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Rather than incoherent hopping between chromophores, experimental evidence suggests that the
excitation energy transfer in some biological light harvesting systems initially occurs coherently,
and involves coherent superposition states in which excitation spreads over multiple chromophores
separated by several nanometers. Treating such delocalized coherent superposition states in the
presence of decoherence and dissipation arising from coupling to an environment is a significant
challenge for conventional theoretical tools that either use a perturbative approach or make the
Markovian approximation. In this paper, we extend the recently developed iterative linearized
density matrix �ILDM� propagation scheme �E. R. Dunkel et al., J. Chem. Phys. 129, 114106
�2008�� to study coherent excitation energy transfer in a model of the Fenna–Matthews–Olsen light
harvesting complex from green sulfur bacteria. This approach is nonperturbative and uses a discrete
path integral description employing a short time approximation to the density matrix propagator that
accounts for interference between forward and backward paths of the quantum excitonic system
while linearizing the phase in the difference between the forward and backward paths of the
environmental degrees of freedom resulting in a classical-like treatment of these variables. The
approach avoids making the Markovian approximation and we demonstrate that it successfully
describes the coherent beating of the site populations on different chromophores and gives good
agreement with other methods that have been developed recently for going beyond the usual
approximations, thus providing a new reliable theoretical tool to study coherent exciton transfer in
light harvesting systems. We conclude with a discussion of decoherence in independent bilinearly
coupled harmonic chromophore baths. The ILDM propagation approach in principle can be applied
to more general descriptions of the environment. © 2010 American Institute of Physics.
�doi:10.1063/1.3498901�

I. INTRODUCTION

Photosynthetic systems such as the various well studied
bacterial models1–11 involve assemblies of many bacterio-
chlorophyll molecules, for example, arrayed in structured
complexes embedded in protein scaffoldings. These ubiqui-
tous structures have evolved to function as extraordinarily
efficient solar energy capture, and transfer systems that fun-
nel electronic excitation into reaction centers where long
term energy storage is initiated. Remarkably, recent multidi-
mensional nonlinear spectroscopic experiments12 have dem-
onstrated that the dominant energy transport pathways in
these systems are determined by the spatial characteristics of
the excited state wave functions of the entire complex, which
can involve many tens of electronically coupled chro-
mophores spread over large regions of space. Experiments
reveal that in the early stages of the excitation energy trans-
fer in these nanoscale energy “transmission grids,” the pro-
cess involves quantum coherent superposition of states that
manifests itself, at least at early times in observed quantum
beats among the excitonic states involved in the energy
transfer processes.12 Even more surprising is the recent find-

ing that the protein scaffolding that supports the chro-
mophores seems to move in a collective fashion producing
correlated fluctuation in the energy levels of the different
chromophores and effectively protecting the excitonic
coherence.13 Exactly what role, if any, this fundamentally
quantum behavior plays in the functioning of these structures
is as yet unclear, but many imaginative suggestions have
been made.12–16 Reliable simulation methods that can treat
many coupled chromophores interacting with a nanostruc-
tured collective bath are required to address these intriguing
questions and the goal of the studies described here is to
explore the accuracy of several approaches that are, in prin-
ciple, capable of addressing such questions.

Until very recently, the energy transfer mechanism in
these systems has usually been treated theoretically using
either Förster resonance energy transfer �FRET� theory17–21

or the Redfield equation.22,23 The FRET rate expression is
valid when the electronic coupling between chromophores is
small compared to the electronic-phonon coupling, and the
approach uses a perturbative treatment of the electronic cou-
pling and assumes incoherent hopping of the exciton be-
tween a single donor and acceptor. To overcome the limita-
tion of this theory, Jang et al.17,18,24–26 developed aa�Electronic mail: coker@bu.edu.
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multichromophore version that incorporates interference be-
tween transfer pathways involving multiple donors and ac-
ceptors. The Redfield equation, on the other hand, is valid
when the electron-phonon coupling is small compare to the
electronic coupling between chromophores, and uses pertur-
bation theory to treat the electron-phonon coupling, and in-
tegrates or projects out the bath degree of freedom to obtain
a reduced master equation for density matrix evolution in the
Markovian approximation. In most typical situations in pho-
tosynthetic systems, the solvent reorganization energy is not
small compared with the electronic coupling, which leads to
an inaccurate treatment by perturbation theory. Also the Mar-
kovian approximation that requires phonon excitations to re-
lax to thermal equilibrium instantaneously is often a poor
approximation in these systems as the phonon characteristic
relaxation time scale is normally quite long. Moreover, the
propagation of the diagonal element of the reduced density
matrix in this approximation sometimes violates positivity
for low temperatures. The Lindblad equation,27–30 which is
commonly used, adds the secular approximation to the Red-
field equation to guarantee positive definite populations. This
secular approximation separates the dynamics of the evolu-
tion of the populations and coherences,30 and also simplifies
the numerical calculation. However, since the secular ap-
proximation eliminates some of the relaxation terms it can
lead to an inappropriate treatment of interactions between the
chromophores and their phonon bath.

To go beyond the perturbative treatment and Markov
approximations, Ishizaki et al.15,31,32 extended a nonpertuba-
tive hierarchical reduced master equation approach. By in-
corporating many auxiliary variables, this type of method
can describe the coherent beating of the exciton amplitudes
in multichromophore systems for much longer, and over a
wider range of parameters than the conventional Redfield
equations. The applicability of the approach is restricted by
the underlying model it assumes, and the approximations that
must be made such as the following: the bilinear approxima-
tion to the generally complex nature of the system-bath in-
teractions, the overdamped Brownian oscillator, and Gauss-
ian random noise models. Chakraborty et al.,33 using a non-
Markovian quantum jump �NMQJ� approach,34,35 together
with a time convolutionless �TCL� equation, found that non-
Markovian effects are crucial for preserving the coherent be-
havior of the excitation energy transfer. Jang et al.36,37 devel-
oped another type of the reduced equation that is based on a
small polaron transformation. The main advantage of all
these reduced descriptions is that they analytically integrate,
or project out the bath degrees of freedom, and incorporate
their influence by the time nonlocality of the memory kernel
with out having to treat the evolution of the bath degrees of
freedom explicitly. The disadvantage is trying to find reliable
ways to capture the effect of the time nonlocality of the
memory kernel, which usually requires considerable effort,
for example using large numbers of auxiliary variables32 that
can substantially increase the computational complexity of
such calculations.

Rather than using a reduced description, a full calcula-
tion including both electronic and nuclear degrees of free-
dom is possible if one can justify employing a mixed

quantum-classical or semiclassical description of the dynam-
ics that treats the electronic part quantum mechanically,
while the nuclear degrees of freedom are described classi-
cally or semiclassically. Recently, Tao and Miller38 used the
linearized semiclassical Initial value representation �LSC-
IVR� Path integral method together with Meyer–Miller–
Stock–Thoss “mapping Hamiltonian” description39–42 for the
electronic degrees of freedom �which are also linearized in
their approach� to study the coherent exciton transfer in a
model light harvesting antenna complex. The standard linear-
ized approximation, which truncates the phase of path inte-
gral for dynamical quantities to linear order in the difference
between forward and backward paths, is a good approxima-
tion for short time propagation but can cause a serious prob-
lem for the long time calculations and, for example, it can
lead to nonpositive definite populations. Moreover, the trun-
cation of the dependence of the phase of the propagator in
terms the mapping variable quantum subsystem degrees of
freedom to linear order can result in inaccurate treatment of
the dynamics even at shorter times especially for multilevel
systems.

In this paper, we extend the iterative linearized density
matrix �ILDM� propagation approach1 to model exciton
transport processes in photosynthetic antenna complexes.
The scheme uses a linearized approximation44 for short time
propagation segments, and concatenates these segments by
Monte Carlo sampling. The approach is nonperturbative and
does not require making the Markovian approximation,
moreover, it does not require any particular form for the
Hamiltonian, and thus can be applied to treat general system-
bath interactions as well as arbitrary forms for the bath. The
iterative scheme overcomes the linearized approximation for
the environmental degrees of freedom by using it as a short
time propagator that can be accurate for fairly long time
segments. This is the only approximation in this method. The
electronic degrees of freedom are described by mapping vari-
ables, the evolution of which, can be treated exactly with out
linearization.40,45,46 The approach is demonstrated in calcula-
tions on models of coherent exciton transfer in the Fenna–
Matthews–Olsen �FMO� pigment-protein complex where de-
tailed comparisons with other methods15,33,38 can be made.

II. METHOD

The ILDM propagation scheme1,47 assumes a quantum
system represented by a number of discrete basis states �n�
coupled to an environment described by continuous coordi-

nates �R̂ , P̂�, which can be highly dimensional. The approach
outlined here is for a general time independent Hamiltonian
written in a diabatic representation as

Ĥ = P̂2/2M + �
�

h���R̂����	��

+ �
����

h����R̂�����	��� + ����	��� . �1�

Following the work of various groups39–42 it is convenient to
use the “mapping” representation where the quantum state
population, ���	��, and coherence, ���	���, operator terms are
replaced by harmonic oscillator raising and lowering opera-
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tors, and expressing these in terms of their oscillator coordi-
nates and momenta �q̂� , p̂��, the mapping variables, the exact
Hamiltonian is rewritten in the form

Ĥ = P̂2/2M +
1

2�
�

h���R̂��q̂�
2 + p̂�

2 − ��

+
1

2 �
�,��

h����R̂��q̂�q̂�� + p̂�p̂��� . �2�

The density matrix is evolved by applying a sequence of
combined forward-backward propagators. For two finite
steps of duration t, for example, we have �̂�2t�
=e−�i/��Ĥte−�i/��Ĥt�̂�0�e�i/��Ĥte�i/��Ĥt. Each forward and back-
ward propagator pair is represented in terms of discrete �here
k labels the time slice� phase space path integrals in the
environmental variables, and double sums over quantum

states.1,43 Our approach involves transforming to mean R̄k

= �Rk+Rk�� /2 and difference Zk= �Rk−Rk�� paths in the envi-
ronmental variables and expanding the action to linear order
in the forward-backward path difference.48–52 The path inte-
grals over the forward and backward mapping variables can
be performed exactly44,45 using semiclassical trajectories in
the forward �q�,kp�,k�, and backward �q�,k� p�,k� � mapping vari-
ables as they appear quadratically in the Hamiltonian and the
semiclassical approach is exact in this case. The approxima-
tion is thus to keep terms in the phase to linear order in the
difference in environment variables but include all interfer-
ence effects between the forward and backward paths of the
quantum subsystem variables. This linearization in the bath
degrees of freedom will be reliable if the propagation time t
is sufficiently small. Alternatively, as outlined below, the lin-
earized result can be used as a short time approximation and
iterated to provide reliable results for longer times.

The final result of this linearized approach is a trajectory
algorithm �detailed in Ref. 1� that can be summarize as fol-
lows. �1� Sum over forward and backward initial quantum
states n0, and n0�, and select the final density matrix element
of interest, nt, and nt�. �2� Sample mean environment path

initial position R̄0 and momentum P̄1 from the Wigner dis-

tribution ��̂�W
n0,n0��R̄0 , P̄1�.53 Propagate the environmental sub-

system degrees of freedom using classical mechanics with
the final state density matrix element dependent force

Fk
nt,nt� = −

1

2

�hnt,nt

�R̄k� + �hnt�,nt�
�R̄k��

−
1

2 �
��nt

�hnt,�
�R̄k�cnt,�,k −

1

2 �
��nt�

�hnt�,��R̄k�cnt�,�,k
� ,

�3�

with cnt,�,k= 
�pnt,k
p�,k+qnt,k

q�,k� / �pntk
2 +qnt,k

2 �� and a similar
expression in the primed �backward propagating� mapping
variables. Auxiliary harmonic equations for the forward and
backward mapping variables must be propagated to deter-
mine these quantities, this can be done analytically.
�3� Finally, each trajectory’s contribution to the density
matrix is weighted by a complex factor

rt,nt
�
R̄k��rt,nt�

� �
R̄k��e−i��k=1
N ��nt

�R̄k�−�nt�
�R̄k�� involving functions

rt,nt
and �nt

that depends on the mean path of the environment
and contain the mapping variables, potentials, and couplings
�see Ref. 1 for details�. Here �= t /N. This approach can be
iterated for multiple time segments t using an importance
sampling Monte Carlo procedure that selects the most impor-
tant density matrix elements at intermediate times controlling
the exponentially diverging number of paths through state
label space. The method has been bench marked against ex-
act multiconfiguration time dependent Hartree �MCTDH�
calculations for a variety of nonadiabatic reactive scattering,
and condensed phase models,1 and the approach gives reli-
able results for general Hamiltonians and requires compa-
rable computation resources to other available methods for
treating such models.

III. SYSTEM-BATH MODEL HAMILTONIAN

In this letter, we report results obtained using the ILDM
propagation approach applied to models of the FMO
complex14,30,32,33,38,54–60 that are formulated in terms of a dis-
sipative exciton Hamiltonian that describes excitation energy
transfer and relaxation in multichromophore systems. In
these models each chromophore experiences dissipative in-
teractions with its own independent bath thus the general
Hamiltonian has the following form:

Ĥindep
FMO =�

�=1

Nstate��� + �
l=1

n���

cl
���xl

��� +�
	=1

Nstate

�
m=1

n�	�
1

2
�pm

�	�2 + 
m
�	�2xm

�	�2�
����	�� + �

��	

Nstate

��,	����		� + �	�	��� . �4�

The electronic Hamiltonian is determined by the diago-
nal electronic site energies, ��, of the chromophores, and the
off-diagonal electronic couplings between the chromophores,
��,	. The spectral densities j����
� for each chromophore’s
independent bath of bilinearly coupled harmonic oscillators
are assumed to be identical for the different models studied
here and they have either the Ohmic with Debye cutoff form
or an Ohmic with exponential cutoff form.

For the Ohmic with Debye cutoff j����
�= j�
�
=2��
c� / ��
c�2+1� is parameterized by a “solvent reorga-
nization energy,” �=1 /��0

�d
j�
� /
, which controls the
overall strength of the interaction between the quantum sub-
system and the bath, and the bath relaxation time, c, which
controls the range of frequencies or time scales on which the
bath can respond. With the Ohmic and exponential cutoff
form on the other hand, j�
�= �� /
c�
 exp�−
 /
c�, the bath
response is determined by the cutoff frequency 
c. The
system-bath bilinear coupling constants, cl

���, appearing in
the Hamiltonian model are determined from these spectral

densities using the definition j����
�=� /2�l
n���

��cl
���2 /
l

������
−
l
����.

IV. RESULTS

First, we consider some simplified two level system
models32,38 whose parameters are chosen to mimic those ex-
pected in the FMO multistate excitation energy transfer sys-
tem. The object of this study is to provide a basis to judge the
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reliability of results from various widely used, and recently
developed approximate theoretical approaches capable of de-
scribing quantum coherence, as well as nonperturbative and
non-Markovian effects. These comparative studies enable us
to explore in detail the convergence of the ILDM propaga-
tion scheme for applications to model light harvesting sys-
tems. In the first model studied,32,38 the site energies are �1

=100.0 cm−1 and �2=0.0 cm−1, the off-diagonal electronic
coupling between the two states is �1,2=100.0 cm−1, and we
vary the solvent reorganization energy �measured here com-
pared to the strength of the electronic coupling� through the
wide range of values �=�1,2 /50, �1,2 /5, �1,2, 5�1,2, and
consider two different limits for the solvent relaxation time,
c=100 fs, and c=500 fs. In these first studies, the Ohmic
with Debye cutoff spectral density is employed. The second
model discussed below33 involves a slightly different system
with �1=0.0 cm−1, �2=120.0 cm−1, �1,2=−87.0 cm−1, and
the bath spectral density in this second model has the Ohmic
with exponential cutoff form, with fixed solvent reorganiza-
tion energy of �=50 cm−1 �i.e., �0.6��1,2��, and 
c

=50 cm−1 �corresponding to c=106 fs�. For this simplified
model, we explore the temperature dependence in the range
T=10–300 K. The second two state model with its initially
occupied state 1 lower in energy than state 2 resembles more

closely the full seven state FMO model Hamiltonian14,33,38,53

that is used in later calculations.
In all studies, state 1 is initially occupied and the ana-

lytic solution for the bare two level system part of the prob-
lem gives that the initially occupied state population should
behave as �a1�t��2�1–4 cos2 � sin2 � sin2��t /�� where �
= 1

2
���1−�2�2+4�1,2

2 and �= 1
2 
� /2−sin−1���1−�2� /2���. The

bare electronic subsystem for the first model, for example,
should thus show state 1 population oscillations with a pe-
riod of �149 fs, which dip down to a minimum of �0.2.
This analytic solution should provide a reasonable approxi-
mation for the fully coupled system-bath problem in the limit
of weak system-bath coupling and for sufficiently short times
�compare with the results in Fig. 1 and 2�.

The Redfield equation and theories based on it employ
the perturbation theory �assuming that the system-bath
�electron-phonon� coupling is small compared to other terms
in the Hamiltonian� and then suppose that the memory kernel
appearing in the resulting integrodifferential quantum master
equation describing the dynamics of the reduced quantum
system, decays rapidly compared to typical integration times
of interest.31,61 This assumption enables the terms involving
integrals out to time t appearing in the equation to be ap-
proximated by their integrals out to infinite time, reducing
the integrodifferential form to a differential equation. This
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FIG. 1. Population of site 1 as a function of time �in ps� for a two state model �Ref. 32�. Exciton state energy gap is ��1−�2�=100 cm−1, excitonic coupling
is �1,2=100 cm−1, temperature is T=300 K, characteristic time of the phonon bath is c=100 fs, and solvent reorganization energy is varied from �
=2 cm−1 �panel �a��, �=20 cm−1 �panel �b��, �=100 cm−1 �panel �c��, and �=500 cm−1 �panel �d��. Both the ILDM and Landmap results are calculated
using the nonadiabatic dynamics theory outlined in this paper. Results labeled Tao–Miller were computed using the linearized semiclassical initial value
representation theory and are taken from Ref. 38. Results labeled Ishizaki–Fleming were generated using the hierarchical coupled reduced master equation
approach and are taken from Ref. 32 as were the results generated using Redfield theory.
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second assumption is the Markovian approximation to the
master equation that results in the final Redfield-like
forms.31,60

In Fig. 1, we display state population results obtained for
a bath with a rapid solvent relaxation time, c=100 fs. With
this value the bath memory kernel decays sufficiently rapidly
to make the Markov approximation reliable and, provided
the system-bath coupling perturbation �controlled by �� is
weak enough, the Redfield equation will give accurate re-
sults. This behavior is seen clearly in Fig. 1�a�, correspond-
ing to �=�1,2 /50, where the Redfield32 result is compared
with various numerical solutions including the ILDM propa-
gation scheme, the Landmap44 approach that linearizes in
only the bath degrees of freedom for the full time interval,
the hierarchical coupled reduced master equation approach
of Ishizaki and Fleming,32 and the fully linearized �both elec-
tronic mapping, and nuclear degrees of freedom� semiclassi-
cal initial value representation approach of Tao and Miller.38

In this limit all theories capture the slow relaxation of the
coherent beating as the exciton transfers between the two
coupled chromophore sites. Increasing the system-bath cou-
pling to �=�1,2 /5 �Fig. 1�b�� causes a break down of the
time dependent perturbation theory underlying the Redfield
equation and this results in its inability to capture the sur-
vival of the coherent population oscillations. Despite its in-
adequate description of the dynamics, the Redfield theory
does, however, recover the asymptotic thermal equilibrium
populations. The ILDM, full linearized SC-IVR, and hierar-
chical coupled reduced master equation approaches all cap-

ture the coherent oscillations at this intermediate-low cou-
pling and agree quantitatively. The Landmap result captures
the coherent oscillation characteristics but fails to give the
thermal equilibrium asymptotic population correctly. In this
approach the “action” in the density matrix propagator is
truncated to linear order in the difference between forward
and backward environmental paths while the forward and
backward paths of the quantum subsystem variables are in-
cluded explicitly. This gives rise to an accurate short time
approximate propagator but if it is applied for longer full
time intervals its accuracy degrades. The fully linearized SC-
IVR approach �linearizing in both environment and quantum
subsystem mapping variables� of Tao and Miller, on the other
hand, is seen to generally perform reasonably well for this
two level model, although its accuracy is poorer at higher
friction as discussed below.

Increasing the solvent reorganization energy further to
�=�1,2, and �=5�1,2 �Figs. 1�c� and 1�d�, respectively�
washes out the coherence in the Redfield result completely
and gives a curve that seriously over estimates the excitation
relaxation rate. The other approaches all predict significantly
nonexponential relaxation with a fast component, some rem-
nant oscillations at lower friction, and a long time tail. At the
highest friction, the fully linearized SC-IVR result relaxes
more slowly, where as the Landmap agrees well with the
ILDM and hierarchical coupled reduced master equation ap-
proaches out to about 300 fs before again relaxing to the
wrong thermal equilibrium result. Curiously, the ILDM cal-
culations are most difficult to converge in this limit of short
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FIG. 2. Same as Fig. 1 except now the characteristic relaxation time for the phonon bath is c=500 fs.
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bath relaxation time and strong system-bath coupling, hence
the large jumps due to statistical noise at the time segment
breaks. We find that under these conditions it is difficult to
converge the ILDM approach with large numbers of smaller
time segments. The result in the bottom right panel was ob-
tained with only two segments �or hops�. More segments
give much larger noise in the results. Generally, however, the
hierarchical coupled reduced master equation and ILDM
propagation results are in good agreement over the wide
range of friction values for this short relaxation time bath.

The time evolution of the site 1 population calculated
with the various approaches for a bath with the much longer
relaxation time of c=500 fs, and over the same range of �
values is presented in Fig. 2. In Fig. 2�a�, we see that even at
the lowest system-bath coupling where perturbation theory
was reliable in the earlier results, the Redfield theory predicts
very rapid damping of coherence due to the failure of the
Markovian approximation for this long relaxation time bath.
All the other approaches however are in good agreement
recovering the transition from coherent to incoherent relax-
ation as the friction is increased in this more slowly respond-
ing environment. The Landmap approach again has difficul-
ties reproducing the relaxation to equilibrium, although the
deviation seems to be less here than with the faster bath. The
Landmap approach, however, accurately captures the transi-
tion from coherent to incoherent relaxation, mimicking the

dynamics consistently reproduced by the ILDM, full linear-
ized SC-IVR, and the hierarchical coupled reduced master
equation approaches, but again the Landmap result tends to
the wrong longtime limit. The fact that the Landmap result is
more accurate for longer times also makes the convergence
of the ILDM approach more easily achieved in this slow,
strongly coupled bath compared to the results we observed
for the fast bath displayed in Fig. 1.

As a final simplified model comparison in Fig. 3, panels
�a�–�c� present states 1 and 2 populations, as well as the real
and imaginary parts of the coherence, for the second two
state model outlined above that uses the Ohmic spectral den-
sity with the exponential cutoff form. The figure compares
results obtained employing the non-Markovian quantum
jump �NMQJ�34,35 approach combined with the TCL equa-
tion developed by Rebentrost et al.33 with those from ILDM
calculations for T=10, 77, and 300 K, respectively. At the
lowest temperature, the NMQJ approach gives results in
good agreement with those from the ILDM calculations
showing clear coherent beating of the populations. At higher
temperatures, however, the NMQJ results show essentially
no coherent population oscillations while the ILDM results
suggest that for this model there are remnants of quantum
coherent population and coherence oscillations even at T
=300 K.

Figure 3�d� compares state populations computed with
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FIG. 3. Comparison of results from NMQJ and ILDM propagation calculations of populations and coherences for the second simplified two state model with
�1=0.0 cm−1, �2=120.0 cm−1, and �1,2=−87.0 cm−1. The bath spectral density has the Ohmic with exponential cutoff form with �=50 cm−1, and 
c

=50 cm−1. T=10 K, 77 K, and 300 K in panels �a�, �b�, and �c�, respectively. In each panel, upper sets of curves �symmetric about 0.5� are populations, while
progressively lower sets of curves are real and imaginary parts of coherence, respectively. Smoother curves in each case are NMQJ results and curves with
more statistical noise are ILDM results. In these panels, x-axes give times in picoseconds. Panel �d� compares state populations computed with the NMQJ and
the ILDM propagation approaches for the seven state FMO model �Refs. 14 and 33� with independent identical baths of exponentially truncated Ohmic form
having �=35 cm−1 and 
c=150 cm−1. The temperature for these FMO calculations is T=77 K.
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the NMQJ and the ILDM propagation approaches for a
model that combines the seven state quantum subsystem
model Hamiltonian of FMO presented in Refs. 14 and 33
with independent identical baths that are bilinearly coupled
to each of the chromophores with the exponentially truncated
Ohmic form having �=35 cm−1, and with 
c=150 cm−1

�corresponding to c=35.3 fs�. The temperature for these
calculations is T=77 K. As outlined below the ILDM results
were obtained using a reduced Hamiltonian model including
only four states. The results are in excellent agreement sug-
gesting that the NMQJ approach is accurate for this multi-
state problem under these conditions.

In the final set of studies reported here, the ILDM ap-
proach has been applied to explore the exciton dynamics and
transfer pathway from initially excited chromophore 1 in the
FMO complex using a reduced 4 state model employing only
sites 1, 2, 3, and 4. The model Hamiltonian used in these
studies includes all seven chromophore states14 but we trun-
cate it only at the first four states visited by the dynamics
starting at site 1. In the full model, the chromophore site
energies span a 420 cm−1 range and the intersite electronic
couplings range from 0 to 100 cm−1. In these calculations,
each chromophore interacts with its own independent, iden-
tical bath with a Debye truncated Ohmic spectral density
form characterized by a fast solvent relaxation time c

=50 fs and reorganization energy �=35 cm−1. These pa-
rameters put the model FMO system in the region where the
Markovian approximation is expected to be reliable but the

moderately strong coupling makes the application of low or-
der time dependent perturbation theory unsuitable.

In Fig. 4, the state populations obtained from these cal-
culations are compared to the results from the various meth-
ods including: Landmap �panel �a��, full linearized SC-IVR
�panel �b��, and the hierarchical coupled reduced master
equation approach �panel �c��. Figure 4�d� compares various
coherence density matrix elements computed by ILDM and
the hierarchical coupled reduced master equation approach.14

The comparison in panels �a� and �b� of the ILDM bench-
mark results with Landmap and full linearized SC-IVR re-
sults suggests that under these conditions the Landmap
propagator is a significantly superior short time approxima-
tion compared to the LSC-IVR result.

The Landmap propagator gives results that agree accu-
rately with those from the ILDM propagation out to about
100 fs, and the Landmap results show coherent oscillation
that accurately lines up with the oscillations in the ILDM
results. The amplitudes of the oscillations are well captured
by the Landmap approach but the asymptotic populations are
not accurately reproduced. With the full linearized SC-IVR
result, the coherent oscillations damp out too quickly and
their period is incorrect. This is surprising given the good
performance observed for the reduced two state model dis-
cussed above. The fully linearized SC-IVR approach does
seem to capture the asymptotic populations of the most im-
portant states involved in the dynamics reasonably reliably;
however, this does come at a significant price. At longer
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FIG. 4. Panels �a�, �b�, and �c� show populations as functions of time for the seven state model �Ref. 14� with T=77 K, and site 1 is initially occupied. For
clarity, only states 1, 2, and 3 are plotted, although four states are included in the ILDM propagation and all seven states are included with the other
propagation schemes. ILDM benchmark results are plotted for comparison in each panel. Panel �d� compares ILDM results for various concurrences Ci,j

=2��i,j� with similar results obtained from the hierarchical reduced quantum master equation approach.
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times, the LSC-IVR results predict minor channel popula-
tions that are actually negative38 as the approach does not
guarantee unitarity of the full propagation. With the ILDM
approach this problem is avoided provided sufficiently short
segments and large enough numbers of iterations are used.

In Fig. 4�c� and 4�d�, we see that the ILDM propagation
results and those of the hierarchical coupled reduced master
equation approach14 are in excellent agreement for both the
population and coherence dynamics54 at T=77 K. The re-
sults presented in the panels �a�, �b�, and �d� of Fig. 5 explore
the influence of initial state on exciton energy transfer, and
coherence dynamics using the full seven state model Hamil-
tonian. The results for ILDM and hierarchical coupled re-
duced master equation approaches are again in excellent
agreement. As reported in the above results, when state 1 is
initially occupied there are only three states involved in the
dynamics: sites 1 and 2 exhibit long lived coherent superpo-
sition dynamics, while site 3 is fed population from this su-
perposition state. From the results presented in Fig. 5�b�,
however, we see that when site 6 is initially excited the en-
suing dynamics shows a coherent superposition of sites 6 and
5, which now feed amplitude to both states 4 and 7. The fact
that pairs of states are coherently coupled in this pathway
seems to provide a mechanism for more rapid excitation en-
ergy transfer away from the initially occupied site.

Finally in Fig. 5�c�, we explore the convergence of our

ILDM calculations at T=77 K with ensemble size. As noted
earlier the statistical uncertainty in our ensemble average re-
sults manifests itself in discontinuous jumps at the time seg-
ment breaks. These uncertainties grow at longer times but, as
demonstrated in the figure, increasing the ensemble size by a
factor of 40 in this example dramatically improves the sta-
tistical convergence even at longer times.

V. CONCLUSION

In this paper, we have shown that the ILDM propagation
approach can accurately capture the coherent behavior of ex-
citation energy transfer processes in complex systems and
offers a computationally viable means of benchmarking
quantum dynamics methods for large scale, non-Markovian,
model systems at finite temperatures and for strong cou-
plings �both electronic and environmental�. For example, in
the studies on realistic models of multichromophore photo-
synthetic light harvesting systems reported here, we demon-
strated that widely used approximations for treating these
systems such as those underlying Redfield theory and the
master equation approaches built on it, are not useful in the
context of photosynthetic light harvesting due to the break-
down of the Markovian approximation and the fact that the
interactions are sufficiently strong in such problems to render
low order perturbation theory unreliable. We have also used
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FIG. 5. Panels �a� and �b� show populations as functions of time for the seven state model �Ref. 14� with T=300 K and all propagations include dynamics
of the full seven state Hamiltonian, although only the largest amplitude states are displayed for clarity. In panel �a�, site 1 is initially occupied, while panel �b�
presents results obtained with state 6 initially occupied. Panel �d� displays concurrence results �Ci,j =2��i,j�� obtained for the runs with T=300 K and state 6
initially occupied. In these three panels ILDM and hierarchical reduced quantum master equation results are compared. Panel �c� presents results exploring
convergence of the ILDM calculations with ensemble sizes N=5�107 trajectories, and N=4�108. Results are obtained with T=77 K, and state 1 initially
occupied.
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the ILDM propagation approach to benchmark several re-
cently proposed methods for treating systems where such
approximations breakdown. In particular, we found that the
hierarchical coupled reduced master equation approach14 and
the non-Markovian quantum jump method33 are capable of
accurately treating the coherent quantum dynamics in a gen-
eral class of system-bath models of excitation energy transfer
in dissipative open quantum systems. The linearized semi-
classical initial value representation approach38 on the other
hand, while providing an efficient and accurate method for
treating two level model systems, runs into considerable dif-
ficulty when applied to multilevel quantum dissipative sys-
tems that seem to be the paradigm in light harvesting chro-
mophore arrays. The Landmap approach,44 which linearizes
in the difference between the forward and backward paths of
the environmental degrees of freedom while keeping inter-
ference effects between forward and backward paths of the
mapping variables that describe the quantum subsystem, cap-
tures quantum coherence effects but has problems in some
situations with reliably representing relaxation to equilib-
rium.

The dynamics displayed in Fig. 4�c� and 4�d� are ubiq-
uitous for these sorts of multichromophore structures: when
chromophore 1 is excited its population, and that of chro-
mophore 2 to which it is coupled, show strong anticorrelated
quantum beats. Simultaneously, the populations of this pair
of coherently coupled states decay due to the coupling with
the environment, and the coupling of chromophore 2 with
chromophore 3 whose population shows subsequent steady
growth resulting in the desired directional energy transfer
function of the structure.

To help understand the effects of the environmental de-
grees of freedom on the short time dynamics of the different
density matrix elements in Fig. 6, we overlay the plots of the
populations �panel �b�� and coherences �plotted as the con-
currence, Ci,j =2��i.j�, panel �a�� for the full system-bath
model of FMO, with results obtained when the system-bath
couplings are set to zero. The most obvious effect of the
environmental coupling is to smear out the oscillatory fea-
tures in this short time dynamics. The dynamics of the popu-
lations, however, show a more profound effect of the dissi-
pation. In the presence of the bath coupling the populations
of states 1 and 2 continue to beat against one another as they
do without the environmental coupling present. However, we
see that the coupling to the bath results in these two states
loosing amplitude, which begins to appear persistently in
state 3. With no bath coupling, the state 3 population simply
oscillates at small values and does not build up as is essential
for functioning of the FMO complex as an excitonic diode
that funnels excitation toward the reaction center adjacent to
chromophore 3.14,55,57–60 Thus the right amount of excitonic
dissipation to the protein environment is essential to promote
effective energy transfer through the FMO complex. Too
much dissipation would lead to localization and excessive
energy loss before effective transfer to the reaction center.

To understand what influences the off-diagonal coher-
ence density matrix elements, on the other hand, consider the
full coupled system-bath wave function that has the form
���t��=��a��t����R , t���� in the site basis. The off-diagonal

density matrix elements are written in terms of this system-
bath wave function by projecting onto the site basis and in-
tegrating out the bath degrees of freedom according
to the following result: ��,	�t�=�dR	� ���t��	��t� �	�
=a��t�a	

��t��dR���R , t��	
��R , t�. Thus the off-diagonal den-

sity matrix elements are determined by the time dependence
of the site amplitudes a��t� for the different localized exci-
tonic states, and the overlaps of the time dependent environ-
mental wave packets ���R , t� that can be approximated as
evolving under the influence of the different excitonic state
potentials. In these expressions R= �
xl

�1�� , . . . , 
xl
�Nstate��� rep-

resents the positions of the oscillators �labeled with l running
up to n���, for chromophore �� for each of the Nstate indepen-
dent baths associated with the different chromophores in the
model Hamiltonian of Eq. �4�.

The off-diagonal elements are thus affected by both am-
plitude transfer between the different coupled exciton states,
and the nuclear wave packet overlap factor. To explore the
influence of the overlap factor, we consider the following
simplified model for the evolution of the environment in the
presence of different quantum subsystem excitations. In this
model, the bath is established initially in a thermal equilib-
rium state in which it is uncoupled from the quantum sub-
system and, as the Hamiltonian is a sum of independent har-
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FIG. 6. Results explore the effect of coupling the model FMO excitonic
quantum subsystem �Ref. 14� to its environment. Panel �b� presents popula-
tions as functions of time: red, green, and blue �oscillatory� curves give site
populations starting with state 1 initially occupied in the absence of bath
coupling. The other curves that show damped oscillations and long time
linear growth �state 3� or decay �states 1 and 2� are computed with the full
bath coupling included �ILDM and hierarchical reduced master equation
results are presented�. Panel �a� shows effect of removing the environment
coupling on quantum subsystem coherences.
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monic terms, the initial nuclear wave packet state of a three
chromophore systems for simplicity, can be written as
��R ,0�=g����
xl

�����g�	��
xl
�	���g����
xl

�����, where the func-
tions g����
xl

����� are localized about the uncoupled bath equi-
librium position characterized, for example, by 
xl

���=0�. The
lowest order effect of the bilinear coupling between an exci-
ton localized at site � and its environmental modes will arise
from the displacement of the bath’s equilibrium position. By
completing the squares in the system-bath term in Eq. �4�, it
is easy to show that each oscillator’s equilibrium displaces
by �xl

���=cl
��� /
l

���2. We can thus approximate the evolved
wave packets for the different exciton states at
longer times as the environmental degrees of freedom
tend to their new equilibrium positions as
���R , t→��= f ����
xl

�����g�	��
xl
�	���g����
xl

�����, �	
��R , t→��

=g�����
xl
�����f �	���
xl

�	���g�����
xl
�����, with a similar expres-

sion for ��. Here the function f ����
xl
�����, for example, is

localized about the coupled, excited system-bath equilibrium
position 
xl

���=�xl
����. The environmental wave packet over-

lap factor that modulates the off-diagonal coherence, ��,	,
for example, will thus evolve as

lim
t→�
� dR���R,t��	

��R,t�

=� dx���f ����x����g�����x����

�� dx�	�g�	��x�	��f �	���x�	��

�� dx���g����x����g�����x���� . �5�

Since the component packet for the � chromophore bath ex-
periences no differences in its interactions when the � or 	
chromophores are excited, the packets associated with these
degrees of freedom essentially remain perfectly overlapped
and do not modulate ��,	. We can get a simple estimate of
the contributions to the overlap factor, �dR���R , t��	

��R , t�,
from the displaced baths that interact with sites � and 	. This
estimate is influenced by the widths of the different bath
wave functions, and the relative displacement between the
equilibrium positions of the excited and unexcited system
baths.

Combining the results in the last paragraph of Sec. III, it

is easy to show that �� /2��l=1
n���

cl
���2 /
l

���2=�. Given a bath
spectral density, j�
�, there are various equivalent ways to
select a discrete set of frequencies and couplings that can be
used in its representation.62–64 Independent of the precise de-
tails of this implementation, the above result suggests the
following general relationship between the number of bath
modes, their frequencies and couplings, and the solvent re-
organization energy of the bath: cl

������ /n���
l
���. To get an

order of magnitude estimate of the overlap factor, we sup-
pose that the component bath wave functions have product

Gaussian forms thus, for example, g���=�l=1
n���

�al
��� /��1/4exp�

−al
���xl

���2 /2� and f ���=�l=1
n���

�al
��� /��1/4exp�−al

����xl
���

−�xl
����2 /2�. The component overlap then has the form

�dx���f ���g����=�l=1
n���

exp�−al
����xl

���2 /4�. From the above re-
sults, we find that �xl

���2�� / �n���
l
���2�, and we can estimate

the wave packet width from the shape of the thermal prob-
ability density suggesting the following value for the
frequency dependent Gaussian parameter al

���

=
l
��� tanh�	�
l

��� /2� /�. Combining these results and using
the fact that for our model the � and 	 baths have identical
forms �each having n independent modes with the same fre-
quency distribution�, we obtain the long time
limit for the overlap factor: limt→� �dR���R , t��	

��R , t�
�exp�−�1 /n��l=1

n �� /2�
l� tanh�	�
l /2��. In the high tem-
perature limit �	=1 / �kBT�→0�, this overlap factor tends to
exp�−�	 /4�, while at low temperatures we obtain
limT→0 �dR���R , t��	

��R , t��exp�−�1 /n��l=1
n �� /2�
l��. We

note that with the system-bath model used here the overlap
factor is in general independent of the number of bath oscil-
lators used to represent the environment as the above expo-
nents, involving terms such as �1 /n��l=1

n A�
l�, are simple
averages over the distribution of bath oscillator frequencies
and independent of the number of oscillators used to repre-
sent the dissipative environment.

The above analysis suggests that the overlap factor that
controls the magnitude of the coherences will tend to a con-
stant at long times, so for this independent harmonic bath
model the coherences will not decay to zero unless the envi-
ronmental coupling and temperature have appropriate values
or the state amplitudes vanish. This occurs because of the
localizing shifted harmonic forms used to describe the bath
and system-bath interactions in these sorts of models. Saro-
var et al.54 have recently extended the hierarchical coupled
reduced master equation approach, together with the full
Hamiltonian model used here, to explore the long lived en-
tanglement of the excitonic quantum subsystem in FMO with
its protein environment described using precisely this bilin-
early coupled harmonic model. Given the analysis presented
here it is not surprising that these workers observe a very
long time scale for the decoherence of the excitonic en-
tanglement in this system with some coherences living sig-
nificantly longer than 5 ps even at room temperature. In fact
the off-diagonal density matrix elements corresponding to
the states with populations that persist at long times show
coherences that apparently plateau at finite values consistent
with the analysis presented above.

This type of coherence behavior is to be contrasted with
that treated by the theory of decoherence times presented by
Prezhdo and Rossky.65,66 With their approach, the frozen
Gaussian wave packets that are born as a result of nonadia-
batic dynamics through coupling regions, modeled as linear
diabatic potentials with constant forces, are driven apart by
the forces arising from the different diabats, and so the wave
packet overlap in the Prezhdo–Rossky model decays to zero.
With the model analyzed above, on the other hand, the con-
fining harmonic bath potentials mean that the bath wave
packets moving on the different surfaces can’t escape one
another so their overlap does not vanish at long times and
persistent coherence is observed with such models in con-
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trast to the divergent wave packet evolution with the differ-
ent linear surface model underlying the Prezhdo–Rossky
theory.

We are currently exploring ways of extending the ILDM
approach to longer times to explore the above finding of
persistent coherence dynamics, as well as the appropriate
choice of representation to understand this dynamics.47,67–70

It will be particularly interesting to apply the ILDM ap-
proach to study the properties of different types of baths in
relation to their decoherence and population transfer dynam-
ics, for example, anharmonic baths, or baths that can repre-
sent long wavelength environmental modes that can cause
correlated fluctuations in the energies of different sites that
go beyond the independent bath model used in the study
presented here. It will also be interesting to use these meth-
ods to explore bath models that have different spectral den-
sities for the different excitonic states thus representing the
possibility that chromophores couple to the environmental
modes in different ways. Various schemes involving hierar-
chical bath models and partial reduced descriptions47,67,68 as
well as employing different representations69,70 may be use-
ful to improve the efficiency of the implementation of the
ILDM approach for these studies. The mixed quantum-
classical MD approach at the heart of the ILDM propagation
scheme will, in principle, be applicable beyond the simple
system-bath models considered here and fully atomistic
simulations including anharmonicity, nonlinear couplings,
and non-Markovian bath dynamics could be within reach
with this scheme.
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