ðx; r̂ j

� �Þ; (52)

and the transverse (divergence-free) component must be defined for a

given gauge, g. For example, in the Coulomb gauge, P̂
C
? ¼ 0 and in the

multi-polar gauge (the dipole gauge beyond the long-wavelength

approximation), P̂
mp
? ¼Pj qjr̂j

Ð 1
0 ds d?ðx � sr̂jÞ.

To transform between gauges, a more generalized gauge transfor-
mation in terms of the polarization fields is needed

Ŵ g!g 0 ¼ exp
i
�h

ð
dx ½P̂g 0

? � P̂
g
?� � ÂðxÞ

� �
; (53)

where Ŵ g!g 0 is a unitary operator that transforms an operator from
the gauge, g, to the gauge, g 0, ÂðxÞ is once again the transverse compo-
nent of the vector potential, the explicit x; r̂j

� �
dependence is not writ-

ten for brevity.
With this formalism, the light–matter Hamiltonian in an arbi-

trary gauge, Ĥ g , can now be written as

Ĥ g ¼ ŴC!g ĤMŴ
†

C!g þ Ŵmp!gĤphŴ
†

mp!g : (54)

Under the long-wavelength approximation, this result reduces to the
relations shown in Eqs. (41) and (42). Similar to Sec. II under the long-
wavelength approximation, transforming g ! g 0 follows the simple
relation Ĥ g 0 ¼ Ŵ g!g 0 Ĥ gŴ g!g 0 .

To resolve gauge ambiguities upon truncation, a similar process
to Secs. III C–III E is performed. First, the pure matter and the pure
photonic Hamiltonians are projected,HM ! HM andHph ! Hph.

Then, the unitary operator, Ŵ g!g 0 is properly confined in the
truncated subspace. For the matter DOFs, the argument in the

exponential of Ŵ g!g 0 is no longer given to be linear with rjf g with the
relaxation of the long-wavelength approximation. Due to this, the
argument of the exponential cannot be directly projected by P̂ .
Instead, Ŵ g!g 0 must be represented in terms of r̂ j ¼ P̂ r̂jP̂ . In this
manner, the polarization field is projected in terms of fr̂ jg such that
P̂
gðx; r̂ j

� �Þ ! P̂ gðx; fr̂ jgÞ. For the photonic DOFs, the mode trunca-
tion in this regime is done in the same fashion as in Sec. III E, where
the vector potential is directly projected as ÂðxÞ ! P̂ ÂðxÞP̂ ¼ ÂðxÞ.
The gauge transformation in the properly confined in the truncated
subspace can then be written as

Ŵ g!g 0 ¼ exp
i
�h

ð
dx ½P̂ g 0

? � P̂ g
?� � ÂðxÞ

� �
; (55)

where the ðx; fr̂ jgÞ dependence in P̂ g
? is suppressed for brevity.

Finally, the gauge invariant Hamiltonian for an arbitrary gauge, g,
can be constructed using the properly confined gauge transformation,
Ŵ g!g 0 , as

Ĥg ¼ ŴC!gĤMŴ †

C!g þ Ŵmp!gĤphŴ †

mp!g : (56)

In this manner, even beyond the long-wavelength approximation,
gauge ambiguities can be resolved by carefully representing all opera-
tors in terms of truncated coordinate and momentum operators. In
Ref. 43, the formal derivation of this method in the context of macro-
scopic QED is provided at length.

IV. MODEL HAMILTONIANS IN QUANTUM OPTICS

In quantum optics, a two-level atom coupled to a single mode in
an optical cavity is a well-studied subject. This leads to well-known
model Hamiltonians, such as the Rabi model and the Jaynes–
Cummings model. Since these two models are also widely used in
recent investigations of polariton chemistry, here we briefly derive
them from the PF Hamiltonian.

We consider a molecule with two electronic states

ĤM ¼ T̂ þ EgðRÞjgihgj þ EeðRÞjeihej; (57)

and the transition dipole is leg ¼ hejl̂jgi. Note that the permanent
dipoles in a molecule lee ¼ hejl̂jei, lgg ¼ hgjl̂jgi are not necessarily
zero, as opposed to the atomic case where they are always zero. Hence,
it is not always a good approximation to drop them.

The Rabi model, however, assumes that one can ignore the per-
manent dipole moments (PDM) and leads to the dipole operator
expression in the subspace P̂ ¼ jgihgj þ jeihej of

P̂ l̂P̂ ¼ legðjeihgj þ jgihejÞ � legðr̂† þ r̂Þ; (58)

where we have defined the creation operator r̂† � jeihgj and annihila-
tion operator r̂ � jgihej of the electronic excitation. The PF
Hamiltonian [Eq. (10)] in the subspace P̂ thus becomes

ĤnoPDM ¼ ĤMþ Ĥph þxA0 �legðr̂†þ r̂Þðâ†þ âÞþxðA0 �legÞ2:
(59)

Dropping the DSE (the last term) from Eq. (59) leads to the Rabi
model

ĤRabi ¼ ĤM þ Ĥph þ xA0 � legðr̂† þ r̂Þðâ† þ âÞ: (60)
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Dropping both the DSE and the counter-rotating terms r̂†â† and r̂â
leads to the well-known Jaynes–Cummings (JC) model103 as follows:

ĤJC ¼ ĤM þ Ĥph þ xA0 � legðr̂†â þ r̂â†Þ: (61)

This Jaynes–Cummings Hamiltonian is used ubiquitously across
the field of quantum optics, from quantum computing104 applications
to fundamental physics experiments.105,106 For experimentalists and
theorists alike, this well-established Hamiltonian is appealing due to its
simplicity and intuitive physical interpretation. Equation (61) can be
broken down and interpreted in four parts: ĤM is the pure matter
Hamiltonian, Ĥph is the pure light Hamiltonian, xA0 � leg r̂†â repre-

sents absorption of a photon of energyx, andxA0 � leg r̂â† represents
emission of a photon of energyx. While in many cases this is a conve-
nient and adequate Hamiltonian for weak coupling strengths, in chem-
ically relevant coupling strengths (strong coupling and beyond), this
Jaynes–Cummings Hamiltonian is no longer adequate.

To demonstrate the limitations due to the series of approxima-
tions in the Jaynes–Cummings Hamiltonian, we compare it to three
other two-level system Hamiltonians to isolate the effect of a given
approximation on the accuracy of the polaritonic eigenspectrum.
Namely, we will compare it to the Rabi Hamiltonian, the PF
Hamiltonian without PDM [Eq. (59)], and introduce a two-level
Pauli–Fierz Hamiltonian without DSE,

ĤnoDSE ¼ ĤM þ Ĥph þ xA0 � l̂ðâ† þ âÞ: (62)

In Fig. 6, ĤnoPDM and ĤnoDSE are compared to the Rabi and JC
models. This helps explain which approximations lead to the various
errors in the JC Hamiltonian eigenspectrum, and provides some
insight into why the JC Hamiltonian tends to outperform the Rabi
Hamiltonian even though the former has more approximations.
Compared to the more rigorous two-level PF Hamiltonian, the JC
Hamiltonian makes three additional approximations: the neglection of
DSE, the removal of PDM, and the rotating-wave approximation.

As shown in Fig. 6(c), the removal of PDM leads to an increase in
the splitting at the various avoided crossings. Then, removing the DSE
[in Fig. 6(d)] causes a uniform, R-dependent downward shift for all

states. The combination of these approximations gives the Rabi model,
as seen in Fig. 6(a). The JC model comes from applying the RWA on
the Rabi model. By comparing Figs. 6(a) and 6(b), we see that the
RWA cancels some of the errors induced by neglecting the DSE. Due
to this partial cancelation of errors, the JC model indeed provides
more accurate eigenspectra than the Rabi model in many cases.

V. CONNECTION AND DIFFERENCEWITH THE
FLOQUET THEORY

While this review focuses on cavity QED, another popular
method for modeling light–matter interactions is the Floquet theory.
For the sake of clarity, in this section, we will briefly introduce Floquet
theory and contrast it with cavity QED to provide context as to the use
cases for each.

We start our analysis by expanding the minimal coupling
Hamiltonian in the Coulomb gauge from Eq. (4) for a single electron
(m ¼ 1) in a potential

Ĥp�A ¼ ĤM � p̂ � Â þ Â
2 þ Ĥph; (63)

where in cavity QED, Â ¼ eA0ðâ† þ âÞ is proportional to the coordi-
nate operator for a quantum harmonic oscillator. Figure 7(b) shows
the structure of this Hamiltonian in its matrix formalism.

Typically, Floquet theory is used to describe laser-driven systems,
and treats the light field classically (the infinite photon limit).
Following the formalism of Ref. 107, Ĥph is ignored and Â ! AðtÞ
¼ 2A0e sinðxtÞ is now the classical vector potential for a monochro-
matic plane wave. The resulting Hamiltonian becomes

Ĥ
F
p�AðtÞ ¼ ĤM þ A2

0 � �hr � eA0ðeixt � e�ixtÞ þ A2
0

2
ðe2ixt þ e�2ixtÞ;

(64)

FIG. 6. Comparison of the polariton potential energy surfaces of the Shin–Metiu
model coupled to a cavity mode with A0 ¼ 0:15 a.u. and xc ¼ 400 meV generated
from four different quantum optics model Hamiltonians with the full Pauli–Fierz
Hamiltonian plotted in the light gray lines. (a) Rabi Hamiltonian. (b) Jaynes–
Cummings (JC) Hamiltonian. (c) Two-level Pauli–Fierz Hamiltonian without the
permanent dipole moments (PDM). (d) Pauli–Fierz Hamiltonian without the dipole
self-energy (DSE).

FIG. 7. Comparison with Floquet theory: schematic comparison of the matrix formu-
lation for (a) the time-dependent Schr€odinger equation with Floquet theory from Eq.
(66) and (b) time-independent Schr€odinger equation with the Coulomb gauge
Hamiltonian.107
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where p̂ ¼ �i�h$ and the A2
0 term is just a zero point energy that will

be ignored going forward. Since in this perspective light is just a classi-
cal, oscillating electromagnetic field with perfect periodicity, a time
analog to Bloch’s theorem can be used to express a state that satisfies
the time-dependent Schr€odinger equation, jWaðtÞi, in terms of static
states, jwa

ni as

jWaðtÞi ¼ e�iEat
X1

n¼�1
einxtjwa

ni; (65)

where a indexes over the Floquet states, Ea is a quasienergy, and x is
the driving frequency of the EM field.108 Using Eqs. (64) and (65), the
time-dependent Schr€odinger equation in the Sambe space109 can be
written as

EajWaðtÞi ¼
X1

n¼�1

�
ĤM þ n�hx
	 


einxt

þ �hr � eA0 eiðnþ1Þxt � eiðn�1Þxtð Þ

� A2
0

2
eiðnþ2Þxt þ eiðn�2Þxt	 
�

jwa
ni: (66)

The right hand side of this equation is an operator whose structure is
visualized in Fig. 7(a) with each block corresponding to a given n. The
first term of Eq. (66) corresponds to the diagonal blocks, the second
term corresponds the light green off diagonal blocks, and the third
term corresponds the light blue off diagonal blocks.

It should be noted that this analysis is done in the Coulomb
gauge. A similar derivation can be done in the dipole gauge, creating a
Floquet equivalent to the PF Hamiltonian shown in Eq. (10). The
time-dependent Schr€odinger equation can then be written as

EajWaðtÞi ¼
X1

n¼�1

�
ĤM þ �h

x
ðA0e � l̂Þ2 þ n�hx

� �
einxt

� A0l̂ � e eiðnþ1Þxt þ eiðn�1Þxt	 
�
jwa

ni: (67)

Because there is no AðtÞ2 term in this Hamiltonian, this Hamiltonian
is tridiagonal in the photonic DOF. This significantly decreases the
number of n blocks needed to converge the eigenspectrum of this
Hamiltonian, making this form more popular for modeling laser-
driven systems. A detailed matrix form of the Floquet Hamiltonian
can be found in Ref. 110, Chapter 9 (see Fig. 9.5).

Figure 7 shows a schematic comparison of the matrix formulation
of the Floquet TDSE matrix (panel a) and the QED Hamiltonian
(panel b). In the Floquet TDSE matrix, only the diagonal matrix blocks
change with n, and there is no well-defined lower or upper bound for
n, since n indexes over temporal unit cells of an infinitely oscillating
wave. In contrast, the QED Hamiltonian has n-dependent off diagonal
blocks, and n has a lower bound as it is the number of photons.
However, in both cases, the general structure of the matrix is similar
with the matter Hamiltonian boosted by n on the diagonals and the off
diagonal couplings mediated by the p A-type coupling.

Fundamentally, Floquet theory depends on the assumption that
the light field is strong enough that the photon number is reaching the
infinite limit. In that limit, the matrix structure of Fig. 7(a) converges
to that of Fig. 7(b) upon rescaling A0 and subtracting a zero point
energy. As discussed in Ref. 111, the Floquet picture in this limit can

be thought of as the QED Hamiltonian when considering a range of
Fock states that are sufficiently highly excited such thatffiffiffi
n

p 
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ dn

p
, where dn is the number of Floquet blocks considered.

Thus, under this limit of an intense field interacting with the matter,
Floquet theory is a natural choice for strongly driven systems since
numerical convergence can be reached for a few Floquet blocks.
However, in the few photon limit, Floquet theory does break down,
and the explicit QED treatment is necessary. It also suggests that the
fundamental difference between the Floquet picture and the QED pic-
ture arises in the few photon limits. For example, when the hybrid sys-
tem quickly explores several photon-dressed states jg; nþ 1i ! je; ni
through light–matter coupling and je; ni ! jg; ni through non-
adiabatic coupling hejrjgi, the system will explore the different pho-
ton number blocks, and the light–matter coupling strength scales withffiffiffi
n

p
due to the operator nature of the coupling term ðâ† þ âÞ. The

Floquet picture, on the other hand, always exhibits the same light–mat-
ter coupling strength. This difference between the QED and Floquet
pictures has been observed in a recent theoretical study.112

VI. GENERALIZED HAMILTONIANS FOR MANY
MOLECULES ANDMODES

Sections II–V were chiefly concerned with Hamiltonians under
the long-wavelength approximation and for a single photonic mode to
more clearly demonstrate the relations between different gauges and
representations. However, to accurately reproduce the results of
experiments such as those with Fabry–P�erot cavities,9,10,12,113–124 these
approximations are no longer adequate. In this manner, we must use
generalized Hamiltonians to model such systems, so building on the
formalism introduced in Secs. II and III, we use this section as a practi-
cal example of creating Hamiltonians that represent more complex
systems. In doing so, many modes coupled to many molecules are con-
sidered, and we partially relax the long-wavelength approximation
such that Â is no longer spatially invariant while the matter interac-
tions are still approximated as dipoles. Such a Hamiltonian is necessary
to describe many molecules coupled to a Fabry–P�erot cavity, as
depicted in Fig. 8(a). In that situation, we explicitly consider a 1D array
of molecules.125 Several useful review articles related to this topic can
be found in Refs. 126 and 127.

FIG. 8. (a) Schematic of many colinear molecules in a Fabry–P�erot (FP) cavity. ês
and êp are the unit vectors indicating the directions of the s and p polarized compo-
nents of Ê? , respectively. (b) Schematic dispersion plot of the upper and lower
polariton states in a FP cavity (solid lines) as a function of angle (h) with the same
physical parameters as are used in Ref. 113. The dispersion plot of a completely
uncoupled system (dashed lines) is also shown to illustrate the Rabi splitting.
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In Fabry–P�erot cavities, the planar mirrors explicitly quantize the
vacuum field in the z-direction [see Fig. 8(a)] such that for perfect mir-
rors, there are only a countable infinite set of allowed kz wavevectors,

kz ¼ nzp
Lz

; nz ¼ 1; 2;…1: (68)

Where Lz is the distance between the two mirrors. In the litera-
ture,113,114 kz is often denoted as k? because it is perpendicular to both
mirrors [not to be confused with the transverse component of the field
in Eq. (B3a)]. Note that the components of the total wavevector that
are parallel to the mirror (kx and ky) are not subject to these boundary
conditions from the mirrors, and are commonly referred to as kk in
the literature [not to be confused with the longitudinal component of
the field, such as Eq. (B2)]. Both kx and ky are in principle, quasi-
continuous because the boundary length for the lateral directions
(x and y in Fig. 8) are generally much larger than the mirror distance
Lz. Despite the physical volume of the cavity being very large, strong
coupling still occurs experimentally. As such the “cavity quantization
volume” is often estimated as V ¼ S � Lz , where S is the effective
quantization area in which molecules are coupled to the cavity
modes.53 Using the experimentally measured XR and V, one can esti-
mate how many moleculesN are effectively coupled to the cavity.113,128

For example, in Ref 128, they achieve a Rabi splitting of XR ¼ 120
meV and estimate the cavity volume as V � 1� 10lm3, estimating
N � 107 � 108 molecules effectively coupled to the cavity.

Overall, this leads to many photonic modes that can be energeti-
cally close to a matter state transition, such as electronic excita-
tions113,125,126,129–133 or vibrational excitations.2,4,10,117,124,134,135 For
these cavities, the photonic dispersion relations are the same for both
the transverse electric (TE) and transverse magnetic (TM) polariza-
tions, and experimentally, one can easily access both.133 ,136,137

For simplicity, let us focus on the TE mode, and set ky ¼ 0, sim-
plifying the system to a 2D cavity with all modes having the same
polarization. For a given mode with the wavevector, k (see Fig. 8), the
total energy of the photon is

EphðhÞ ¼ �hxk ¼ �hc
neff

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z þ k2x

q
¼ �hc

neff
kz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan 2h

p
; (69)

where c is the speed of the light, neff is the effective refractive index
inside the cavity, and h is the angle of k from the normal of the mirror
[see Fig. 8(a)]. This angle h is often referred to as the “incident angle”
of the photon, which is tan h ¼ kx=kz . When h ¼ 0, we have

Ephð0Þ ¼ �hc
neff

kz � �hxc; (70)

where xc is the photon frequency of the fundamental mode of the cav-
ity quantized direction (z-direction), which is commonly used in the
single mode approximation of the cavity QED. Further, under the sin-
gle mode approximation (by setting kx ¼ 0) the photonic momentum
�hk (or the field propagation direction) will be perpendicular to the cav-
ity mirror.

In principle, the Fabry–P�erot cavity has a countable infinite set of
possible kz that satisfy the mirror boundary conditions [Eq. (68)].
Often, one only considers the single kz that is close to the matter exci-
tation energy. However, when Ephð0Þ is much smaller than the matter
excitation energy, multiple modes that contain various kz [Eq. (68)] in
the range of matter-energy and a given range of h have to be

considered.129,132 In this review, we only consider the case for a single
kz (such that kz ¼ p=Lz).

Note that for Fabry–P�erot cavities, xk is polarization indepen-
dent, so typically only the TE mode is considered, as is the case of this
example. We emphasize that for a plasmonic cavity, Eq. (69) no longer
always holds. For example, the plasmonic cavities in Ref. 138 and 139
have a similar dispersion relation for the TM polarization xk;TM

¼ c
neff

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ ð2paxÞ

2
q

, but a linear dispersion for the TE mode

xk;TE ¼ c
neff

2p
ax
6kx

� �
, where ax is the lattice constant in the x-direc-

tion for the plasmonic lattice and neff is the effective index of refraction
of the ambient material in the cavity. In such cases where the cavity
dispersion is polarization dependent, both the TE and TM polariza-
tions must be explicitly considered.138–143 However, for the purpose of
this case study, we will simply look at the TE polarization in a Fabry–
P�erot cavity. We refer the reader to Ref. 140 for further discussions on
plasmonic cavities.

With the motivation of this model in mind, we use this section as
a case study on formulating generalized Hamiltonians that are compu-
tationally accessible, starting from the fundamental p � A Hamiltonian.
We first take this into a generalized dipole-gauge Hamiltonian and
then further approximate and simplify it to a generalized Tavis–
Cummings Hamiltonian.

A. Generalized dipole-gauge Hamiltonian

When considering many molecules in a line coupled to the many
modes in a Fabry–P�erot cavity [such as in Fig. 8(a)], often any inter-
mode coupling between different kx-modes such as phononic coupling
is ignored. As such the eigenspectrum of such a system is plotted on a
dispersion plot [see Fig. 8(b)], where for each point along the kx (or
equivalently h) axis, the Hamiltonian is projected to the set of modes
with the said kx and diagonalized. This truncation is classified by the
projection operator,

P̂ kx ¼ 1̂M �
X

kz ;nkx ;kz

jnkx ;kz ihnkx ;kz j; (71)

where 1̂M is the identity for all matter degrees of freedom, and
jnkx ;kz i
� �

are the Fock states for a given kx and kz . To avoid gauge
ambiguities, this mode truncation can be performed as discussed in
Ref. 102, where the P̂ kx enters the exponential of the PZW operator
[see Eq. (44)]. Then, for each kx , this truncated Hamiltonian is diago-
nalized to find the dispersion plots [see Fig. 8(b)] and corresponding
Hopfield144 coefficients as a function of kx .

To perform these calculations in the dipole gauge, which is
advantageous for molecular systems, we start from the minimal cou-
pling Hamiltonian [Eq. (4)], and group the matter system into
well-separated molecules (i.e., where the electronic wavefunctions have
negligible intermolecular overlap).145 This will allow us to perform a
“multi-centered” PZW transformation to form a generalized dipole
gauge Hamiltonian for this system.

In such circumstances (when the intermolecular distances are
much longer than the intramolecular distances), we can write Âðx̂ jÞ

 Âð�xAÞ for all particles, j, within the molecule, A, with the center of
mass, �xA. This is a much less restrictive form of the long-wavelength
approximation, where now we are just approximating that the field is
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slowly varying across a given molecule, not the entire system. The total
Hamiltonian is then written as

Ĥ
N½ �
p�A ¼

X
k

�hxkâ
†
kâk þ

X
A;j2A

1
2mj

ðp̂ j � zjÂð�xAÞÞ2

þ V̂
AA
coul þ

X
A 6¼B

V̂
AB
coul; (72)

where A;Bf g index over the molecules in the system whose centers of
mass are located at �xA, jf g indexes over each charged particle j in
the molecule A, V̂

AA
coul is the intramolecular Coulomb potential in mol-

ecule A, and V̂
AB
coul is the intermolecular Coulomb potential between

molecules A and B.
Now to transform this into the dipole gauge, we use the PZW

operator [Eq. (5)], but now with Âð�xAÞ spatially varying inside the
cavity (but still approximated as constant within a given molecule)

Âð�xAÞ ¼
X
k;n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h

2�0xkV

s
ên½e�ik��xA â†k;n þ eik��xA âk;n� (73)

where the general expression of the quantized electric field E? and
magnetic field B̂ can be found in standard QED textbooks (e.g., Refs.
42 and 145 or the Appendix of Ref. 19) or in Appendix B.

The corresponding PZW gauge transform operator becomes a
multi-centered PZW operator145,146 expressed as

Û N ¼ exp � i
�h

XN
A¼1

l̂A � Âð�xAÞ
" #

; (74)

which has specific centers of molecules �xA. This Û N is still a boost
operator on p̂ j, since we are still assuming that the individual mole-
cules can be well described by their dipoles, so Û N p̂ jÛ

†

N

 p̂j þ qjÂð�xAÞ. We can also evaluate Û N âkÛ

†

N as

Û N âkÛ
†

N ¼ âk þ
X
A

i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h

2�0xkV

s
ênl̂AðR̂AÞe�ik�x̂A ; (75)

where l̂AðR̂AÞ is the dipole operator of molecule A with the nuclear
configuration R̂A.

Additionally, the phase rotation from Eq. (9) can be generalized
for many modes as

Û
N½ �
/ ¼ e�ip2

P
k;n

â†k;nâk;n ; (76)

where all the modes now experience a phase rotation.
Now, we can write our generalized dipole gauge Hamiltonian in

full space as

Ĥ
N½ �
d�E ¼ Û

N½ �
/ Û NĤ

N½ �
p�AÛ

†

NÛ
N½ �†
/

¼ ĤMþ
X
k;n

"
�hxk â†kâk þ

1
2

� �

þ
X
A

 ffiffiffiffiffiffi
xk

2

r
kk;n � l̂AðRAÞðâkeik�xA þ â†ke

�ik�xAÞ

þ
X
B

1
2
ðkk;n � l̂AðRAÞÞðkk;n � l̂BðRBÞÞe�ik�ðxA�xBÞ

!#
; (77)

where we introduced a coupling parameter for this more complicated

system, kk;n ¼
ffiffiffiffiffi
1

�0V
q

êk;n. While this form is significantly more man-

ageable to calculate compared to the fundamental minimal coupling
Hamiltonian, it still suffers from very unfavorable scaling in its basis
size. For j molecules with l states and mkz-modes with n Fock states,
the basis size is ljnm, which is nearly impossible for all but the simplest
model matter systems. To remedy this, we need to make some further
approximations to the many-mode, many-molecule equivalent of the
Jaynes–Cummings model, the so-called generalized Tavis–Cummings
model.

B. Generalized Tavis–Cummings Hamiltonian

Intuitively, the generalized Tavis–Cummings (GTC)
Hamiltonian is to the generalized dipole gauge Hamiltonian [Eq. (77)]
as the Jaynes–Cummings Hamiltonian [Eq. (61)] is to the traditional
dipole gauge Hamiltonian [Eq. (7)]. In this manner, there are a series
of approximations from Eq. (77) to obtain the GTC Hamiltonian.
Namely, we first truncate each molecule to the two-level approxima-
tion and remove permanent dipole, such that the dipole operator for a
given molecule can be written as l̂A ¼ l

eg
A r̂x , where l

eg
A is the transi-

tion dipole moment between the ground and excited states for the
molecule A. Then, the dipole self-energy terms [last line of Eq. (77)]
are entirely neglected. Finally, the rotating wave approximation is per-
formed such that for the interaction terms becomeffiffiffiffiffiffi

xk

2

r
kk;n � l̂AðRAÞðâkeik�xA þ â†ke

�ik�xAÞ

!
ffiffiffiffiffiffi
xk

2

r
kk;n � legA ðRAÞðr̂†

Aâke
ik�xA þ r̂Aâ

†
ke

�ik�xAÞ; (78)

where r̂A is the lowering operator for molecule A’s two-level system.
This series then leads to an expression of the GTC Hamiltonian,

ĤGTC ¼ ĤM þ
X
k;n

"
�hxk â†kâk þ

1
2

� �

þ
ffiffiffiffiffiffi
xk

2

r
kk;n � legA ðr̂†

Aâke
ik�xA þ r̂Aâ

†
ke

�ik�xAÞ
#
: (79)

This generalized Tavis–Cummings model now lives only in the single-
excitation subspace, reducing the basis size to jþmþ 1 for j mole-
cules and mkz-modes. This drastically reduces the computational cost
of modeling large systems. Recently, studies involving this GTC
Hamiltonian have been able to shine new light on the experimentally
found dispersion plots,113,114,147,148 [see Fig. 8(b)].

One such observed phenomenon that can be predicted by the
GTC is the presence of collective “bright” and “dark” states (referring
to the presence (or lack thereof) of photonic character) formed by the
hybridization of each molecule with each kx mode. These states, sche-
matically illustrated in the dispersion plot in Fig. 8(b) are the result of
the light–matter hybridization of j singly-excited molecular states
hybridizing with a single photon. These jþ 1 excited states exactly
become two bright states and j� 1 dark states, where the bright states
are the many molecule equivalents of the JC j6i states [see the solid
lines in Fig. 8(b)]. The dark states, however, have no photonic charac-
ter and are the linear combinations of the matter such that these
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collective states have no transition dipole and are completely
decoupled from the polaritonic “bright” states [see the flat dashed line
in Fig. 8(b)].

VII. CONCLUSIONS AND OUTLOOK

There has been a great deal of progress in the last few years in
understanding different representations and gauges to model these
cQED systems. In an effort to summarize the many different
approaches to this problem in one place, this review focuses on the
various ways to formulate cQED Hamiltonians for different levels of
approximation and applications.

Section II discusses three different representations to express the
cavity–matter hybrid system in full space. It begins with the minimal
coupling Hamiltonian in the Coulomb gauge (Sec. II A), where the
light–matter interaction is mediated through the matter momentum
and the photonic field’s vector potential. Then, the Power-Zienau-
Woolly (PZW) transformation is introduced under the long-
wavelength approximation (or equivalently dipole approximation),
and the dipole gauge and Pauli–Fierz Hamiltonians (Sec. II B) are
derived from the minimal coupling Hamiltonian. Finally, a new repre-
sentation, called the asymptotically decoupled Hamiltonian, is pre-
sented from the minimal coupling Hamiltonian and its advantageous
convergence properties are discussed (Sec. II C).

In Sec. III, we go on to discuss complications that ensue due to a
finite truncation of the infinite Hilbert space Hamiltonians in Sec. II
and their corresponding resolutions. When projecting the dipole gauge
Hamiltonian (Sec. II B) and minimal coupling Hamiltonian (Sec. II A)
to a finite matter eigenbasis, the polariton energies do not match, indi-
cating that performing a simple projection breaks the gauge invariance
(Sec. III B). These gauge ambiguities can be understood since projec-
ting the PZW operator loses its unitary property. By properly truncat-
ing all operators, these ambiguities can be resolved a so-called properly
truncated Coulomb gauge Hamiltonian is formed (Sec. III C). Building
off of this, by performing a change of basis and a phase rotation, the
polarized Fock state representation can be formed from this properly
truncated Coulomb gauge Hamiltonian, which for molecular systems
can have its eigenspectrum converge for a very small basis set (Sec.
IIID). It has also been shown that truncating the number of photonic
modes also leads to gauge ambiguities that can be resolved using a
method similar to the resolution for the matter DOFs (Sec. III E).
Additionally, these gauge ambiguities have recently been resolved for
Hamiltonians beyond the long-wavelength approximation (Sec. III F).

Section IV then connects the rigorous cQED Hamiltonians from
Secs. II and III to the more commonly used quantum optic models
such as the Jaynes–Cummings model and the Rabi model. This sec-
tion, carefully discusses the different levels of approximations that each
model are under and compares the accuracy of each model.

Additionally, Sec. V contrasts the cQED methods discussed in this
review with the commonly used Floquet theory for laser driven media.
This shows the limits in which the cQED methods approach the
Floquet picture, as well as the reasons to use one method over another.

Since many experiments are done in Fabry–P�erot cavities, Sec. VI
discusses the Hamiltonians used for such systems. Since Fabry–P�erot
cavities are made of flat mirrors, they have a quasi-continuous spectrum
of photonic modes and typically hold many molecules, so it is helpful to
use Hamiltonians that explicitly consider this. This section discusses the
generalized multi-center dipole gauge Hamiltonian that considers many
molecules as individual dipoles inside a cavity (Sec. VIA). Then, by

making a series of approximations, the generalized Tavis–Cummings
Hamiltonian is formulated, which can drastically reduce the computa-
tional cost of modeling these very complex systems (Sec. VIB).

Even with the numerous recent advances in the field, there are
still many mysteries to be solved in polariton chemistry. Typically, the
first step in approaching these challenges is to formulate the
Hamiltonian to describe the system. With a summary of the different
representations, truncation schemes, and levels of approximation in
various cQEDHamiltonians, we hope that this review will provide the-
orists with a full toolbox such that they can fit the best method to their
own application and start unraveling the mysteries of the field.
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APPENDIX A: REVIEW OF MOLECULAR
HAMILTONIANS

Here, we briefly review some basic knowledge of the molecular
Hamiltonian, which will be useful for our discussions of molecular
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cavity QED. We begin by defining the matter Hamiltonian as
follows:

ĤM ¼ T̂ þ V̂ ðx̂Þ ¼
X
j

1
2mj

p̂2
j þ V̂ ðx̂ jÞ; (A1)

where j is the index of the jth charged particle (including all elec-
trons and nuclei), with the corresponding mass, mj, and canonical
momentum, p̂j ¼ �i�hrj. We denote electronic coordinate with r̂,
and nuclear coordinate with R̂, and use x̂ j 2 rj;Rjf g to represent
either the electron or nucleus, with x̂ being the coordinate operator
for all charged particles. Further, T̂ ¼ T̂R þ T̂r is the kinetic energy
operator for all charged particles, where T̂R and T̂r represent the
kinetic energy operator for nuclei and for electrons, respectively.
Further, V̂ ðx̂Þ is the potential operator that describes the
Coulombic interactions among the electrons and nuclei. The elec-
tronic Hamiltonian is often defined as

Ĥ el ¼ ĤM � T̂R ¼ T̂r þ V̂ ðx̂Þ; (A2)

which includes the kinetic energy of electrons, electron–electron
interactions, electron–nuclear interactions, and nuclear–nuclear
interactions. The essential task of the electronic structure commu-
nity is focused on solving the eigenstates of Ĥ el at a particular
nuclear configuration R as follows:

Ĥ eljwaðRÞi ¼ EaðRÞjwaðRÞi; (A3)

where EaðRÞ is commonly referred to as the ath potential energy
surface (PES) or adiabatic energy, and jwaðRÞi is commonly
referred to as the ath adiabatic electronic state.

In the adiabatic electronic basis jwaðRÞi
� �

, the matter
Hamiltonian can be expressed as70,72

ĤM ¼ 1
2M

P̂ � i�h
X
ab

dabjwaihwbj
� �2þ

X
a

EaðRÞjwaihwaj; (A4)

where P̂ is the nuclear momentum operator, M is the tensor of
nuclear masses, and we have used the shorthand notation
jwai � jwaðRÞi, and dab is the derivative coupling expressed as

da ¼ hwaðRÞjrRjwaðRÞi: (A5)

Note that the above equation is equivalent70,72 to the commonly
used form of the vibronic Hamiltonian

ĤM ¼ � �h2

2M

X
ab

r2
Rdab þ 2dab � rR þ Dab


 �jwaihwbj

þ
X
a

EaðRÞjwaihwaj;

where Dab ¼ hwaðRÞjr2
RjwbðRÞi is the second derivative coupling.

A simple proof can be found in Ref. 18.
Later, we will see that the dipole operator plays an important

role in describing light–matter interactions, so let us spend a bit of
time to discuss the molecular dipole operator. The total dipole oper-
ator of the entire molecule is

l̂ ¼
X
j

zjx̂ j; (A6)

where zj is the charge for the jth charged particle. The matrix ele-
ments of the total dipole operators can be obtained using the adia-
batic states as

labðRÞ ¼ hwaðRÞjl̂jwbðRÞi: (A7)

For a 6¼ b, labðRÞ is referred to as the transition dipole between
state jwai and jwbi, while laaðRÞ is commonly referred to as the
permanent dipole for state jwai.

It is often difficult to get accurate electronic states for highly
excited adiabatic states. It is thus ideal to consider a Hilbert sub-
space of the electronic Hamiltonian. Considering a finite subset of
electronic states jwai

� �
[see Eq. (A3)] where there is a total of N

matter states, one can define the following projection operator:

P̂ ¼
XN
a¼1

jwaðRÞihwaðRÞj; (A8)

which defines the truncation of the full electronic Hilbert space
1̂r ¼ P̂ þ Q̂ which has an infinite basis, to a subspace P̂ that con-
tains a total of N states, where 1̂r is the identity operator in the
electronic Hilbert subspace (the subspace containing all of the elec-
tron DOF) and Q̂ ¼ 1̂r � P̂ is the subspace being projected out.

Using the projection operator, one can define the projected
matter Hamiltonian (or the truncated matter Hamiltonian) as
follows:

ĤM ¼ P̂ĤMP̂ ¼ P̂ T̂P̂ þ P̂ V̂ ðx̂ÞP̂ : (A9)

Throughout this review, we use calligraphic symbols (such as ĤM)
to indicate operators in the truncated Hilbert space.

One can also explicitly write the dipole operator in the trun-
cated Hilbert space as follows:

P̂ l̂P̂ ¼
XN
a¼1

laaðRÞ jwaðRÞihwaðRÞj þ
X
a6¼b

labðRÞ jwaðRÞihwbðRÞj:

(A10)

In the same truncated electronic subspace as defined by P̂ [Eq.
(A8)], we can diagonalize the dipole matrix in Eq. (A10) to obtain

P̂ l̂P̂ ¼
XN
�

l��ðRÞ j/�ih/� j; (A11)

where j/�i is the eigenstate of the projected dipole operator P̂ l̂P̂
with

j/�i ¼
XN
a

c�aðRÞjwaðRÞi; (A12)

and c�aðRÞ ¼ hwaðRÞj/�i.
The projection operator in Eq. (A8) can also be expressed as

P̂ ¼
XN
�¼1

j/�ih/� j; (A13)

which is simply a unitary transform of Eq. (A8) [from the
jwaðRÞi-representation to the j/�i-representation].
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In the literature, the eigenstates of P̂ l̂P̂ , j/�if g, are referred
to as the Mulliken–Hush (MH) diabatic states,68,73,149–151 which are
commonly used as approximate diabatic states that are defined
based on their characters. They are approximate diabatic states in
the sense that

h/� jrRj/�i 
 0; (A14)

hence, we drop the R-dependence in j/�i. Constructing rigorous
diabatic states (where the derivative coupling is rigorously zero for
all possible nuclear configurations) in a finite set of electronic
Hilbert spaces is generally impossible, except for diatomic mole-
cules. Recent theoretical progress on diabatization can be found in
Refs. 71, 152 and 153.

In the electronic subspace defined within the MH diabatic sub-
space using P̂ [Eq. (A13)], Ĥ el [Eq. (A2)] has off diagonal (or “dia-
batic”) coupling terms

V��ðRÞ ¼ h/� jĤ elj/�i ¼
X
a

c��a ðRÞc�aðRÞhwajĤ eljwai: (A15)

We can explicitly express the matter state projected

ĤM ¼ T̂R þ
X
�

V��ðRÞ jw�ihw� j þ
X
� 6¼�

V��ðRÞ jw�ihw�j: (A16)

This is also the molecular Hamiltonian for any diabatic
representation.

APPENDIX B: REVIEW OF QUANTUM
ELECTRODYNAMICS

We provide a quick review of quantum electrodynamics
(QED).17,21 We begin by writing the electric field as ÊðrÞ
¼ ÊkðrÞ þ Ê?ðrÞ, with its longitudinal part ÊkðrÞ that is curl-free
(irrotational), r� ÊkðrÞ ¼ 0, and the transverse part, Ê?ðrÞ, that is
divergence-free (solenoidal), r � Ê?ðrÞ ¼ 0. The magnetic field is
purely transverse B̂ðrÞ ¼ B̂?ðrÞ, because it is divergence-free
r � B̂ðrÞ ¼ 0. These fields have spatial dependence, with spatial
coordinate r (not to be confused with the electronic coordinate
operator, r̂).

In the context of cavity QED, most simulations are performed
in one of two gauges, either the Coulomb gauge42 or the dipole
gauge,154–156 where the term “gauge” refers to the specific represen-
tation of the vector potential Â. Expressing Â ¼ Âk þ Â?, with its
longitudinal part Âk that is curl-free r� Âk ¼ 0, and the trans-
verse part Â? that is divergence-free r � A? ¼ 0. In principle, one
can do gauge transformations that change the longitudinal part Âk,
because the physically observed quantities will not change (e.g., the
magnetic field, since B̂ ¼ r� Â ¼ r� Â?). One often refers to
fixing a gauge by choosing the value of r� Â such that the gauge
transformation is effectively adding an additional rv component to
Âk, which is purely longitudinal because when v is a scalar function
in space, rv is curl-free (r�rv ¼ 0).

When deriving QED from first principles, one often uses the
minimal coupling Hamiltonian in the Coulomb gauge44 [see Eq.
(4)]. From there, the electric-dipole Hamiltonian can be found via a
gauge transformation. The commonly used Pauli-Fierz (PF) QED
Hamiltonian17,21,47 [see Eq. (10)] in recent studies of polariton

chemistry can be obtained by applying another gauge transforma-
tion on the electric-dipole Hamiltonian. We will further discuss the
consequence of matter state truncation on gauge invariance, the
connection with the commonly used quantum optics model
Hamiltonians, and when they will break down in molecular QED.

When fixing a specific gauge, one defines the gauge-dependent
vector and scalar potentials for the electromagnetic field. By choos-
ing the Coulomb Gauge (i.e., by enforcing r � A ¼ 0) which makes
the vector potential purely transverse, Â ¼ Â?, the Hamiltonian of
point charge particles (including both electrons and nuclei) interact-
ing with the electromagnetic field can be written as follows:42

Ĥ ¼
XN
j

1
2mj

ðp̂ j � qjÂ?ðrjÞÞ2 þ �0
2

ð
dr3Ê

2
kðrÞ

þ �0
2

ð
dr3 Ê

2
?ðrÞ þ c2B̂

2
?ðrÞ

h i
; (B1)

where the sum includes both the nuclear and electronic DOFs, rj
and pj are the position and momentum of the charged particle j,
with the charge qj and mass mj. Further, A?ðrÞ, E?ðrÞ, and B?ðrÞ
are the transverse vector potential, electric field, and magnetic field,
respectively. The energy associated with EkðrÞ [the second term in
Eq. (B1)] is given by

�0
2

ð
dr3Ê

2
kðrÞ ¼

X
j

q2j
2�0ð2pÞ3

ð
dk3

k2
þ 1
8p�0

X
i 6¼j

qiqj
jx̂ i � x̂ jj

¼
X
j

�1j þ V̂ ðx̂Þ ! V̂ ðx̂Þ: (B2)

Here, the first term
P

j �
1
j in the third line of Eq. (B2) is a time-

independent infinite quantity that is referred to as the self-energy
(not to be confused with the dipole self-energy), which can be
regarded as a shift of the zero-point energy157 and is dropped in the
last line of the above equation. In short, the Coulomb potential
Vcoulðx̂Þ � Vðx̂Þ emerges from the longitudinal electric field.

The last term in Eq. (B1) is the energy associated with the
transverse fields Ê?ðrÞ and B̂?ðrÞ. The general expressions for
Â?ðrÞ, Ê?ðrÞ, and B̂?ðrÞ are42

Â?ðrÞ ¼
X
k

êk
xk

ffiffiffiffiffiffiffiffiffiffi
�hxk

2e0V

s
ðâkeik�r þ â†ke

�ik�rÞ; (B3a)

Ê?ðrÞ ¼ i
X
k

êk

ffiffiffiffiffiffiffiffiffiffi
�hxk

2e0V

s
ðâkeik�r � â†ke

�ik�rÞ; (B3b)

B̂?ðrÞ ¼ i
X
k

k � êk
xk

ffiffiffiffiffiffiffiffiffiffi
�hxk

2e0V

s
ðâkeik�r � â†ke

�ik�rÞ; (B3c)

where â†k and âk are the raising and lowering operators of the mode
that has a wavevector of k � ðkx; ky; kzÞ, and they satisfy the canon-
ical commutation relation42

â†k; âk0

 � ¼ dk;k0 � 1̂k: (B4)

â†k and âk are the creation and annihilation operators of the photon,
respectively, dk;k0 is the Kronecker delta, and the frequency of mode
k is xj ¼ cjkj. Here k ¼ jkjk̂ aligns in the direction of the unit
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vector k̂ and êk?k̂ is the polarization unit vector for Ê?ðrÞ and
Â?ðrÞ. The polarization of the photonic field can be written as a lin-
ear combination of the transverse electric (TE) polarization, êk;TE,
and the transverse magnetic TM polarization, êk;TM, in relation to a
given interface and propagation direction. The TE mode’s polariza-
tion, êk;TE, is defined as being perpendicular to the propagation
direction and parallel to the interface. The TM mode’s polarization,
êk;TM, is defined as being perpendicular to both the propagation
direction and the TE polarization. For a given polarization, êk , the
transverse electric field is along êk and the magnetic field is along
the k̂ � êk direction. For example, for the TM mode, the transverse
electric field polarization is along êk;TE and the transverse magnetic
field polarization is along �êk;TM.

When considering a planar Fabry–P�erot (FP) microcavity,
Â?ðrÞ, Ê?ðrÞ, and B̂?ðrÞ satisfy the boundary conditions and thus
the wavevector k becomes quantized.42,157 For cavity mirrors
imposing a boundary condition along z direction (see Fig. 8), the z
component of the wavevector kz ¼ n p

Lz
with n ¼ 1; 2; 3… as a posi-

tive integer. Note that kx and ky still remain quasi-continuous varia-
bles. These are discussed in detail in Sect. VI.

Using the above expressions, the energy of the transverse fields,
i.e., the last term in Eq. (B1) is quantized as follows:

e0
2

ð
V
dr3 E2

?ðrÞ þ c2B2
?ðrÞ


 � ¼X
k

â†k âk þ
1
2

� �
�hxk; (B5)

where the spatial integral dr3 is done within the effective quantized
volume V of the cavity. Thus, Eq. (B1) is quantized as

Ĥp�A ¼
XN
j

1
2mj

ðp̂ j � zjÂ?ðx̂ jÞÞ2 þ V̂ ðx̂Þ þ
X
k

â†k âk þ
1
2

� �
�hxk:

(B6)

This is commonly referred to as the “p � A” or the minimal coupling
QED Hamiltonian, in the sense that the light and matter coupling is
only carried through the matter momentum and the vector poten-
tial of the field. The minimal coupling structure in Eq. (4) comes
naturally due to the local Uð1Þ symmetry of the EM field, which is
an Abelian gauge field.

Assuming that the size of the molecular system is much
smaller than the length of the cavity in the quantized direction,
which is commonly referred to as the long-wavelength approxima-
tion, the transverse fields can be treated as spatially uniform, i.e.,
eik�r 
 1, such that

Â?ðrÞ 
 Â? ¼
X
k

êk
xk

ffiffiffiffiffiffiffiffiffiffi
�hxk

2e0V

s
ðâk þ â†kÞ: (B7)

APPENDIX C: DERIVATION OF BAKER–CAMPBELL–
HAUSDORFF IDENTITY

For the properly truncated Coulomb gauge Hamiltonian
(see Sec. III C), the residual momentum, ~Pj, and the transformed

electronic Hamiltonian, Û †ĤelÛ , must be found by using the
Baker–Campbell–Hausdorff (BCH) Identity, which is of the
form

eÂ B̂e�Â ¼ B̂ þ Â; B̂

 �

þ 1
2!

Â; Â; B̂

 �
 �

þ 1
3!

Â; Â; Â; B̂

 �
 �
 �

þ � � � ;
(C1)

where Â and B̂ are arbitrary operators.
To derive this identity, we first define a function f̂ ðkÞ,

f̂ ðkÞ ¼ ekÂ B̂e�kÂ ; (C2)

where k is a scalar parameter. With this formalism, f̂ ð0Þ ¼ B̂ and
f̂ ð1Þ ¼ eÂ B̂e�Â . We can then write f ð1Þ by Taylor expanding about
k ¼ 0,

f̂ ð1Þ ¼ B̂ þ
X1
n¼1

1
n!
df̂

nðkÞ
dkn

���
k¼0

� ð1� 0Þn: (C3)

By using the commutation relation, ½Â; expð6kÂÞ� ¼ 0, the first
derivative of f̂ ðkÞ can be expressed as

df̂ ðkÞ
dk

¼ ekÂ ÂB̂e�kÂ þ ekÂ B̂ð�ÂÞe�kÂ

¼ ekÂ Â; B̂

 �

e�kÂ : (C4)

Similarly,

d2 f̂ ðkÞ
dk2

¼ ekÂ Â Â; B̂

 �

� Â; B̂

 �

Â
	 


e�kÂ

¼ ekÂ Â; Â; B̂

 �
 �

e�kÂ : (C5)

By recursion the nth derivative becomes apparent. Since the B̂ in
Eq. (C2) is any arbitrary operator, the nth derivative can be
expressed in a similar manner to the first derivative

df̂
nðkÞ
dkn

¼ Â;
df̂

n�1ð0Þ
dkn�1

" #
; (C6)

where dn�1 f̂ ð0Þ=dkn�1 is evaluated at k ¼ 0 so the ekÂ ¼ e�kÂ ¼ 1̂.
By evaluating Eq. (C6) at k ¼ 0 for each n and inputting the values
into Eq. (C3), we get

f̂ ð1Þ ¼ B̂þ Â; B̂

 �

þ 1
2!

Â; Â; B̂

 �
 �

þ 1
3!

Â; Â; Â; B̂

 �
 �
 �

þ�� � ; (C7)

which perfectly agrees with the statement of the BCH identity in Eq.
(C1).
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