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ABSTRACT
We present the non-adiabatic Matsubara dynamics, a general framework for computing the time-correlation function (TCF) of electronically
non-adiabatic systems. This new formalism is derived based on the generalized Kubo-transformed TCF using the Wigner representation for
both the nuclear degrees of freedom and the electronic mapping variables. By dropping the non-Matsubara nuclear normal modes in the
quantum Liouvillian and explicitly integrating these modes out from the expression of the TCF, we derived the non-adiabatic Matsubara
dynamics approach. Further making the approximation to drop the imaginary part of the Matsubara Liouvillian and enforce the nuclear
momentum integral to be real, we arrived at the non-adiabatic ring-polymer molecular dynamics (NRPMD) approach. We have further
justified the capability of NRPMD for simulating the non-equilibrium TCF. This work provides the rigorous theoretical foundation for several
recently proposed state-dependent RPMD approaches and offers a general framework for developing new non-adiabatic quantum dynamics
methods in the future.
Published under license by AIP Publishing. https://doi.org/10.1063/5.0042136., s

I. INTRODUCTION

Accurately simulating the quantum dynamics of the molec-
ular system remains a central challenge in theoretical chem-
istry due to the difficulties of accurately describing electron-
ically non-adiabatic dynamics and nuclear quantum dynamics.
Directly performing exact quantum dynamics simulations is com-
putationally demanding, despite exciting recent progress.1–11 To
accurately describe the non-adiabatic dynamics, a large number
of approximate approaches are developed, including the pop-
ular trajectory surface-hopping method [based on the mixed
quantum–classical (MQC) approximation],12–15 the linearized path-
integral approaches,16–23 and the mixed quantum–classical Liouville
equation.24–28 Despite providing accurate electronic non-adiabatic
dynamics, these approaches often rely on the Wigner sampling of

the initial nuclear distribution and a classical dynamics for prop-
agation. Thus, in general, they do not preserve quantum Boltz-
mann distribution (QBD)29,30 or zero-point energy (ZPE) associ-
ated with the nuclear degrees of freedom (DOF). In fact, they often
suffer from numerical issues such as ZPE leakage,31,32 although
significant improvements were accomplished through recent
developments.33–36

To accurately describe nuclear quantum dynamics for elec-
tronically adiabatic systems, imaginary-time path integral based
approaches37–39 are developed, including the centroid molecular
dynamics (CMD)40–42 and the ring-polymer molecular dynamics
(RPMD).43,44 In particular, RPMD resembles the classical MD in
the extended phase space, providing a convenient way to com-
pute approximate quantum time-correlation functions (TCFs).43

The classical evolution of RPMD preserves its initial quantum
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distribution captured by the ring-polymer Hamiltonian, and it is
free of the zero-point energy leaking problem.31,43 Despite its suc-
cess on describing quantum effects in the condensed phase, RPMD is
limited to one-electron non-adiabatic dynamics45–49 or nuclear
quantization,43,50–53 as well as the lack of real-time electronic coher-
ence effects.45,46

Recently emerged state-dependent RPMD approaches pro-
vide a unified description of both the electronically non-adiabatic
dynamics and nuclear quantum effects. These state-dependent
RPMD methods, such as non-adiabatic RPMD (NRPMD),54–56

mapping variable RPMD (MV-RPMD),57–59 ring-polymer Ehren-
fest dynamics,60 kinetically constrained RPMD (KC-RPMD),48,61,62

coherent state RPMD (CS-RPMD),63 and ring-polymer surface hop-
ping (RPSH),64–68 are promising to provide both accurate non-
adiabatic dynamics with an explicit description of electronic states,
as well as a reliable treatment of nuclear quantum dynamics through
the ring-polymer path-integral quantization.

Despite the initial success, all of the above state-dependent
RPMD approaches are currently viewed as the model dynam-
ics. The Hamiltonians associated with some of these approaches
(such as MV-RPMD) are derived from the quantum partition
function, and these Hamiltonians are directly used for dynamics
propagation as well as the initial sampling. Thus, the fundamental
and crucial theoretical question is that can these methods be
rigorously justified. If so, not only it will explain the numer-
ical success of these state-dependent RPMD approaches but
also it will offer a general theoretical framework to under-
stand the limitations of these approaches and further improving
them. Recent theoretical work on the Matsubara dynamics69–72

by Hele, Althorpe, and others indeed provide the hope for this
because RPMD (as well as CMD) can be derived as an approxi-
mation of the Matsubara dynamics,70,73 which itself can be rigor-
ously derived.69 Along this direction, it has been recently shown74

that one can use the Matsubara approximation to derive a state-
dependent Matsubara dynamics for a golden-rule type of the
time-correlation function (TCF), which contains two different
electronic surfaces for the forward and backward propagators,
However, this formalism does not provide the time-dependent
electronic state information during the quantum dynamics
propagation.

In this paper, we present the non-adiabatic Matsubara
dynamics, a general framework for computing the time-correlation
function of electronically non-adiabatic systems. This new for-
malism is derived based on the generalized Kubo-transformed
time-correlation function (TCF) formalism42,69 using the Wigner
representation for both the nuclear DOF and electronic mapping
variables.75–77 By dropping the non-Matsubara nuclear normal
modes in the quantum Liouvillian,69 we derived the non-adiabatic
Matsubara dynamics, which can be viewed as a generalization of
the original (electronically adiabatic) Matsubara dynamics.69 Fur-
ther making the approximation that drops the imaginary part
of the Matsubara Liouvillian,73 we arrived at the non-adiabatic
RPMD (NRPMD) approach, where the initial distribution coin-
cides with the one in Mapping-Variable (MV)-RPMD,57 whereas
the Liouvillian coincides with the Liouvillian used in the origi-
nally proposed NRPMD.54 We have further justified the capabil-
ity of NRPMD for simulating the non-equilibrium time correlation
function.56

II. EXACT KUBO-TRANSFORMED TIME-CORRELATION
FUNCTION

We begin by introducing the generalized Kubo-transformed
time-correlation function for a state-dependent Hamiltonian. We
start by expressing the total Hamiltonian operator as follows:

Ĥ = T̂ + V̂0 + V̂e =
P̂2

2m
+ V0(R̂) +

K
∑
i,j=1

Vij(R̂)∣i⟩⟨ j∣, (1)

where {|i⟩} is the diabatic basis, T̂ is the nuclear kinetic energy
operator, and R̂ is the nuclear position operator with the corre-
sponding conjugate momentum operator P̂. To simplify our dis-
cussion, we have assumed that there is only one nuclear DOF in
the system. Generalizing the discussion with many nuclear DOF is
straightforward.

Furthermore, V0(R̂) is the state-independent potential opera-
tor, whereas V̂e = ∑ij Vij(R̂)∣i⟩⟨ j∣ ≡ V(R) is the state-dependent
potential operator with K total diabatic electronic states. We assume
that Vij(R̂) is real and symmetric throughout this work.

A. Mapping representation of electronic states
For the electronic part of the Hamiltonian, the K diabatic elec-

tronic states can be mapped into K harmonic oscillators’ ground and
excited states, with (K − 1) oscillators in the ground state and the
ith oscillator in the first excited state. This is commonly referred
to as the single excited oscillator (SEO) subspace of the mapping
oscillators. It can be formally written as

∣i⟩ → ∣01, . . . , 1i . . . , 0K⟩ = â†
i ∣01, . . . , 0i . . . , 0K⟩, (2)

where â†
i = 1√

2h̵
(q̂i − ip̂i) and âj =

1√
2h̵
(q̂j + ip̂j), and q̂

= {q̂1, . . . , q̂i, . . . , q̂K} and p̂ = {p̂1, . . . , p̂i, . . . , p̂K} are the map-
ping position and momentum operators, respectively. This mapping
formalism is often referred to as the Meyer–Miller–Stock–Thoss
(MMST)75–77 mapping representation. With this mapping relation,
the electronic part of the Hamiltonian is expressed as

K
∑
i,j=1

Vij(R̂)∣i⟩⟨ j∣ →
K
∑
i,j=1

Vij(R̂)â†
i âj, (3)

and the electronic part of the Hamiltonian in Eq. (1) can be repre-
sented as

V̂e =
1

2h̵

K
∑
i,j=1

Vij(R̂)(q̂iq̂j + p̂ip̂j − δijh̵). (4)

This is known as the MMST75–77 mapping Hamiltonian.

B. Generalized Kubo-transformed time-correlation
functions

We begin by writing the generalized Kubo-transformed time-
correlation function (TCF). The conventional Kubo-transformed
correlation function is defined as

CK
AB(t) =

1
Zβ ∫

β

0
dλTr[e−(β−λ)ĤÂe−λĤe

i
̵h ĤtB̂e−

i
̵h Ĥt
]

=
1

ZN

N

∑
k=1

Tr[e−βN(N−k)ĤÂe−βN kĤe
i
̵h ĤtB̂e−

i
̵h Ĥt
], (5)
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where β = 1/kBT is the inverse temperature, βN = β/N, Z = Tr[e−βĤ
]

is the canonical partition function, Ĥ is defined in Eq. (1), and Tr
= TrnTre represents the trace over both electronic and nuclear DOFs.
From the first to the second expression in Eq. (5), we have con-
verted a definite integral into the discrete Riemann sum through

∫
b

a f (λ)dλ = limN→∞∑
N
k=1 f (a + k ⋅ Δλ) ⋅ Δλ, where a = 0, b = β,

and Δλ = β/N = βN . Note that the second line of Eq. (5) is equivalent
to the first line under the limit of N →∞.

We further insert N − 1 identities of the form eiĤt/h̵e−iĤt/h̵
= 𝟙̂

in Eq. (5) (see details in the supplementary material), resulting in

C[N]AB (t) =
1
Z

1
N

N

∑
k=1

Tr[(e−βN Ĥe
i
̵h Ĥte−

i
̵h Ĥt
)

N−k−1

× e−βN ĤÂe
i
̵h Ĥte−

i
̵h Ĥt
(e−βN Ĥe

i
̵h Ĥte−

i
̵h Ĥt
)

k−1

× e−βN Ĥe
i
̵h ĤtB̂e−

i
̵h Ĥt
]. (6)

Note that Eq. (6) has a symmetric block structure of the form
e−βN Ĥe

i
̵h Ĥte−

i
̵h Ĥt , where the operator Â is evaluated inside a particular

block depending on the value of the k index. This type of gener-
alized Kubo-transformed time-correlation function was first intro-
duced in the work connecting the linearized path-integral approach
and CMD42 and later used for the development of the Matsubara
dynamics.69–72

A path integral representation of Eq. (6) can be obtained by
inserting the following identities:

𝟙̂R′l ,q′l = ∫ dR′l ∫ dq′l P̂∣R
′
l ,q
′
l⟩⟨R

′
l ,q
′
l ∣, (7)

𝟙̂R′′l ,q′′l = ∫ dR′′l ∫ dq′′l ∣R
′′
l ,q′′l ⟩⟨R

′′
l ,q′′l ∣P̂, (8)

where the bead index l = 1, . . ., N and {R′′l , R′l} and {q′′l ,q′l}
are the nuclear and mapping variable positions, respectively, with

q′l = {[q
′
l ]1, . . . , [q′l ]i, . . . , [q′l ]K} and similarly for q′′l . Furthermore,

in both of the above identities, the electronic projection operator

P̂ =
K
∑
i=1
∣i⟩⟨i∣ (9)

is used to confine the mapping DOFs within the correct SEO sub-
space.78 Inserting Eqs. (7) and (8) into the bead-specific positions
of Eq. (6), one arrives at the formal mathematical description of the
generalized Kubo correlation function69,79 as follows:

C[N]AB (t) =
1
Z ∫

dR′′ ∫ dR′ ∫ dq′ ∫ dq′′

×
1
N

N

∑
k=1

N

∏
l≠k
⟨R′′l−1,q′′l−1∣P̂e−βN ĤP̂∣R′l ,q

′
l⟩

× ⟨R′′k−1,q′′k−1∣P̂e−βN ĤP̂Â∣R′k,q′k⟩

×
1
N

N

∑
k′=1

N

∏
l≠k′
⟨R′l ,q

′
l ∣e

i
̵h Ĥte−

i
̵h Ĥt
∣R′′l ,q′′l ⟩

× ⟨R′k′ ,q
′
k′ ∣e

i
̵h ĤtB̂e−

i
̵h Ĥt
∣R′′k′ ,q

′′
k′⟩, (10)

where we introduce the notation ∫ dx = ∏N
l=1 ∫ dxl for x = {R′, R′′,

q′, q′′}, and we have used the cyclic-symmetric property to write
operator B̂ in a bead-averaged fashion. A detail derivation of Eq. (10)
is provided in the supplementary material.

Next, we change the variables (R′l , R′′l ,q′l ,q
′′
l ) into the mean (Rl

and ql) and difference coordinates (Dl and Δl) as follows:42,79

Rl =
1
2
(R′l + R′′l ), ql =

1
2
(q′l + q′′l ), (11)

Dl = R′l − R′′l , Δl = q
′
l − q

′′
l . (12)

Note that the Jacobian of the above transformation is unity for each
bead index l. With this, one can re-express Eq. (10) as follows:

C[N]AB (t) =
1
Z ∫

dR∫ dD∫ dq∫ dΔ 1
N

N

∑
k=1

N

∏
l≠k
⟨ql−1 −

1
2
Δl−1, Rl−1 −

1
2

Dl−1∣P̂e−βN ĤP̂∣ql +
Δl

2
, Rl +

Dl

2
⟩

×⟨qk−1 −
1
2
Δk−1, Rk−1 −

1
2

Dk−1∣P̂e−βN ĤP̂Â∣qk +
Δk

2
, Rk +

Dk

2
⟩

1
N

N

∑
k′=1

N

∏
l≠k′
⟨ql −

Δl

2
, Rl −

Dl

2
∣e

i
̵h Ĥt

× e−
i
̵h Ĥt
∣ql +

Δl

2
, Rl +

Dl

2
⟩⟨qk′ −

Δk′

2
, Rk′ −

Dk′

2
∣e

i
̵h ĤtB̂e−

i
̵h Ĥt
∣qk′ +

Δk′

2
, Rk′ +

Dk′

2
⟩. (13)

Next, inserting the following identities

1 = ∫ dD′lδ(Dl + D′l) =
1
(2πh̵) ∫

dD′l ∫ dPle
i
̵h Pl(Dl+D′l ),

1 = ∫ dΔ′lδ(Δl + Δ′l) =
1

(2πh̵)K ∫
dΔ′l ∫ dple

i
̵h pl ⋅(Δl+Δ′l )

into Eq. (13) for all l blocks, we have

C[N]AB (t) =
αN

Z ∫
dR∫ dP∫ dq∫ dp[e−βĤÂ]N̄[B̂(t)]N , (14)

with the constant αN = 1/(2πh̵)(k+1)N , and the operator [e−βĤÂ]N̄ is
expressed as
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[e−βĤÂ]N̄ =
1
N

N

∑
k=1
∫ dD∫ dΔ

N

∏
l=1

e
i
̵h PlDl e

i
̵h plΔl

×
N

∏
l≠k
⟨ql−1 −

1
2
Δl−1, Rl−1 −

1
2

Dl−1∣

× P̂e−βN ĤP̂∣ql +
Δl

2
, Rl +

Dl

2
⟩

× ⟨qk−1 −
1
2
Δk−1, Rk−1 −

1
2

Dk−1∣

× P̂e−βN ĤP̂Â∣qk +
Δk

2
, Rk +

Dk

2
⟩, (15)

and [B̂(t)]N is expressed as follows:

[B̂(t)]N =
1
N

N

∑
k=1
∫ dD′ ∫ dΔ′

N

∏
l=1

e
i
̵h PlD′l e

i
̵h plΔ

′

l

×
N

∏
l≠k
⟨ql −

1
2
Δ′l , Rl −

1
2

D′l ∣e
i
̵h Ĥte−

i
̵h Ĥt
∣ql

+
1
2
Δ′l , Rl +

1
2

D′l⟩

× ⟨qk −
1
2
Δ′k, Rk −

1
2

D′k∣e
i
̵h ĤtB̂e−

i
̵h Ĥt
∣qk

+
1
2
Δ′k, Rk +

1
2

D′k⟩, (16)

where we have changed the dummy variable from ∑k′ to ∑k. Inte-
grals overR,P,D, are N dimensional, whereas integrals over q, p,and
Δ are (N ×K) dimensional. Note that [e−βĤÂ]N̄ in Eq. (15) contains
a complicated structure of the Wigner transform involving the cou-
plings with adjacent beads l and l + 1, whereas [B̂(t)]N in Eq. (16) is
a simple bead average of the Wigner transform.

We want to remind the reader that C[N]AB (t) in Eq. (14) should
be viewed as a generalized Kubo-transformed time-correlation func-
tion such that under the N → ∞ limit, it returns to the origi-
nal definition of the Kubo-transformed time-correlation function
CK

AB(t) defined in Eq. (5). With a finite N, even though it is no
longer equivalent to CK

AB(t), it is still an quantum mechanically exact
time-correlation function.

C. The quantum Liouvillian

For a Wigner transform of an operator [Â]W = ∫ dDe
i
̵h PD
⟨R

− D
2 ∣Â∣R + D

2 ⟩, one can formally write down its time-dependent aver-

age as [Â(t)]W = [e
i
̵h ĤtÂe−

i
̵h Ĥt
]W = eL

[1]t
[Â(0)]W, where L[1] is

the quantum Liouvillian (see the supplementary material for detail
derivation), and is commonly referred to as the Wigner–Moyal
series.80,81

Note that [B̂(t)]N [Eq. (16)] is expressed as the bead-averaged
(K + 1)-dimensional Wigner transform as follows:

[B̂(t)]N =
1
N ∑k

∫ dDk ∫ dΔke
i
̵h PkDk e

i
̵h pkΔk

× ⟨qk −
1
2
Δk, Rk −

1
2

Dk∣B̂(t)∣qk +
1
2
Δk, Rk +

1
2

Dk⟩

≡
1
N ∑k

[B̂k(t)]W, (17)

where B̂(t) = e
i
̵h ĤtB̂e−

i
̵h Ĥt and [B̂k(t)]W is the Wigner transform

of B̂(t) associated with the kth bead, defined in the above equa-
tion. In Eq. (17), we have also changed the dummy variables from
D′ and Δ′ to D and Δ. When t = 0, [B̂(0)]N = 1

N ∑k[B̂k]W, with
[B̂k]W = ∫ dDk ∫ dΔke

i
̵h PkDk e

i
̵h pkΔk⟨qk −

1
2Δk, Rk −

1
2 Dk∣B̂∣qk + 1

2Δk,
Rk + 1

2 Dk⟩.
With the above information, we can formally write [B̂(t)]N as

follows:

[B̂(t)]N = eL
[N]t
[B̂(0)]N . (18)

The quantum Liouvillian L[N] has the following form:

L[N] = ∑
l

2
h̵
[Ĥl]W ⋅ sin(

h̵
2
Λ̂l), (19)

where Λ̂l ≡ −{ , } is the negative Poisson operator associated with
the lth bead expressed as

Λ̂l =
⎛

⎝

Λ̂n
l

Λ̂e
l

⎞

⎠
=
⎛
⎜
⎝

←Ð
∂
∂Pl

Ð→
∂
∂Rl
−
←Ð
∂
∂Rl

Ð→
∂
∂Pl

←Ð
∇ pl
⋅
Ð→
∇ ql
−
←Ð
∇ ql
⋅
Ð→
∇ pl

⎞
⎟
⎠

, (20)

with the mapping variables related derivatives defined as

∇q =

⎛
⎜
⎜
⎜
⎝

∂
∂q1

⋮

∂
∂qK

,

⎞
⎟
⎟
⎟
⎠

, (21)

where∇T
q = (

∂
∂q1

, . . . , ∂
∂qK
), and likewise for∇p.

Furthermore, [Ĥl]W in Eq. (19) is the Wigner transform of the
MMST mapping Hamiltonian [Eq. (1)] associated with the lth bead,
which can be shown25,56,82 as

[Ĥl]W =
P2

l

2m
+ V0(Rl) + Ve(Rl,ql,pl). (22)

The detailed proof of the above Wigner transform is provided in
the supplementary material. In the above equation, V0(Rl) is the
state-independent potential evaluated at the lth nuclear bead posi-
tion Rl, and Ve(Rl, ql, pl) is the state-dependent potential that
parametrically depends on Rl, ql = ([ql]1, [ql]2, . . . , [ql]K), and
pl = ([pl]1, [pl]2, . . . , [pl]K), with the following expression:

Ve(Rl,ql,pl) =
1

2h̵

K
∑
i,j=1

Vij(Rl)([pl]i[pl]j + [ql]i[ql]j − δijh̵). (23)

The above expression is the classical limit of Eq. (4) (when replac-
ing the mapping position and momentum operators with the corre-
sponding values).

Now, using Eq. (19) with the detailed expressions of Λ̂l
[Eq. (20)] and [Ĥl]W [Eq. (22)], the full Liouvillian79 can be explicitly
expressed as follows:

J. Chem. Phys. 154, 124124 (2021); doi: 10.1063/5.0042136 154, 124124-4

Published under license by AIP Publishing

https://scitation.org/journal/jcp
https://www.scitation.org/doi/suppl/10.1063/5.0042136
https://www.scitation.org/doi/suppl/10.1063/5.0042136


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

L[N] =
N

∑
l=1

⎡
⎢
⎢
⎢
⎢
⎣

Pl

m

Ð→
∂

∂Rl
− [V0(Rl) + Ve(Rl,ql,pl)]

2
h̵

sin

×
⎛

⎝

h̵
2

←Ð
∂

∂Rl

Ð→
∂

∂Pl

⎞

⎠
+

1
h̵
[pT

l V(Rl)
Ð→
∇ ql
− qT

l V(Rl)
Ð→
∇ pl
]

× cos
⎛

⎝

h̵
2

←Ð
∂

∂Rl

Ð→
∂

∂Pl

⎞

⎠
+

1
4
[
Ð→
∇

T
ql
V(Rl)

Ð→
∇ ql

+Ð→∇
T
pl
V(Rl)

Ð→
∇ pl
] sin
⎛

⎝

h̵
2

←Ð
∂

∂Rl

Ð→
∂

∂Pl

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

. (24)

The above Liouvillian was first derived in Ref. 79, and the details
of the derivation are also provided in Appendix A as well as in the
supplementary material. In Eq. (24), V0(Rl) and Ve(Rl, ql, pl) are
defined in [Ĥl]W [Eq. (22)], and ∇ql

and ∇pl
are the gradient

operators corresponding to the lth mapping bead’s position and
momentum, respectively, defined in Eq. (21). Furthermore, V(Rl)

is the (K × K) state-dependent potential energy matrix, which
parametrically depends on the lth nuclear bead’s position as follows:

V(Rl) =

⎛
⎜
⎜
⎝

V11(Rl) V12(Rl) ⋯ V1K(Rl)

⋮ ⋮ ⋮

VK1(Rl) VK2(Rl) ⋯ VKK(Rl)

⎞
⎟
⎟
⎠

. (25)

This generalized Liouvillian L[N] governs the time evolution of
N individual replicas connected through the zero-time quantum
Boltzmann distribution. The exact Liouvillian L[N] in Eq. (24) has
three components. The first term L[N]n = ∑

N
l=1

Pl
m

Ð→
∂
∂Rl
− [V0(Rl)

+ Ve(Rl,ql,pl)]
2
h̵ sin( h̵

2

←Ð
∂
∂Rl

Ð→
∂
∂Pl
) corresponds to an Ehrenfest-type

evolution of the nuclear DOF,83 with higher-order nuclear
derivatives inside the sine function. The second term L[N]e

= ∑
N
l=1

1
h̵ [p

T
l V(Rl)

Ð→
∇ ql

− qT
l V(Rl)

Ð→
∇ pl
] cos( h̵

2

←Ð
∂
∂Rl

Ð→
∂
∂Pl
) describes

the electronic–nuclear couplings. The third term L[N]h = 1
4

[
Ð→
∇

T
ql
V(Rl)

Ð→
∇ ql

+Ð→∇T
pl
V(Rl)

Ð→
∇ pl
] sin( h̵

2

←Ð
∂
∂Rl

Ð→
∂
∂Pl
)] contains coupled

higher-order derivatives of nuclear and electronic DOFs.25,82,84 Note
that there are no cross-bead interaction terms between electronic
DOF and nuclear DOF in Eq. (24). The nuclear and mapping beads
with the same bead index l interact with each other through V(Rl)

[Eq. (25)]. If the system evolves on a single surface (electroni-
cally adiabatic regime), then Eq. (24) reduces to the conventional
Wigner–Moyal series79–81 for N independent replicas as follows:

L[N] =
N

∑
l=1

⎡
⎢
⎢
⎢
⎢
⎣

Pl

m

Ð→
∂

∂Rl
−

2
h̵

V0(Rl) ⋅ sin
⎛

⎝

h̵
2

←Ð
∂

∂Rl

Ð→
∂

∂Pl

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

. (26)

On the other hand, if there is no nuclear DOF, then the Liouvillian
[Eq. (24)] becomes

L[N] =
N

∑
l=1

1
h̵
[pT

l V
Ð→
∇ ql
− qT

l V
Ð→
∇ pl
]. (27)

It has been rigorously proved that the above Liouvillian in Eq. (27)
preserves the electronic Rabi oscillations.79

D. Time-correlation function
With the detail expression of Liouvillian in Eq. (24), one can

formally rewrite Eq. (14) as

C[N]AB (t) =
αN

Z ∫
dR∫ dP∫ dq∫ dp

× [e−βĤÂ]N̄ eL
[N]t
[B̂(0)]N , (28)

where L[N] is the Liouvillian in Eq. (24), [e−βĤÂ]N̄ is expressed in
Eq. (15), and [B̂(0)]N = 1

N ∑k[B̂k]W as shown in Eq. (17). Up to
this point, there is no approximation in the expression of C[N]AB (t) in
Eq. (28).

We can further write [e−βĤÂ]N̄ [Eq. (15)] in the symmetric
form as

[e−βĤÂ]N̄ =
1
2
[Âe−βĤ + e−βĤÂ]

N̄

=
1
N

N

∑
k=1
∫ dD∫ dΔ

N

∏
l=1

e
i
̵h PlDl e

i
̵h plΔl

×
N

∏
l≠k
⟨ql−1 −

1
2
Δl−1, Rl−1 −

1
2

Dl−1∣P̂e−βN ĤP̂

× ∣ql +
Δl

2
, Rl +

Dl

2
⟩⟨qk−1 −

1
2
Δk−1, Rk−1 −

1
2

Dk−1∣

×
1
2
(P̂e−βN ĤP̂Â + ÂP̂e−βN ĤP̂)∣qk +

Δk

2
, Rk +

Dk

2
⟩.

(29)

Using the property of the Wigner transform,80,85
[Ô1Ô2]W

= [Ô1]We−iΛ̂h̵/2
[Ô2]W, with Λ̂ defined in Eq. (20), we can rewrite

Eq. (29) as

[e−βĤÂ]N̄ = [Â]N[
N

∑
l=1

cos(Λ̂lh̵/2)][e
−βĤ
]N̄ , (30)

where [Â]N = 1
N ∑k[Âk]W, with

[Âk]W =∫ dDk ∫ dΔke
i
̵h PkDk e

i
̵h pkΔk

× ⟨qk −
1
2
Δk, Rk −

1
2

Dk∣Â∣qk +
1
2
Δk, Rk +

1
2

Dk⟩, (31)

and Λ̂l is defined previously in Eq. (20). The multi-dimensional
Wigner transformed Boltzmann operator [e−βĤ

]N̄ is expressed as

[e−βĤ
]N̄ =∫ dD∫ dΔ

N

∏
l=1

e
i
̵h PlDl e

i
̵h plΔl

× ⟨ql−1 −
1
2
Δl−1, Rl−1 −

1
2

Dl−1∣P̂e−βN ĤP̂

× ∣ql +
1
2
Δl, Rl +

1
2

Dl ⟩. (32)

The detail derivation of Eq. (30) is provided in the supplementary
material. Equation (30) can be further simplified under special cases,
which are also elaborated in the supplementary material.
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From this point and below, we assume that both operators Â
and B̂ are linear functions of the nuclear position (R) such that
Eq. (30) becomes [e−βĤÂ]N̄ = [Â]N ⋅ [e

−βĤ
]N̄ . With this simplifi-

cation, we can write Eq. (28) as

C[N]AB (t) =
αN

Z ∫
dR∫ dP∫ dq∫ dp[e−βĤ

]N̄[Â]N eL
[N]t
[B̂]N .

(33)

III. NORMAL MODE REPRESENTATION
We briefly introduced the normal mode coordinates of the free

ring-polymer. The advantage of using normal modes is that with
this set of global coordinates, one can conveniently describe the
collective motion of individual beads.

A. Definition of the normal modes
The free ring-polymer Hamiltonian is defined as

Hrp =
N

∑
l=1

P2
l

2m
+

m
2β2

N h̵2 (Rl − Rl−1)
2, (34)

without an external potential. Normal modes are defined as the
eigenvectors of the Hessian matrix of Hrp. Diagonalizing the Hes-
sian matrix of Hrp, one obtains the eigenvalues ω2

n, which are the
square of following normal mode frequency:

ωn =
2

βN h̵
sin(

nπ
N
), (35)

where n = 0, . . ., ±(N − 1)/2 is the index of normal modes. The same
diagonalization process also gives the eigenvectors T ln of the Hessian
matrix, which provides the relation between the primitive variables
Rl, Pl and the normal mode variables Qn,Pn as follows:

Qn =
N

∑
l=1

Tln
√

N
Rl, Pn =

N

∑
l=1

Tln
√

N
Pl,

Rl =

(N−1)/2
∑

n=−(N−1)/2

√
NTlnQn, Pl =

(N−1)/2
∑

n=−(N−1)/2

√
NTlnPn.

(36)

Similar transformation should also apply to {Dn} and {Dl}. The
extra

√
N factor in Eq. (36) ensures that the Q = {Qn} converges

in the limit of N → ∞. For an odd N (to simplify our algebra), the
transformation matrices are

Tln =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

√
1
N , n = 0

√
2
N sin(2πln/N), n = 1, . . . , (N − 1)/2

√
2
N cos(2πln/N), n = −1, . . . ,−(N − 1)/2.

(37)

Under the normal mode representation, the free ring-polymer
Hamiltonian [Eq. (34)] becomes

Hrp =

(N−1)/2
∑

n=−(N−1)/2

Pn
2

2 m
+

1
2

mω2
nQ2

n. (38)

Note that the ring-polymer spring terms are now simplified to
uncoupled quadratic potentials; hence, the normal modes of the

free-ring polymer can be evolved analytically by simple harmonic
motions.86

B. Time-correlation function with normal modes
It is straightforward to transform Eq. (33) into the nor-

mal mode coordinates by using the orthonormal transformations
defined in Eq. (36), leading to

C[N]AB (t) =
αN

Z∫
dQ∫ dP∫ dq∫ dp[Â(0)]N[e−βĤ

]N̄ eL
[N]t
[B̂(0)]N ,

(39)

where we used the shorthand notation ∫ dQ = ∏(N−1)/2
n=−(N−1)/2 ∫ dQn

and likewise for ∫ dP. Here, both the ∫dq and ∫dp are defined
as before in bead’s representation, such as ∫ dq = ∏N

l=1 ∫ dql
and likewise for ∫dp. Only nuclear coordinates R and P are trans-
formed to their corresponding normal mode coordinates Q and P,
respectively.

Using new coordinates ξ±l defined as

ξ±l =
(N−1)/2
∑

n=−(N−1)/2

√
NTlnQn ±

(N−1)/2
∑

n=−(N−1)/2

1
2

√
NTlnDn (40)

[e−βĤ
]N̄ is expressed in these normal mode coordinates as

[e−βĤ
]N̄ = ∫ dD∫ dΔ

⎡
⎢
⎢
⎢
⎢
⎣

(N−1)/2
∏

n=−(N−1)/2
e

i
̵h NPnDn

⎤
⎥
⎥
⎥
⎥
⎦

N

∏
l=1

e
i
̵h plΔl

×⟨ql−1 −
1
2
Δl−1, ξ−l−1∣P̂e−βN ĤP̂∣ql +

Δl

2
, ξ+

l ⟩. (41)

Providing the operators Â = B̂ = R̂, [Â]N can be expressed in
normal mode coordinates as

[Â]N =
1
N

N

∑
k=1
[Âk]W =

1
N

N

∑
k=1

Rk =
1
N

N

∑
k=1
∑

n

√
NTknQn, (42)

and the same for [B̂]N .
Finally, we decompose the total Liouvillian L[N] [Eq. (24)] into

the following terms:

L[N] = L[N]n + L[N]e + L[N]h , (43)

and express each term with the normal mode coordinates as

L[N]n =

(N−1)/2
∑

n=−(N−1)/2

⎛

⎝

Pn

m

Ð→
∂

∂Qn

⎞

⎠
−

2N
h̵
[U[N]0 (Q) + U[N]e (Q,q,p)]

× sin
⎛

⎝

h̵
2N

(N−1)/2
∑

n=−(N−1)/2

←Ð
∂

∂Qn

Ð→
∂

∂Pn

⎞

⎠
, (44)

L[N]e =
1
h̵

N

∑
l=1
[pT

l V(Rl(Q))
Ð→
∇ ql
− qT

l V(Rl(Q))
Ð→
∇ pl
]

× cos
⎛

⎝

h̵
2N

(N−1)/2
∑

n=−(N−1)/2

←Ð
∂

∂Qn

Ð→
∂

∂Pn

⎞

⎠
, (45)
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L[N]h =
1
4

N

∑
l=1
[
Ð→
∇

T
ql
V(Rl(Q))

Ð→
∇ ql

+Ð→∇T
pl
V(Rl(Q))

Ð→
∇ pl
]

× sin
⎛

⎝

h̵
2N

(N−1)/2
∑

n=−(N−1)/2

←Ð
∂

∂Qn

Ð→
∂

∂Pn

⎞

⎠
. (46)

Here, the normal mode representation of U[N]0 (Q), U[N]e (Q,q,p),
and V(Rl(Q)) is defined as

U[N]0 (Q) = 1
N

N

∑
l=1

V0
⎛

⎝

(N−1)/2
∑

n=−(N−1)/2

√
NTlnQn

⎞

⎠
, (47)

U[N]e (Q,q,p) =
1
N

N

∑
l=1

K
∑
i,j=1

Vij
⎛

⎝

(N−1)/2
∑

n=−(N−1)/2

√
NTlnQn

⎞

⎠

×
1

2h̵
([pi]l[pj]l + [qi]l[qj]l − δijh̵), (48)

V(Rl(Q)) =
⎛
⎜
⎜
⎜
⎝

V11(Rl(Q)) V12(Rl(Q)) ⋯ V1K(Rl(Q))

⋮ ⋮ ⋮

VK1(Rl(Q)) VK2(Rl(Q)) ⋯ VKK(Rl(Q))

⎞
⎟
⎟
⎟
⎠

,

(49)

where each Vij(Rl(Q)) term in Eq. (49) is expressed as

Vij(Rl(Q)) = Vij
⎛

⎝

(N−1)/2
∑

n=−(N−1)/2

√
NTlnQn

⎞

⎠
. (50)

Note that in Eq. (50), the Vij(Rl(Q)) term corresponds to the dia-
batic potential Vij(R) evaluated at the lth bead position Rl in terms
of the normal mode coordinate Rl = ∑n

√
NTlnQn. Also note that

each nuclear derivative term
←Ð
∂

∂Qn

Ð→
∂

∂Pn
in the above Liouvillian does

not couple to each other. They only couple to each other through
the sine or cosine function in the Liouvillian.

IV. NON-ADIABATIC MATSUBARA DYNAMICS
A. Matsubara modes

We now consider the M lowest frequency normal modes for
M ≪ N under the limit N → ∞. They are commonly referred to
as the Matsubara modes38,69 of distinguishable particles, with the
corresponding Matsubara frequency ω̃n as follows:

ω̃n = lim
N→∞

ωn =
2nπ
βh̵

, ∣n∣ ≤ (M − 1)/2. (51)

Figure 1 presents the normal mode frequency of the ring-polymer
and the Matsubara region (blue box).

The superposition of these M Matsubara modes produces a
smooth and differentiable function69,87–89 in imaginary time τ = βN h̵l
with l = 1, . . ., N. On the other hand, if one considers both the Mat-
subara (M) and non-Matsubara (N-M) modes, then the imaginary-
time path is not necessarily differentiable because the latter gives rise
to non-smooth, non-differentiable distribution with respect to τ. It is
a well-known fact that the Boltzmann operator guarantees that only

FIG. 1. The red dashed line presents the Matsubara frequency ω̃n with
|n| ≤ (M − 1)/2, and the black line corresponds to the ring-polymer frequency
ωn with |n| ≤ (N − 1)/2, where M ≪ N. The blue dotted line corresponds to the
“Matsubara” regime.

the Matsubara modes contribute to the initial Quantum Boltzmann
Distribution (QBD)38,90–92 (for electronically adiabatic systems). The
previous work on Matsubara dynamics69,73 has suggested that there
is a close connection between the smoothness in imaginary-time and
the dynamics that preserves the QBD.

Similar to the previous work of the Matsubara dynamics69 (in
Sec. IV C), we shall prove that one can integrate out all of the
non-Matsubara modes from Eq. (39), giving rise to the exact ini-
tial quantum statistics, which corresponds to the generalized Kubo-
transformed correlation function at t = 0 in the limit M → ∞,
M ≪ N.69,90–92 This suggests that only the smooth and imaginary-
time differentiable Matsubara modes contribute to the initial
quantum statistics for the electronically non-adiabatic systems as
well.

B. Matsubara approximation
We separate each term in Eq. (43) into two parts, one contains

the lowest M Matsubara modes and the other contains (N −M) non-
Matsubara modes,

L[N] = L[M] + L[N−M], (52)

where the Matsubara Liouvillian is L[M] and the non-Matsubara
Liouvillian L[N−M] is expressed in Appendix A. Note that the
non-Matsubara Liouvillian L[N−M] does couple the non-Matsubara
modes with the Matsubara modes, and both the Matsubara and non-
Matsubara modes couple to the mapping DOFs through L[M] and
L[N−M]. Since the non-Matsubara modes do not contribute to the
initial quantum statistics, it should be a good approximation (at least
in short time) to ignore their presence in the quantum Liouvillian.69

This approximation is achieved by neglecting the non-Matsubara
modes in the derivatives of the corresponding Liouvillian terms
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L[N] ≈ L[M] + O(L[N−M]
), which effectively produces the decou-

pling between non-Matsubara modes from the Matsubara modes
during the time evolution.

Similar to L[N] in Eq. (43), we further decompose L[M] into the
following three terms:

L[M] = L[M]n + L[M]e + L[M]h , (53)

where the detailed expressions for each term are

L[M]n =

(M−1)/2
∑

n=−(M−1)/2

⎛

⎝

Pn

m

Ð→
∂

∂Qn

⎞

⎠
−

2N
h̵
[U[N]0 (Q) + U[N]e (Q,q,p)]

× sin
⎛

⎝

h̵
2N

(M−1)/2
∑

n=−(M−1)/2

←Ð
∂

∂Qn

Ð→
∂

∂Pn

⎞

⎠
, (54)

L[M]e =
1
h̵

N

∑
l=1
[pT

l V(Rl(Q))
Ð→
∇ ql
− qT

l V(Rl(Q))
Ð→
∇ pl
]

× cos
⎛

⎝

h̵
2N

(M−1)/2
∑

n=−(M−1)/2

←Ð
∂

∂Qn

Ð→
∂

∂Pn

⎞

⎠
, (55)

L[M]h =
1
4

N

∑
l=1
[
Ð→
∇

T
ql
V(Rl(Q))

Ð→
∇ ql

+Ð→∇T
pl
V(Rl(Q))

Ð→
∇ pl
]

× sin
⎛

⎝

h̵
2N

(M−1)/2
∑

n=−(M−1)/2

←Ð
∂

∂Qn

Ð→
∂

∂Pn

⎞

⎠
. (56)

In Eqs. (54)–(56), we re-express L[N]n ,L[N]e and L[N]h in Matsubara
modes under the N → ∞ and M ≪ N limit. It is worth mention-
ing that the full Matsubara Liouvillian in Eq. (53) contains potential
terms U[N]0 (Q), U[N]e (Q,q,p), and V(Rl(Q)), which still depend
on all N normal modes. On the other hand, all derivatives only
involve M Matsubara modes.

C. Matsubara time-correlation function
Explicitly applying the Matsubara approximation for the Liou-

villian L[N] ≈ L[M] + O(L[N−M]
), the exact correlation function

in Eq. (39) becomes an approximate correlation function C[N]AB (t)
≈ C[M]AB (t), whereas C[N]AB (0) = C[M]AB (0) such that the initial QBD
is exactly captured (see Sec. IV D). This approximate TCF, which
is commonly referred to as the Matsubara TCF, is expressed as
follows:

C[M]AB (t) = lim
N→∞

αN

Z ∫
dQ∫ dP∫ dq∫ dp

× [Â(0)]N[e−βĤ
]N̄ eL

[M]t
[B̂(0)]N . (57)

Note that the above expression still depends on the non-Matsubara
modes through the potentials in L[M] and the QBD term [e−βĤ

]N̄ ,
and the integrals ∫ dQ and ∫ dP still include all normal modes
(Matsubara and non-Matsubara). However, as non-Matsubara
modes are decoupled from the Matsubara modes (because we have

dropped L[N−M] in the Liouvillian), one can analytically integrate
out all of the non-Matsubara modes under the limit of N → ∞,
M → ∞, and M ≪ N. The detailed derivation of this procedure is
provided in Appendix C.

After integrating out the non-Matsubara modes in Eq. (57), we
reach to the first key result of this paper as follows:

C[M]AB (t) =
αN ⋅ αM

ZM
∫ dQM ∫ dPM ∫ dq∫ dpA(QM)

× Γ(QM ,q,p)e−β(HM(PM ,QM)−iθM(PM ,QM))eL
[M]tB(QM),

(58)

where the shorthand notations for the integrals are ∫ dQM

= ∏
(M−1)/2
n=−(M−1)/2 dQn, ∫ dq = ∏N

l=1 dql, and analogously for ∫ dPM

and ∫dp, and αM is the following constant:

αM =
h̵(1−M)

[(M − 1)/2]!2 . (59)

Note that C[M]AB (t) explicitly depends on the Matsubara modes
QM and PM . The mapping DOFs, on the other hand, are still
expressed in the primitive (bead) variables with all N copies because
we did not make any approximation on them. The Liouvillian L[M]
has the same expression in Eqs. (54)–(56) but with following substi-
tutions: U[N]0 (Q) → U[M]0 (QM), U[N]e (Q,q,p) → U[M]e (QM ,q,p),
and V(Rl(Q)) → V(Rl(QM)), whereas these new potential only
contains the Matsubara modes, for example,

U[M]0 (QM) = lim
N→∞

1
N

N

∑
l=1

V0
⎛

⎝

(M−1)/2
∑

n=−(M−1)/2
Tln
√

NQn
⎞

⎠
, (60)

and similarly for U[M]e (QM ,q,p) and V(Rl(QM)) by replacing the
sum in Eqs. (48) and (49) from originally over all modes to the
sum over only the Matsubara modes. Note that the nuclear coordi-
nate Rl(QM) = ∑

(M−1)/2
n=−(M−1)/2 Tln

√
NQn is different than the original

coordinate Rl(Q) = ∑
(N−1)/2
n=−(N−1)/2 Tln

√
NQn; the former one only

contains a smooth (and imaginary-time differentiable) Matsubara
mode, and later one contains all modes.

Furthermore, HM(PM ,QM) is expressed as

HM(PM ,QM) =

(M−1)/2
∑

n=−(M−1)/2

P2
n

2m
+ U[M]0 (QM), (61)

and the Matsubara phase θM takes the following form:

θM(PM ,QM) =

(M−1)/2
∑

n=−(M−1)/2
Pnω̃nQ−n, (62)

where ω̃n = 2nπ/βh̵ is the Matsubara frequency [Eq. (51)].
The Γ(QM ,q,p) term in Eq. (58) corresponds to the QBD orig-

inated from the electronic–nuclear interaction, which is expressed as
follows:

Γ(QM ,q,p) = ϕ ⋅ e−
GN
̵h Tre[

N

∏
l=1
(Cl −

1
2
I)M(Rl(QM))], (63)
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where ϕ = 2(K+1)N
/h̵N , with GN = ∑

N
l=1(q

T
l ql + pT

l pl). Furthermore,
Cl is expressed as

Cl = (ql + ipl) × (ql − ipl)
T, (64)

and I is the (K ×K) identity matrix. Note that (Cl −
1
2I) can be

interpreted as the reduced density matrix associated with the lth
bead.57 In addition, Mij(Rl(QM)) is the matrix element of the
electronic Boltzmann operator expressed as follows:

Mij(Rl(QM)) = ⟨i∣e
−βN V̂e(Rl(QM))∣ j⟩, (65)

where V̂e(Rl(QM)) = ∑ij Vij(Rl(QM))∣i⟩⟨ j∣ is the state-dependent
potential operator evaluated at the lth bead position Rl in terms of
the Matsubara coordinate, Rl = ∑

(M−1)/2
n=−(M−1)/2

√
NTlnQn. The expres-

sion of Γ was originally derived in the MV-RPMD partition function
expression.57

Finally, the partition function is expressed as

ZM = αN ⋅ αM ∫ dQM ∫ dPM ∫ dq∫ dp

× Γ(QM ,q,p)e−β(HM(PM ,QM)−iθM(PM ,QM)). (66)

Note that under the Matsubara limit N → ∞, M → ∞, and M
≪ N, one can further Taylor expand the sine and cosine terms in
Eqs. (54)–(56) as follows:

lim
N→∞

lim
M≪N

2N
h̵

sin
⎛

⎝

h̵
2N

(M−1)/2
∑

n=−(M−1)/2

←Ð
∂

∂Qn

Ð→
∂

∂Pn

⎞

⎠

=

(M−1)/2
∑

n=−(M−1)/2

←Ð
∂

∂Qn

Ð→
∂

∂Pn
+ O(M3h̵2

N2 ), (67)

lim
N→∞

lim
M≪N

cos
⎛

⎝

h̵
2N

(M−1)/2
∑

n=−(M−1)/2

←Ð
∂

∂Qn

Ð→
∂

∂Pn

⎞

⎠
= 1 + O(M2h̵2

N2 ). (68)

From the above analysis, it is clear that in the Matsubara space, the
“effective” Planck constant inside the cosine term is scaled as

h̵→
M
N

h̵ (69)

and scaled as
√

M M
N h̵ for the sine term.70 Thus, the Planck con-

stant can be made as small as desired by properly choosing N and

M. Hence, truncating Eqs. (54)–(56) to the first order of
←Ð
∂

∂Qn

Ð→
∂

∂Pn
in

the Matsubara space becomes exact.
These effective scalings of the Planck constant are the main

advantage of the Matsubara dynamics, compared to the previous
approaches (see Appendix D) that rely on the truncation of the
Liouvillian based on the argument of a “small” h̵, which may or
may not be a good approximation. In addition, note that the argu-
ments in Eqs. (67) and (68) do not work for non-Matsubara modes,
as the error term becomes O((N −M)3h̵2

/N2
) for Eq. (67) and

O((N −M)2h̵2
/N2
) for Eq. (68), which are no longer small under

the N →∞ limit.

Therefore, under the Matsubara limit, we can exactly express
the original Matsubara Liouvillian L[M] [with the expression of
Eqs. (54)–(56) with QM] in the following equivalent expression:

L[M] =
(M−1)/2
∑

n=−(M−1)/2

Pn

m

Ð→
∂

∂Qn
−

(M−1)/2
∑

n=−(M−1)/2

×
⎛

⎝

∂U[M]0 (QM)

∂Qn
+
∂U[M]e (QM ,q,p)

∂Qn

⎞

⎠

Ð→
∂

∂Pn

+
1
h̵

N

∑
l=1
(pT

l V(Rl(QM))
Ð→
∇ ql
− qT

l V(Rl(QM))
Ð→
∇ pl
), (70)

where U[M]e (QM ,q,p) and V(Rl(QM)) are defined analogously
as those in Eqs. (48) and (49), respectively, where QM are
normal modes in the “Matsubara” domain such that Rl(QM)

= ∑
(M−1)/2
n=−(M−1)/2 Tln

√
NQn.

In the above Matsubara Liouvillian, we have explicitly dropped
the following higher order term [in L[M], Eq. (53)]:

L[M]h =
1
8

N

∑
l=1

h̵
N

(M−1)/2
∑

n=−(M−1)/2
([
Ð→
∇

T
ql

∂V(Rl(QM))

∂Qn

Ð→
∇ ql

+Ð→∇T
pl

∂V(Rl(QM))

∂Qn

Ð→
∇ pl
])

Ð→
∂

∂Pn
, (71)

where ∂V(Rl(QM))
∂Qn

is a (K × K) matrix, with the matrix element
∂Vij(Rl(QM))

∂Qn
. This term accounts for the back action from the elec-

tronic DOF to the nuclear subsystem.82 For each lth-bead term of
L[M]h [Eq. (56)], it is on the order of ∼ O(M

N h̵0
) [by noting the

fact that [q̂, p̂] = ih̵, thus q scales as
√

h̵, which effectively cancels
the h̵ in Eq. (56)]. The overall scaling of the L[M]h term is O(Mh̵0

).
Thus, ignoring L[M]h in the current formalism should be viewed as
an additional approximation on top of the Matsubara approxima-
tion. However, one can potentially make this term as small as desired
by choosing a different number of beads for the electronic and
nuclear DOF.55,93 The details of these discussions are provided in
Appendix A [Eq. (A14)].

The Matsubara correlation function in Eq. (58) contains an
imaginary phase factor θM [Eq. (62)], which potentially introduces
a sign problem for a system that contains multi-dimensional nuclear
DOF. In addition, Γ [Eq. (63)] will also potentially introduce a sign
problem (because it is a complex quantity) if the system contains
many electronic states K or if the TCF has a large number of beads
N. On the other hand, the numerical experience suggests that Γ itself
does not impose a severe sign problem for a two-state system55,57–59

with a finite N (for N ≤ 16). Hence, the most problematic phase
is θM .

To eliminate the phase θM , one can perform the following
transformation73 on P:

P̄n = Pn − imω̃nQ−n. (72)

Note that the above transformation has no effect on the centroid
mode (Q0), as ω̃0 for the centroid is zero [see Eq. (35) when
n = 0].
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Applying the transformation Pn → P̄n on the Liouvillian L[M]
in Eq. (70) (see the supplementary material for detailed derivations)
leads to the following complex Liouvillian in terms {P̄M ,QM}:

L̄[M] = L[M]RP + iL[M]I , (73)

where we denote the real part of L̄[M] as the following non-adiabatic
RPMD Liouvillian:

L[M]RP =

(M−1)/2
∑

n=−(M−1)/2

P̄n

m

Ð→
∂

∂Qn
−

⎡
⎢
⎢
⎢
⎢
⎣

mω̃2
nQn +

∂U[M]0 (QM)

∂Qn

+
∂U[M]e (QM ,q,p)

∂Qn

⎤
⎥
⎥
⎥
⎥
⎦

Ð→
∂

∂P̄n
+

1
h̵

N

∑
l=1
[pT

l V(Rl(QM))
Ð→
∇ ql

− qT
l V(Rl(QM))

Ð→
∇ pl
] (74)

and the imaginary part of L̄[M] as

L[M]I =

(M−1)/2
∑

n=−(M−1)/2
ω̃n
⎛

⎝
P̄n

Ð→
∂

∂P̄−n
−Qn

Ð→
∂

∂Q−n

⎞

⎠
. (75)

Note that there is no mapping related derivative in the above imag-
inary Liouvillian L[M]I , and its impact on the electronic dynamics
should only come from its influence on the nuclear dynamics, which,
in turn, couples to the electronic mapping DOF via L[M]RP . Thus, the
influence from L[M]I to mapping variables is indirect.

Using the above Liouvillian L̄[M], as well as applying the
transformation in Eq. (72) to the quantum Boltzmann operator
and the phase space integral in Eq. (58), one has the following
equivalent expression of the non-adiabatic Matsubara TCF (see the
supplementary material for detailed derivations):

C[M]AB (t) =
αN ⋅ αM

ZM

⎡
⎢
⎢
⎢
⎢
⎣

(M−1)/2
∏

n=−(M−1)/2
∫

bn

an

dP̄n

⎤
⎥
⎥
⎥
⎥
⎦

∫ dQM ∫ dq

× ∫ dpA(QM)e
−βHRP

M (P̄M ,QM)Γ(QM ,q,p)eL̄
[M]tB(QM),

(76)

where the original integral ∫
∞
−∞ dPn becomes ∫

bn
an

dP̄n, with the inte-
gration limits an = −∞ − imω̃nQ−n and bn = ∞ − imω̃nQ−n.
Furthermore, Γ(QM ,q,p) is defined previously in Eq. (63), and
HRP

M (P̄M ,QM) is the ring-polymer Hamiltonian in the Matsubara
domain expressed as follows:

HRP
M (P̄M ,QM) =

(M−1)/2
∑

n=−(M−1)/2

⎡
⎢
⎢
⎢
⎣

P̄2
n

2m
+

m
2
ω̃2

nQ2
n

⎤
⎥
⎥
⎥
⎦

+ U[M]0 (QM). (77)

Note that C[M]AB (t) in Eq. (76) is exactly equivalent to Eq. (58),
with the difference that Eq. (58) has a real Liouvillian and a com-
plex nuclear phase, whereas Eq. (76) has a complex Liouvillian and a
shifted nuclear momentum in the complex plane.

D. Exact quantum statistics with Matsubara modes
Equation (76) is perhaps even more difficult to evaluate than

Eq. (58) through a trajectory-based approach due to the complex
phase space integral and the complex Liouvillian. However, at t = 0,
one can analytically perform the integration in the complex phase
space. To this end, we use the standard contour integration pro-
cedure described in Ref. 73 and shift each imaginary P̄n onto the

real axis as ∫
∞−imω̃nQ−n
−∞−imω̃nQ−n

dP̄n exp[−β P̄2
n

2m ] = ∫
∞
−∞ dP̄n exp[−β P̄2

n
2m ]. The

details are discussed in the supplementary material. This procedure
allows us to write C[M]AB (t) [Eq. (76)] at t = 0 as

C[M]AB (0) =
αN ⋅ αM

ZRP
M
∫ dP̄M ∫ dQM ∫ dq∫ dp

× A(QM)B(QM)Γ(QM ,q,p)e−βHRP
M (P̄M ,QM), (78)

and similarly for the partition function ZRP
M = αN ⋅αM ∫ dP̄M ∫ dQM

∫ dq ∫ dpΓ(QM ,q,p)e−βHRP
M (P̄M ,QM), where the original complex

phase space integral becomes pure real (by shifting the momentum
integral from a complex axis to a pure real axis).

Note that at t = 0, eLt
= 1, the Matsubara approximation [by

discarding L[N−M ], see Eq. (52)] no longer influences the value of
CAB(t), and hence, C[M]AB (0) gives the exact QBD (where the non-
Matsubara modes can be analytically integrated out and do not influ-
ence QBD, as shown in Appendix B). Thus, the Boltzmann operator
ensures that only the Matsubara modes contribute to the exact QBD.
This is a well-known result for path-integral in the electronically
adiabatic case.38,69,90–92

The expression of C[M]AB (0) in Eq. (78) is reminiscent of the
mapping variable (MV)-RPMD partition function expression,57

with the difference that Eq. (78) is expressed in the Matsubara space.
On the other hand, one can directly obtain the MV-RPMD formal-
ism from the generalized Kubo-transformed TCF by taking the t
→ 0 limit of C[N]AB (t) in Eq. (14) using the standard path-integral
technique, resulting in

C[N]AB (0) =
α0

N

Z∫
dR∫ dP̃∫ dq∫ dpA(RN)B(RN)Γ(R,q,p)e−βHRP

N (P̃,R),

(79)

where Γ(R,q,p) = ϕ⋅e−
GN
̵h Tre[∏

N
l=1(Cl−

1
2I)M(Rl)] and HRP

N (P̃,R)
is the standard ring-polymer Hamiltonian in the primitive nuclear

coordinate HRP
N (P̃,R) = 1

N ∑
N
l=1[

P̃2
l

2m + m
2β2

N h̵2 (Rl − Rl−1)
2 + V0(Rl)].

Note that the ∫ dP̃ integral in Eq. (79) was reintroduced from a con-
stant (which can be re-expressed as the nuclear momentum Gaus-
sian integral) through the standard path-integral procedure, which
does not appear in the Liouvillian of C[N]AB (t) [Eq. (28)]. On the other
hand, the dP̄M in C[M]AB (t) [Eq. (76)] is the actual nuclear momentum
integral that appears in both initial QBD and the Liouvillian, which
was introduced through the multi-dimensional Wigner transform in
Eq. (13).

Thus, C[N]AB (0) in Eq. (79) and C[M]AB (0) give the same exact
quantum statistics,
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lim
N→∞

C[N]AB (0) = lim
N→∞
M→∞

lim
M≪N

C[M]AB (0), (80)

such that the same quantum statistics can either be achieved under
a large N limit for regular path-integral ring-polymer or under the
large M limit for the Matsubara modes. The adiabatic limit of the
above relation is a well-known result.38,69,90–92 Here, we explicitly
demonstrate that this is also true for the non-adiabatic scenario.
Note that under the adiabatic limit, the convergence of C[N]AB (0)with
respect to an increasing N is much faster38,69 than the convergence
of C[M]AB (0) with respect to M (under the N →∞ as well as M ≪ N
limit). We have not performed any numerical test to confirm that
this is also true for the non-adiabatic scenario, but we conjecture
that this is the case.

V. NON-ADIABATIC RING-POLYMER MOLECULAR
DYNAMICS

The analytic continuation procedure performed in C[M]AB (0)
[Eq. (78)] is not valid when t > 0 in general. This is because that
when the dynamics is propagated with P̄M and QM in the com-
plex plane, one may encounter well-known singularities,70,94 leading
to a diverging eL

[M]tB(QM) such that the function of P̄n no longer
approaches to 0 when P̄n → ±∞ from the real axis and breaks the
contour integral trick (outlined in the supplementary material).

On the other hand, as proposed in the original Matsubara
dynamics work,73 it is possible to follow a path along which each
P̄n is partially moved toward the real axis and L[M]I is partially dis-
carded so the contour integration trick remains valid, and at the
end of the path, L[M]I has been completely discarded and P̄n has
reached the real axis.70 Applying this approximation on the non-
adiabatic Matsubara dynamics leads to the following non-adiabatic
RPMD approach, which is the second key result of this paper as
follows:

C[M]AB (t) ≈
αN ⋅ αM

ZRP
M
∫ dP̄M ∫ dQM ∫ dq∫ dp

× A(QM)e
−βHRP

M (P̄M ,QM)Γ(QM ,q,p)eL
[M]
RP tB(QM). (81)

In the above NRPMD expression of TCF, the initial distribution
is governed by e−βHRP

M (P̄M ,QM)Γ(QM ,q,p), whereas the quantum
dynamics is propagated by the Liouvillian L[M]RP [Eq. (74)].

If we choose to use ring-polymer normal mode frequency
instead of the Matsubara frequency in the above expression (and
denote P̄n as Pn for simplicity) in Eq. (81), it then gives the non-
adiabatic RPMD expression for TCF as follows:

CNRP
AB (t) =

αN ⋅ αM

ZRP
N
∫ dP∫ dQ∫ dq∫ dp

× Γ(Q,q,p)e−βHRP
N (P,Q)A(Q)eL

[N]
RP tB(Q), (82)

where ZRP
N is analogously defined as ZRP

M with normal modes instead
of Matsubara modes,Γ(Q,q,p) = ϕ⋅e−

GN
̵h Tre[∏

N
l=1(Cl −

1
2I)M(Rl)]

[see Eq. (63) for detailed expressions], HRP
N is the state-independent

ring-polymer Hamiltonian (in the initial quantum Boltzmann oper-

ator) expressed as HRP
N (P,Q) = ∑n[

P2
n

2m + 1
2 mω2

nQ2
n] + U[N]0 (Q),

and the NRPMD Liouvillian is

L[N]RP =

(N−1)/2
∑

n=−(N−1)/2

Pn

m

Ð→
∂

∂Qn
−

⎡
⎢
⎢
⎢
⎢
⎣

mω2
nQn +

∂U[N]0 (Q)
∂Qn

+
∂U[N]e (Q,q,p)

∂Qn

⎤
⎥
⎥
⎥
⎥
⎦

Ð→
∂

∂Pn
+

1
h̵

N

∑
l=1
[pT

l V(Rl(Q))
Ð→
∇ ql

−qT
l V(Rl(Q))

Ð→
∇ pl
], (83)

which corresponds to the following NRPMD Hamiltonian54 in the
primitive nuclear coordinate as follows:

HNRP
N (P,R) =

1
N

N

∑
l=1

⎡
⎢
⎢
⎢
⎢
⎣

P2
l

2m
+

m
2β2

N h̵2 (Rl − Rl−1)
2 + V0(Rl)

+
1

2h̵

K
∑
i,j=1

Vij(Rl)([pl]i[pl]j + [ql]i[ql]j − δijh̵)
⎤
⎥
⎥
⎥
⎥
⎦

. (84)

Note that the frequency ωn is the ring-polymer normal mode fre-
quency [Eq. (35)], whereas ω̃n in Eq. (81) is the Matsubara frequency
[Eq. (51)].

Dropping the imaginary part of the Liouvillian iL[M]I , unfor-
tunately, introduces spurious frequency shift to the non-centroid
normal modes, leading to the well-known “spurious resonances”
problem in RPMD when there are resonances between ring-polymer
frequencies and physical frequencies (such as stretching vibra-
tions).86,95 This problem can be partially resolved by replacing iL[M]I
with an effective white-noise Fokker–Planck operator,96 leading to
the thermostatting technique for RPMD.86,95,96 This thermostatting
approach has also been recently incorporated into the NRPMD
approach.56

Note that the NRPMD approach [Eq. (82)] in the current work
[which can be viewed as an approximation of the non-adiabatic
Matsubara dynamics C[M]AB through Eq. (81)] samples the same ini-
tial distribution of MV-RPMD Γ(Q,q,p)e−βHRP

N (P,Q) whereas using
the NRPMD Liouvillian in Eq. (83) [or NRPMD Hamiltonian54

in Eq. (84)] to propagate the dynamics. For a finite N, NRPMD
does not preserve the QBD54,55,97 due to the fact that two differ-
ent effective Hamiltonians are used for the initial sampling [H̃RP

N
= HRP

N (P,Q) − 1
β ln ∣Γ(Q,q,p)∣] and for the dynamical propaga-

tion [HNRP
N in Eq. (84)], respectively. However, it was conjectured

that under the N →∞ limit, NRPMD will preserve QBD.54,97 On the
other hand, because the MMST Hamiltonian structure is preserved
in the dynamics propagation, NRPMD gives the exact electronic
Rabi oscillations when the nuclear dynamics is decoupled from the
electronic DOF.54,55,79 This will be discussed further in Sec. VI as well
as in Appendix C.

Our analytical work provides a theoretical justification for the
recent numerical success of NRPMD,54,55 which was initially pro-
posed as a model non-adiabatic path-integral dynamics.54,55 The
connections and differences between the current formalism in
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Eq. (82) and the original NRPMD method54 as well as MV-RPMD
approach57 are discussed in Appendix E.

VI. QUANTUM DETAILED BALANCE
We want to discuss the quantum detailed balance in our current

formalism. For a system under the thermal equilibrium, the quan-
tum expectation value does not change in time, ⟨Â(t)⟩ = ⟨Â(0)⟩.
Similarly, one can prove that

CK
AB(t) = CK

BA(−t) (85)

for Kubo-transformed TCF defined in Eq. (5). The above relation
is commonly referred to as the condition for satisfying the detailed
balance.

The detailed balance condition is also true for the general-
ized Kubo-transformed correlation function C[N]AB (t) [Eq. (10)]. This
relation will also be rigorously satisfied for C[N]AB (t) in Eq. (14) (after
performing the Wigner transform and replace quantum propagator
with the Liouvillian L[N]) since Eq. (14) is quantum mechanically
exact. The key to achieve the detailed balance condition is

L[N][e−βH
]N̄ = 0, (86)

where L[N] is the exact Liouvillian in Eq. (24) and [e−βH
]N̄ is

the linked Wigner transformed quantum Boltzmann operator in
Eq. (32), which is also exact quantum mechanically.

The Matsubara partition function in Eq. (66) is expressed as

ZM = αN ⋅ αM ∫ dQM ∫ dPM ∫ dq∫ dp

×
Γ
∣Γ∣
⋅ e−βH̃M(PM ,QM)eiβθM(PM ,QM), (87)

where the new effective Hamiltonian H̃M is expressed as

H̃M(PM ,QM ,q,p) = HM(PM ,QM) −
1
β

ln ∣Γ(QM ,q,p)∣

=

(M−1)/2
∑

n=−(M−1)/2

P2
n

2m
+ U[M]0 (QM)

−
1
β

ln ∣Γ(QM ,q,p)∣. (88)

One can prove that for the Matsubara phase, θM(PM ,QM) is a
conserved quantity of the non-adiabatic Matsubara Liouvillian L[M]
in Eq. (70) such that

L[M]θM =

(M−1)/2
∑

n=−(M−1)/2

Pn

m
∂θM

∂Qn
−

(M−1)/2
∑

n=−(M−1)/2

⎛

⎝

∂U[M]0

∂Qn
+
∂U[M]e

∂Qn

⎞

⎠

∂θM

∂Pn

=
⎛

⎝

∂U[M]0

∂Qn
+
∂U[M]e

∂Qn

⎞

⎠

∂Qn

∂τ
= 0, (89)

where we have used the fact that in the Matsubara domain,
∂Qn
∂τ = −ω̃nQ−n (see proof in the supplementary material), where τ is

the imaginary time, as well as ∂U[M]0
∂τ =

∂U[M]e
∂τ = 0, due to the cyclic

symmetry. Also note that the mapping part of the Liouvillian (Ð→∇ pl

and Ð→∇ ql
inside L[M]) does not act on θM(PM ,QM). This results

in Eq. (89), which can be viewed as a generalization of the original
proof in the adiabatic Matsubara dynamics.69 We further numeri-
cally demonstrate that the Matsubara phase is a conserved quantity
of the non-adiabatic Matsubara Liouvillian L[M] [Eq. (70)]. Figure 2
presents the time evolution of Matsubara phase θM(PM ,QM) along
a single trajectory. Figures 2(a) and 2(b) correspond to model sys-
tems I and II, respectively, where the details of the model Hamilto-
nian [Eq. (E7)] and parameters (Table I) are provided in Appendix E.
Here, we choose M = 3 and keep increasing the number of ring-
polymer beads N. Clearly, the variation in the Matsubara phase θM
along a given trajectory flattens as an increasing N, indicating that
at N → ∞ limit, the Matsubara phase is preserved by L[M]. This
numerical behavior of θM in the state-dependent systems presented
in Fig. 2 is in close resemblance to those previous numerical tests in
state-independent systems.69

Unfortunately, we do not know whether the non-adiabatic
Matsubara Liouvillian L[M] commutes with the Hamiltonian in
Eq. (88), i.e., the validity of the following relation:

L[M]H̃M(PM ,QM ,q,p) ?
= 0, (90)

FIG. 2. Time evolution of θM(PM ,QM) [Eq. (62)] along a single trajectory for
model I [panel (a)] and model II [(panel (b)], with M = 3 and N = 15 (red line),
N = 65 (blue line), N = 115 (green line), and N = 165 (black dashed line). Details
of the model systems are provided in Appendix E.
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as well as for the phase L[M](Γ/∣Γ∣) ?
= 0. Thus, at this moment,

we are not sure if non-adiabatic Matsubara dynamics preserves
the QBD governed by ZM for a general non-adiabatic system. As
opposed to the original Matsubara approximation, which preserves
the QBD for adiabatic systems, the current non-adiabatic Matsubara
formalism seems to go against the spirit of the original Matsubara
approximation, until one can formally prove Eq. (90).

However, when V0(R̂) is harmonic and when Vij(R̂) is a lin-
ear function of R (i.e., an electronic subsystem linearly coupled to a
harmonic environment, such as the spin-boson model), only the fol-
lowing terms from the exact quantum Liouvillian in Eqs. (44)–(46)
influence the quantum dynamics:

L[N]n =

(N−1)/2
∑

n=−(N−1)/2

⎛

⎝

Pn

m

Ð→
∂

∂Qn

⎞

⎠
− [U[N]0 (Q)

+ U[N]e (Q,q,p)] ⋅
⎛

⎝

(N−1)/2
∑

n=−(N−1)/2

←Ð
∂

∂Qn

Ð→
∂

∂Pn

⎞

⎠
,

L[N]e =
1
h̵

N

∑
l=1
[pT

l V(Rl(Q))
Ð→
∇ ql
− qT

l V(Rl(Q))
Ð→
∇ pl
],

L[N]h =
1
4

N

∑
l=1
[
Ð→
∇

T
ql
V(Rl(Q))

Ð→
∇ ql

+Ð→∇T
pl
V(Rl(Q))

Ð→
∇ pl
]

×
⎛

⎝

h̵
2N

(N−1)/2
∑

n=−(N−1)/2

←Ð
∂

∂Qn

Ð→
∂

∂Pn

⎞

⎠
.

In the above Liouvillian, different nuclear normal modes are com-
pletely decoupled from each other such that these non-Matsubara
modes can be completely integrated out without making any
approximation. Thus, under this special limit, the non-Matsubara
modes do not contribute to the QBD, and their time evolution is also
decoupled from Matsubara modes. Thus, for the special case of the
electronic subsystem linearly coupled to the harmonic environment,
the non-adiabatic Matsubara dynamics is exact, hence strictly pre-
serving QBD. Furthermore, when electronic and nuclear DOFs are
completely decoupled such that the Hamiltonian of the system can
be written as Ĥ = P̂2

2m + V0(R̂) +∑K
i,j=1 Vij∣i⟩⟨ j∣ = Ĥ0 + V̂e, the QBD

is also preserved by L[M] (see detailed discussions in Appendix C)
because that the following relation

N

∑
l=1
[pT

l V
Ð→
∇ ql

Γ(p,q) − qT
l V
Ð→
∇ pl

Γ(p,q)] = 0 (91)

is satisfied by both L[N] and L[M], where Γ(q, p) no longer depends
upon Qn due to the nuclear position independent electronic poten-
tial V̂e = ∑i,j Vij∣i⟩⟨ j∣. Note that the quantum–classical Liouville
equation (QCLE)82,98 is also exact for the spin-boson type of prob-
lem, strictly preserving the QBD under this special case.98 However,
QCLE does not always preserve QBD under the decoupled limit,
especially when the nuclear potential is not harmonic.98

For a general case beyond this special limit, we want to explore
the conditions that when non-adiabatic Matsubara dynamics pre-
serve the QBD. By requiring Eq. (90), it leads to the following
condition:

⎡
⎢
⎢
⎢
⎣

1
∣Γ∣

∂∣Γ∣
∂Qn

+ β
∂U[M]e

∂Qn

⎤
⎥
⎥
⎥
⎦

Pn

m

= −∑
l

1
h̵∣Γ∣
[pT

l V(Rl)
Ð→
∇ ql
∣Γ∣ − qT

l V(Rl)
Ð→
∇ pl
∣Γ∣], (92)

and requiring L[M](Γ/∣Γ∣) = 0 leads to the corresponding condi-
tion for the phase. Note that the above relation in Eq. (92) is the
sufficient condition for preserving the QBD, whereas the necessary
one requires ∑n for all Matsubara modes in the above equation. Of
course, for the electronic–nuclear decoupled case, both ∂∣Γ∣

∂Qn
= 0 and

∂V
∂Qn
= 0, as well as Eq. (91) are satisfied; hence, L[M] preserves the

QBD. Beyond this special case, we do not know if Eq. (92) is always
satisfied.

We further investigate the validity of the condition in
Eq. (90) numerically. Figure 3 presents the time evolution of
H̃M(PM ,QM ,q,p) along a single classical trajectory, propagated
with L[M]. The model Hamiltonian [Eq. (E7)] and parameters
(Table I) are provided in Appendix E. From panel (a) (model I)
and panel (b) (model II), one can see that with an increasing num-
ber of beads N, while keeping the same number of lowest frequency
Matsubara modes (M = 3), the variation of H̃M(PM ,QM ,q,p)
along a given trajectory flattens, indicating that at the N → ∞
limit, H̃M(PM ,QM ,q,p) is preserved by L[M]. Thus, it is possible
that non-adiabatic Matsubara dynamics actually preserves the QBD
based on the numerical evidence. However, we must emphasize that
there is no analytical proof yet.

Interestingly, if Eq. (92) is satisfied (i.e., the non-adiabatic
Matsubara preserves QBD), then one can show that NRPMD
must also preserves QBD. To explicitly demonstrate this, we
rewrite the NRPMD time-correlation function in Eq. (81) as
follows:

C[M]AB (t) =
αN ⋅ αM

ZRP
M
∫ dP̄M ∫ dQM ∫ dq∫ dp

× A(QM)e
−βH̃RP

M (P̄M ,QM ,q,p)eL
[M]
RP tB(QM), (93)

where H̃RP
M (P̄M ,QM ,q,p) is the MV-RPMD Hamiltonian (with

the Matsubara frequency instead of the ring-polymer frequency)
expressed as follows:

H̃RP
M (P̄M ,QM ,q,p) = HRP

M (P̄M ,QM) −
1
β

ln ∣Γ(QM ,q,p)∣

=

(M−1)/2
∑

n=−(M−1)/2

⎡
⎢
⎢
⎢
⎣

P̄2
n

2m
+

m
2
ω̃2

nQ2
n

⎤
⎥
⎥
⎥
⎦

+ U[M]0 (QM) −
1
β

ln ∣Γ(QM ,q,p)∣. (94)

The condition for NRPMD to satisfy detailed balance is L[M]RP H̃RP
M

= 0, which results in the same condition described in Eq. (92).
Hence, if non-adiabatic Matsubara dynamics preserve QBD, then
so does NRPMD. In the supplementary material, we provide the
numerical results of H̃RP

M along a given trajectory, which behave sim-
ilarly compared to the results of non-adiabatic Matsubara dynamics
as shown in Fig. 3.
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FIG. 3. Time evolution of H̃M along
a single classical trajectory for model I
[panel (a] and model II [panel (b)], with
M = 3 and N = 15 (red line), N = 65 (blue
line), and N = 115 (green line). Details
of the model systems are provided in
Appendix E.

VII. TIME-CORRELATION FUNCTIONS
WITH ELECTRONIC PROJECTION OPERATORS

Besides the nuclear position auto-correlation function, the elec-
tronic projection correlation function is also an important one.54,55

For example, Â = B̂ = ∣i⟩⟨i∣. When Â = ∣i⟩⟨i∣, in general, [e−βĤÂ]N̄
≠ [Â]N[e−βĤ

]N̄ based on Eq. (30). Thus, one needs to write down
the generalized Kubo-transformed time-correlation function as in
Eq. (14). On the other hand, one can follow the same proce-
dure to obtain the normal mode representation of C[N]AB (t) [see
Eq. (39)] as

C[N]AB (t) =
αN

Z∫
dQ∫ dP∫ dq∫ dp[e−βĤÂ]N̄ eL

[N]t
[B̂]N , (95)

as well as the exact procedure outlined in Sec. IV by making the Mat-
subara approximation (by discarding theL[N−M] and integrating out
the non-Matsubara modes), reaching to the following expression of
C[M]AB (t) [see Eq. (58) for a comparison]:

C[M]AB (t) =
αN .αM

ZM
∫ dQM ∫ dPM ∫ dq∫ dp

× e−β(HM(PM ,QM)−iθM(PM ,QM))

× Γii(QM ,q,p)eL̄
[M]t
[B̂]N . (96)

In the above equation, Γii is Γ in Eq. (63) projected on |i⟩⟨i| as follows:

Γii = ϕ ⋅ e−
GN
̵h

1
N

N

∑
k=1

Tre[
k

∏
l=1
(Cl −

1
2
I)M(Rl(QM))

× ∣i⟩⟨i∣
N

∏
l′=k+1
(Cl′ −

1
2
I)M(Rl′(QM))]

= ϕ ⋅ e−
GN
̵h Tre[∣i⟩⟨i∣

N

∏
l=1
(Cl −

1
2
I)M(Rl(QM))], (97)

where the property of trace ensures that each term inside Tre are
identical; hence, we can replace the bead-averaged expression with
the expression after the last equality. The Matsubara Liouvillian
L[M] is the same as expressed in Eq. (70), and ZM is the Matsubara
partition function expressed in Eq. (66). The Matsubara Liouvillian
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L[M] is the same as expressed in Eq. (70), and ZM is the Matsubara
partition function expressed in Eq. (66).

Following the same procedure of discarding the imaginary
Liouvillian and shifting the momentum integral to the real axis
(i.e., the ring-polymer approximation) and replacing the Matsubara
frequency with the normal mode frequency, one can arrive at the
following RPMD correlation function:

CNRP
AB (t) =

αN ⋅ αM

ZRP
N
∫ dP∫ dQ∫ dq∫ dp

× e−βHRP
N (P,Q)Γii(Q,q,p)eL

[M]
RP t
[B̂]N . (98)

Here, for B̂ = ∣i⟩⟨i∣, one can use the following estimator:

[B̂]N =
1
N

N

∑
k=1
∫ dΔke

i
̵h pkΔk⟨qk −

Δk

2
∣i⟩⟨i∣qk +

Δk

2
⟩

=
1
N

N

∑
k=1
[

2K+1

h̵
e−

1
̵h (q

2
k+p2

k)([qk]
2
i + [pk]

2
i −

h̵
2
)], (99)

where the detailed proof is provided in the supplementary material.
Alternatively, one could also use the mapping relation ∣i⟩⟨i∣ → â†

i âi
to obtain

[B̂]N =
1
N

N

∑
k=1
∫ dΔke

i
̵h pkΔk⟨qk −

Δk

2
∣â†

i âi∣qk +
Δk

2
⟩

=
1
N

N

∑
k=1

1
2h̵
([qk]

2
i + [pk]

2
i − h̵). (100)

The above estimator is used in the original NRPMD approach54 and
has been theoretically justified,55 as well as derived (based on the
property of Wigner transform) and used in MV-RPMD approach for
excited state dynamics.58 In fact, CNRP

AB (t) in Eq. (98) is equivalent to
the originally proposed NRPMD population time-correlation func-
tion54,55 when using Eq. (100) for the estimator of the population at
time t, with the exception that the expression of Γii is obtained using
the Wigner representation for the mapping variable in the current
theory, whereas in NRPMD, it is obtained by using a simple inte-
gral of both mapping positions and momentum.54 Our derivation
explains the success of the original NRPMD approach for simulat-
ing the population auto-correlation functions.54 Numerical exam-
ples of the Kubo-transformed population auto-correlation function
are provided in Fig. 5 of Appendix E.

As we finishing up introducing the theoretical frameworks in
this paper, let us briefly discuss several interesting limits of non-
adiabatic Matsubara dynamics and NRPMD. (i) Under the limit
that the system only contains electronic subsystems, C[M]AB (t) and
CNRP

AB (t) reduce to the same form of C[N]AB (t) (note that there are still
N copies of the mapping DOF), which are all quantum mechani-
cally exact. Hence, for the isolated electronic subsystem, both non-
adiabatic Matsubara dynamics and NRPMD preserve the exact
quantum Rabi oscillations (where an explicit proof can be found
in Ref. 79). (ii) Under the single electronic state limit (adiabatic
limit), the non-adiabatic Matsubara formalism reduces to the origi-
nal Matsubara dynamics.69,70 (iii) For the electronic system linearly
couples to the harmonic nuclear bath, both non-adiabatic Matsubara
dynamics and NRPMD are exact. (iv) Under the decoupled limit of
the electronic and nuclear DOF, non-adiabatic Matsubara dynamics

and NRPMD rigorously preserve QBD and give the exact dynamics
for the electronic subsystem but only give an approximate dynam-
ics for the nuclear subsystem (exact when the potential V0 is purely
harmonic69,70). (v) Under the N = 1 limit, the NRPMD formalism
reduced to the Linearized Semi-classical Initial Value Representa-
tion (LSC-IVR) approach16 (with a classical nuclear distribution
instead of the Wigner distribution; see more explicit discussions in
Appendix D).

VIII. NON-EQUILIBRIUM TIME-CORRELATION
FUNCTION

Despite the fact that RPMD was originally developed for equi-
librium quantum dynamics simulations, recent theoretical progress
has demonstrated that both RPMD and CMD can provide accu-
rate non-equilibrium dynamics upon photo-excitation.99 This is
because that both can be viewed as approximation of the Matsub-
ara dynamics, which is not limited to equilibrium simulations. Thus,
we conjecture that NRPMD is also capable of accurately describ-
ing the non-equilibrium TCF, and we will explicitly prove this as
follows.

For a given photo-induced process, we are often interested in
the reduced density matrix dynamics upon the initial excitation of
the molecular system. The reduced density matrix element can be
expressed as

ρij(t) = Tr[ρ̂(0)e
i
̵h Ĥt
∣i⟩⟨ j∣e−

i
̵h Ĥt
], (101)

where the initial density operator ρ̂(0) is expressed as a tensor prod-
uct of the electronic and nuclear DOF as ρ̂(0) = ∣i⟩⟨i∣ ⊗ 1

Z e−βĤ0 ,
where Z = Tr[e−βĤ0], and Ĥ0 is the ground state Hamiltonian

Ĥ0 =
P̂2

2m
+ Ug(R̂), (102)

with the ground state potential Ug(R̂) associated with the ground
electronic state |g⟩.

The initial density ρ̂(0) is evolved under the influence of the
total Hamiltonian Ĥ [Eq. (1)]. The reduced density matrix element
can also be expressed as the following TCF:

ρij(t) = CAB(t) =
1
Z

Tr[e−βĤ0 Âe
i
̵h ĤtB̂e−

i
̵h Ĥt
], (103)

where Â = ∣i⟩⟨i∣ is the initially occupied electronic state and B̂ = ∣i⟩⟨ j∣.
Because Â and Ĥ0 commute, [Â, Ĥ0] = 0, and thus,

CK
AB(t) =

1
Zβ ∫

β

0
dλTr[e−(β−λ)Ĥ0 Âe−λĤ0 B̂(t)]

=
1
Zβ ∫

β

0
dλTr[e−(β−λ)Ĥ0 e−λĤ0 ÂB̂(t)]

=
∫

β
0 dλ
β
⋅

1
Z

Tr[e−βĤ0 ÂB̂(t)] = CAB(t).

Hence, one can rewrite the reduced density matrix elements ρij(t)
in Eq. (103) into the Kubo-transformed time-correlation function
CK

AB(t) as follows:
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ρij(t) =
1
Zβ ∫

β

0
dλTr[e−(β−λ)Ĥ0 Âe−λĤ0 e

i
̵h ĤtB̂e−

i
̵h Ĥt
]. (104)

The above TCF is not an equilibrium correlation function. Never-
theless, the Kubo-transformed structure allows us to express it as the
discrete version of the time-correlation function as shown in Eq. (5).

Following exactly the same derivation we have outlined in the
previous section (Sec. II), we can express CK

AB(t) in Eq. (104) without
any approximation as follows:

ρij(t) = C[N]AB (t) =
αN

Z ∫
dR∫ dP∫ dq∫ dp

×[Â]N[e−βĤ0]N̄ eL
[N]t
[B̂]N , (105)

where the Liouvillian L[N] has the same expression in Eq. (24)
and [e−βĤ0]N̄ has the same expression in Eq. (15) except that Ĥ is
replaced by Ĥ0. There is no approximation in the above expres-
sion. Furthermore, [Â]N = 1

N ∑
N
k=1[Âk]W is the partial Wigner

transformed projection operator (along the mapping DOF) with the
following expression:

[Â]N =
1
N

N

∑
k=1
∫ dΔke

i
̵h pkΔk⟨qk −

Δk

2
∣i⟩⟨i∣qk +

Δk

2
⟩

=
1
N

N

∑
k=1
[

2K+1

h̵
e−

1
̵h (q

2
k+p2

k)([qk]
2
i + [pk]

2
i −

1
2
)], (106)

where we have used the overlap relation ⟨qk∣i⟩ =
√

2
h̵

1
(πh̵)K/4 qieq

T
k qk

and explicitly performing the standard Gaussian integral (see
detailed derivation in the supplementary material).

Similarly, [B̂]N = 1
N ∑

N
k=1[B̂k]W can be expressed as

[B̂]N =
1
N

N

∑
k=1
∫ dΔke

i
̵h pkΔk⟨qk −

Δk

2
∣i⟩⟨ j∣qk +

Δk

2
⟩

=
1
N

N

∑
k=1

2K+1

h̵
G ⋅ {([qk]i + i[pk]i)([qk]j − i[pk]j) −

1
2
δij},

(107)

where G = e−
1
̵h (q

2
k+p2

k). On the other hand, there are other choices for
the Wigner transform of operators. For example, the population can
be directly Wigner transformed of â†

i âi as shown in Eq. (100), and
the Wigner transform of â†

i âj is

[B̂]N =
1
N

N

∑
k=1
∫ dΔke

i
̵h pkΔk⟨qk −

Δk

2
∣â†

i âj∣qk +
Δk

2
⟩

=
1
N

N

∑
k=1

1
2h̵
([qk]i[qk]j + [pk]i[pk]j − h̵δij). (108)

This estimator has been proposed in the original NRPMD work.54,55

It has also been derived in the non-equilibrium TCF with MV-
RPMD.58

Following the Matsubara approximation, we can derive the
corresponding expression of the density matrix as follows:

ρij(t) ≈ C[M]AB (t) =
αN ⋅ αM

ZM
∫ dQM ∫ dPM ∫ dq∫ dp

×e−β(H
0
M−iθM)[Â]N eL

[M]t
[B̂]N , (109)

where H0
M = ∑

(M−1)/2
n=−(M−1)/2

P2
n

2m + 1
N ∑

N
l=1 Ug(∑

(M−1)/2
n=−(M−1)/2

√
NTlnQn),

θM is expressed in Eq. (62), and the Liouvillian L[M] is expressed in
Eq. (70). This is the non-adiabatic Matsubara dynamics expression
for the reduced density matrix elements as the third key result of this
paper.

Further making the RPMD approximation, we can derive the
corresponding NRPMD expression of the reduced density matrix as
the final key result of this paper,

ρij(t) ≈ CNRP
AB (t) =

αN ⋅ αM

ZRP
N
∫ dP∫ dQ∫ dq∫ dp

×e−βH0
N(P,Q)

[Â]N eL
[N]
RP t
[B̂]N , (110)

where H0
N(P,Q) = ∑(N−1)/2

n=−(N−1)/2[
P2

n
2m + m

2 ω
2
nQ2

n] + U[N]g (Q), and

the Liouvillian L[N]RP is expressed in Eq. (83), corresponding to the
NRPMD Hamiltonian expressed in Eq. (84).

Thus, we explicitly show that NRPMD is capable to simulate
non-equilibrium TCF, explaining the recent numerical success of
using NRPMD to simulate the non-equilibrium population dynam-
ics.56 Similar numerical success in simulating non-equilibrium TCF
has also been achieved in MV-RPMD.58

IX. CONCLUSION AND FUTURE DIRECTIONS
We present the non-adiabatic Matsubara dynamics, a general

framework for computing the time-correlation function of elec-
tronically non-adiabatic systems. This new formalism is derived
based on the generalized Kubo-transformed time-correlation func-
tion using the Wigner representation for both the nuclear DOF and
electronic mapping variables.75–77 By dropping the non-Matsubara
nuclear normal modes in the quantum Liouvillian, we derive the
non-adiabatic Matsubara dynamics, which can be viewed as a gener-
alization of the original (electronically adiabatic) Matsubara dynam-
ics.69 The non-adiabatic Matsubara dynamics has two complex
phases, one from the nuclear DOF and the other from the electronic
DOF. By making a nuclear momentum transformation, one can
derive an equivalent expression of non-adiabatic Matsubara dynam-
ics, which has a complex Liouvillian and a complex momentum
distribution.

Further making an approximation that drops the imaginary
part of the Liouvillian, we arrive at the non-adiabatic ring-polymer
molecular dynamics formalism. Thus, NRPMD can be viewed as
an approximation of non-adiabatic Matsubara dynamics. Interest-
ingly, the initial distribution of NRPMD coincides with that in the
Mapping-Variable (MV)-RPMD,57 whereas the NRPMD Liouvil-
lian coincides with the Liouvillian used in the originally proposed
NRPMD54 (which has a different initial quantum distribution). Our
theoretical derivations explain the numerical success of both of
these previous approaches.54,57 We have further proven that the
NRPMD is capable to simulate non-equilibrium TCF, hence justify-
ing such simulations and explaining the recent numerical success.56

At this moment, we are not sure whether non-adiabatic Matsubara
dynamics preserves the quantum Boltzmann distribution (QBD),
except for the special limit for electronic states linearly coupled
to the harmonic bath, or when the electronic and nuclear DOFs
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are completely decoupled. Nevertheless, we derived the condition
under which the QBD will be preserved by non-adiabatic Matsub-
ara dynamics. Interestingly, if non-adiabatic Matsubara dynamics
preserve the QBD, then NRPMD is also guaranteed to preserve the
QBD.

The immediate future direction of the current work is to test the
numerical performance of the non-adiabatic Matsubara dynamics
for computing equilibrium and non-equilibrium TCFs. The current
formalism of C[M]AB (t)makes this a challenging task because the elec-
tronic mapping DOFs also have N copies, which are required to take
the N →∞ limit. However, one does not have to use the same num-
ber of copies of the mapping DOF and nuclear DOF, and this can
be accomplished through the mixed time-slicing technique,93 which
has been successfully implemented in a recent work of NRPMD.55

By using a finite number of the mapping resolution [Eqs. (7) and
(8)], we expect to make the non-adiabatic Matsubara dynamics prac-
tical for system with a few nuclear DOF and a few electronic states.
Another direction is using the non-adiabatic Matsubara dynam-
ics framework to theoretically derive other existing state-dependent
path-integral approaches, such as the non-adiabatic CMD.100 A
third direction is to theoretically explore whether non-adiabatic
Matsubara dynamics rigorously preserves quantum Boltzmann dis-
tribution (QBD). If so, then non-adiabatic Matsubara dynamics
will be a trajectory-based approach that can correctly describe elec-
tronic Rabi oscillations and preserve the QBD, a method that is cur-
rently lacking.101 We hope that our current work provides a frame-
work for accurate non-adiabatic quantum dynamics approaches
by interfacing the recent development in the field of map-
ping dynamics102–109 with the developments of nuclear quantum
dynamics.40,69–73

SUPPLEMENTARY MATERIAL

See the supplementary material for the details of the deriva-
tion of C[N]AB ; Wigner transform of the MMST Hamiltonian; deriva-
tion of the exact non-adiabatic Liouvillian; derivation of Eq. (30);
derivation of Eq. (76); derivation of L[M]RP and L[M]I ; analytic con-
tinuation at t = 0; proof of Eq. (89); derivation of C[N]AB (0) using
the path-integral approach; derivation of the estimators for the
state-dependent operator; and additional numerical result.
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APPENDIX A: DERIVATION OF THE Liouvillian
We provide the derivation of the exact Liouvillian L[N]

[Eq. (24)], the detailed expressions of the non-Matsubara

Liouvillian L[N−M] [Eq. (52)], as well as the condition when L[M]h
can be safely ignored.

We start by differentiating a time-dependent Wigner trans-
formed of a general operator Â as follows:

d
dt
[Â(t)]W =

i
h̵
[Ĥ, Â(t)]W = L[1] ⋅ [Â(t)]W, (A1)

where [Â(t)]W = ∫ dDe
i
̵h PD
⟨R− D

2 ∣Â(t)∣R + D
2 ⟩ is the Wigner trans-

form of the operator Â(t) = e
i
̵h ĤtÂe−

i
̵h Ĥt , Ĥ = P̂2

2m + V̂(R̂), with the
nuclear position operator R̂ and corresponding momentum opera-
tor P̂ and V̂(R̂) is any general form of the potential energy operator.
The corresponding Liouvillian is

L[1] = 2
h̵
[Ĥ]W ⋅ sin(

Λ̂h̵
2
), (A2)

where the details of the derivation are provided in the supplementary
material.

Next, we derive the exact Liouvillian of the non-adiabatic
Hamiltonian in the generalized Kubo-transformed TCF. Because
[B̂(t)]N [Eq. (17)] is a simple bead-averaged Wigner transform, the
Liouvillian L[N] in Eq. (18) has the following expression:

L[N] =
N

∑
l=1

2
h̵
[Ĥl]W ⋅ sin(

h̵
2
Λ̂l), (A3)

where Λ̂l is defined in Eq. (20) and [Ĥl]W is the Wigner transform
of the MMST mapping Hamiltonian [Eq. (1)] associated with the
lth bead, with the expression in Eq. (22). Because L[N] contains N
mathematically identical terms (labeled as l ∈ [1, N]), one only needs
to derive the expression of one term and sum them up. Below, we
explicitly derive one of this term denoting as L[1], and we drop the
label l for simplicity. With the operator Λ̂ = Λ̂e + Λ̂n defined in
Eq. (20), one can rewrite Eq. (A3) as

L[1] = 2
h̵
[Ĥ]W ⋅ sin(

h̵
2
Λ̂n +

h̵
2
Λ̂e
)

=
2
h̵
[Ĥ]W ⋅ [sin(

h̵
2
Λ̂n
) cos(

h̵
2
Λ̂e
) + cos(

h̵
2
Λ̂n
) sin(

h̵
2
Λ̂e
)].

(A4)

Explicitly expanding the terms related to the mapping derivatives as
cos( h̵

2 Λ̂
e
) = 1 − 1

8 h̵2
[Λ̂e
]

2 + O([Λ̂e
]

4
), sin( h̵

2 Λ̂
e
) = h̵

2Λ
e + O([Λ̂e

]
3
),

and note that the Ve(R, q, p) term inside [Ĥ]W contains up to the
second order of p and q [see Eq. (23)] such that Ve[Λ̂e

]
n
= 0 for

n ≥ 3, one can rewrite Eq. (A4) exactly as follows:

L[1] = 2
h̵

⎡
⎢
⎢
⎢
⎢
⎣

P2

2m
+ V0(R) +

1
2h̵

K
∑
i,j=1

Vij(R)(pipj + qiqj − δijh̵)
⎤
⎥
⎥
⎥
⎥
⎦

× [sin(
h̵
2
Λ̂n
)(1 −

h̵2

8
[Λ̂e
]

2
) + cos(

h̵
2
Λ̂n
)

h̵
2
Λ̂e
]. (A5)

Each term of Eq. (A5) can be explicitly evaluated (see the
supplementary material for details), resulting in the exact non-
adiabatic Liouvillian as follows:
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L[1] = P
m

Ð→
∂

∂R
−

2
h̵
[V0(R) + Ve(R,q,p)] sin

⎛

⎝

h̵
2

←Ð
∂

∂R

Ð→
∂

∂P
⎞

⎠

+ [pTV(R)Ð→∇ q − qTV(R)Ð→∇ p]
1
h̵

cos
⎛

⎝

h̵
2

←Ð
∂

∂R

Ð→
∂

∂P
⎞

⎠

+
1
4
[
Ð→
∇

T
qV(R)

Ð→
∇ q +Ð→∇T

pl
V(R)Ð→∇ p] sin

⎛

⎝

h̵
2

←Ð
∂

∂R

Ð→
∂

∂P
⎞

⎠
. (A6)

Adding a total of N mathematically identical terms together (each
has the same expression of the above Liouvillian L[1]), we have L[N]
expressed in Eq. (24).

Next, we explicitly express the error term of the Liouvillian
L[N−M] when applying the Matsubara approximation. The Matsub-
ara approximation discards (N − M) non-Matsubara modes from
Eq. (43), and the non-Matsubara Liouvillian is expressed as follows:

L[N−M]
= L[N] −L[M] = L[N−M]

n + L[N−M]
e + L[N−M]

h , (A7)

where we have further decomposing the non-Matsubara Liouvillian
in three terms. Using the following trigonometric identities

sin(a + b) − sin(a) = 2 sin(
b
2
) cos(a +

b
2
),

cos(a + b) − cos(a) = − 2 sin(a +
b
2
) sin(

b
2
),

we can express the non-Matsubara Liouvillian as follows:

L[N−M]
n =

(N−1)/2
∑

n=(M+1)/2
[
P−n

m
∂

∂Q−n
+
Pn

m
∂

∂Qn
]

−
4N
h̵
[U[N]0 (Q) + U[N]e (Q,q,p)] sin(

b̂
2
) cos(â +

b̂
2
),

(A8)

L[N−M]
e = −

2
h̵

N

∑
l=1
[pT

l V(Rl(Q))
Ð→
∇ ql
− qT

l V(Rl(Q))
Ð→
∇ pl
]

× sin(â +
b̂
2
) sin(

b̂
2
), (A9)

L[N−M]
h =

1
2

N

∑
l=1
[
Ð→
∇

T
ql
V(Rl(Q))

Ð→
∇ ql

+Ð→∇T
pl
V(Rl(Q))

Ð→
∇ pl
]]

× sin(
b̂
2
) cos(â +

b̂
2
), (A10)

where the operators â and b̂ are defined as

â =
h̵

2N

(M−1)/2
∑

n=−(M−1)/2

←Ð
∂

∂Qn

Ð→
∂

∂Pn
, (A11)

b̂ =
h̵

2N

(N−1)/2
∑

n=(M+1)/2

←Ð
∂

∂Qn

Ð→
∂

∂Pn
+
←Ð
∂

∂Q−n

Ð→
∂

∂P−n
. (A12)

Finally, we want to discuss under which condition one can
safely drop the higher order coupling term L[M]h [Eq. (71)] under

the Matsubara approximation. We find that this term can be made as
small as desired by choosing a different number of beads for the elec-
tronic mapping DOF and nuclear DOF, which is commonly referred
to as the mixed time-slicing technique.55,93 We explicitly assume that
the TCF in Eq. (28) can converge by using Ne beads for the mapping
variables and N nuclear beads (with M Matsubara modes) under the
condition Ne ≪ N where N/Ne is an integer. Then, L[M]h under this
condition can be expressed as55

L[M]h =
1
4

Ne

∑
α

N/Ne

∑
l′=1

Ne

N
[
Ð→
∇

T
qαV(Rl)

Ð→
∇ qα +Ð→∇T

pαV(Rl)
Ð→
∇ pα
]

× sin
⎛

⎝

h̵
2N

(M−1)/2
∑

n=−(M−1)/2

←Ð
∂

∂Qn

Ð→
∂

∂Pn

⎞

⎠
, (A13)

where the nuclear bead index is l = l′ + (α − 1) ⋅ N
Ne

and V(Rl)

= V(Rl(QM)). Note that there is an additional normalization con-
stant Ne/N appearing in front of the electronic–nuclear coupling
potential, whereas the 1/N term inside the sine function is originated
from the nuclear normal mode transformation [Eq. (36)]. Under the
Matsubara limit, this higher order coupling term becomes

L[M]h =
1
8

h̵
N

Ne

∑
α

N/Ne

∑
l′=1

Ne

N
[
Ð→
∇

T
qαV(Rl)

Ð→
∇ qα +Ð→∇T

pαV(Rl)
Ð→
∇ pα
]

×
⎛

⎝

(M−1)/2
∑

n=−(M−1)/2

←Ð
∂

∂Qn

Ð→
∂

∂Pn

⎞

⎠
, (A14)

which has a formal scaling of O(MNe
N h̵0
). Of course, when Ne = N,

the formal scaling reduces back to O(Mh̵0
). On the other hand, one

can still choose the Ne ≪ N limit such that M ⋅Ne ≪ N. Under
such a limit, L[M]h can be safely ignored. Having this flexibility to
avoid evaluating the Lh term is a big theoretical advantage, com-
pared to the Poisson Bracket Mapping Equation (PBME) method
where this term is often required in order to achieve accurate quan-
tum dynamics.25,82,84 We must admit that we do not know for an
arbitrary system if one can always choose M ⋅Ne ≪ N to converge
the non-adiabatic Matsubara dynamics. This is subject to future
investigations.

APPENDIX B: QUANTUM BOLTZMANN DISTRIBUTION
IN THE NON-ADIABATIC MATSUBARA DYNAMICS

To obtain the quantum Boltzmann distribution function under
the Matsubara limit in Eq. (58), we first write down the total
Boltzmann operator in the normal mode representation as

[e−βĤ
]N̄ =∫ dD∫ dΔ

(N−1)/2
∏

n=−(N−1)/2
e

i
̵h NPnDn

N

∏
l=1

e
i
̵h plΔl

× ⟨ql−1 −
1
2
Δl−1, ξ−l−1∣P̂e−βN ĤP̂∣ql +

Δl

2
, ξ+

l ⟩, (B1)

which is the same as Eq. (41) and ξ± is previously defined in Eq. (40).
The expression in Eq. (B1) is equivalent to Eq. (104) of the work by
Hele and Ananth79 but in the normal mode representation.

J. Chem. Phys. 154, 124124 (2021); doi: 10.1063/5.0042136 154, 124124-18

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

Next, we integrate out the non-Matsubara P modes. By the
construction of the Matsubara dynamics (i.e., discarding the non-
Matsubara Liouvillian), there is no functional dependency of non-
Matsubara P modes in operator B̂, and thus, we can integrate out
the non-Matsubara P momenta, giving a product of the Dirac delta
function in non-Matsubara D modes of the form

−(M+1)/2
∏

n=−(N−1)/2
×

(N−1)/2
∏

n=(M+1)/2
∫

∞

−∞
dPne

i
̵h NPnDn

= (2πh̵)(N−M)
⋅

−(M+1)/2
∏

n=−(N−1)/2
×

(N−1)/2
∏

n=(M+1)/2
δ(Dn),

which helps to further integrate out D[N−M] modes from Eq. (B1).
After this, [e−βĤ

]N̄ [Eq. (B1)] becomes

[e−βĤ
]N̄(PM ,Q,q,p) = (2πh̵)(N−M)

∫ dDM ∫ dΔ

×

(M−1)/2
∏

n=−(M−1)/2
eiNPnDn/h̵ ×

N

∏
l=1

eiplΔl/h̵

× ⟨ql−1 −
1
2
Δl−1,η−l−1(Q,DM)∣P̂e−βN ĤP̂

× ∣ql +
1
2
Δl,η

+
l (Q,DM)⟩, (B2)

where ∫ dDM = ∏
n=(M−1)/2
n=−(M−1)/2 dDn only includes the Matsub-

ara modes, whereas Qn contains all modes (together with all
Q-dependent terms in the Liouvillian). Furthermore, η±l is now
expressed as

η±l =
(N−1)/2
∑

n=−(N−1)/2

√
NTlnQn ±

(M−1)/2
∑

n=−(M−1)/2

1
2

√
NTlnDn, (B3)

where Dn only contains the Matsubara modes.

We further split the Boltzmann operator in Eq. (B2) through
a symmetric Trotter expansion under the N →∞ limit, noting that
∣η±l ⟩⟨η

±
l ∣ commutes with P̂ (as they belong to two different DOFs)

and evaluating the nuclear kinetic energy term P̂2

2m explicitly through
the standard path-integral technique (see the supplementary
material for details). This leads to

[e−βĤ
]N̄(PM ,Q,q,p) = (2πh̵)(N−M)

(
m

2πβN h̵2 )

N/2

∫ dDM∫ dΔ

×

(M−1)/2
∏

n=−(M−1)/2
e

i
̵h NPnDn ×

N

∏
l=1

e
i
̵h plΔl

× exp[−βN
m

2β2
N h̵2 (η

−
l−1 − η

+
l )

2
]

× e−
βN
2 [V0(η−l )+V0(η+

l )]⟨ql−1 −
1
2
Δl−1∣

× P̂e−
βN

2 [V̂e(η−l )+V̂e(η+
l )]P̂∣ql +

1
2
Δl ⟩. (B4)

Applying a well-known trigonometric identities,69,70 one can
explicitly evaluate the (η−l−1 − η

+
l )

2 term as follows:

(η−l−1 − η
+
l )

2
= 4

(M−1)/2
∑

n=−(M−1)/2
(
√

NQn sin ξn +
√

N
D−n

2
cos ξn)

2

+ (βN h̵)2
(N−1)/2
∑

n=(M+1)/2
ω2

nN(Q2
n + Q2

−n), (B5)

where ξn =
nπ
N . Note that the first sum includes all Matsubara modes

and the second sum includes all non-Matsubara modes. Using the
relation in Eq. (B5), the quantum Boltzmann operator in Eq. (B4)
becomes

[e−βĤ
]N̄(PM ,Q,q,p) = (2πh̵)(N−M)

(
m

2πβN h̵2 )

N/2

∫ dDM

(M−1)/2
∏

n=−(M−1)/2
e

i
̵h NPnDn exp

⎡
⎢
⎢
⎢
⎢
⎣

−
mβN

2

(N−1)/2
∑

n=(M+1)/2
ω2

nN(Q2
n + Q2

−n)

⎤
⎥
⎥
⎥
⎥
⎦

× exp
⎡
⎢
⎢
⎢
⎢
⎣

−2βN
m

(βN h̵)2

(M−1)/2
∑

n=−(M−1)/2
(
√

NQn sin ξn +
√

N
D−n

2
cos ξn)

2⎤⎥
⎥
⎥
⎥
⎦

× exp[−
βN

2

N

∑
l=1
[V̂0(η−l ) + V̂0(η+

l )]] ⋅ ∫ dΔ
N

∏
l=1

e
i
̵h plΔl⟨ql−1 −

1
2
Δl−1∣P̂e−

1
2 βN[V̂e(η−l )+V̂e(η+

l )]P̂∣ql +
1
2
Δl ⟩. (B6)

Under the limit N →∞, the Gaussian function that involves D−n term has the following form:

exp[−
mN2

2βh̵2 cos2 ξnD2
−n] =

√
2πβh̵2

mN2 [cos ξn]
−1
⋅ δ(D−n).

Using the property ∫f (x + a)δ(x)dx = f (a)∫δ(x)dx (a steepest-descent argument), we can move all terms related to the potential, including
exp[−βN V̂0(η±l )] and exp[−βN V̂e(η±l )] related terms outside the dDM integral [and set D−n = 0 for η±l terms in Eq (B3)], resulting in

[e−βĤ
]N̄(PM ,Q,q,p) = (2πh̵)(N−M)

(
m

2πβN h̵2 )

N/2
e−βN ∑N

l=1 V0(Rl) exp
⎡
⎢
⎢
⎢
⎢
⎣

−
mβN

2

(N−1)/2
∑

n=(M+1)/2
ω2

nN(Q2
n + Q2

−n)

⎤
⎥
⎥
⎥
⎥
⎦

× Γ(Q,q,p) ×
(M−1)/2
∏

n=−(M−1)/2
∫ dDne

i
̵h NPnDn exp[−N

2m
βN h̵2 (Q−n sin(ξ−n) +

1
2
Dn cos(ξ−n))

2
], (B7)
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where we explicitly write down each integral for the Matsubara
Dn mode, Rl = ∑

(N−1)/2
n=−(N−1)/2

√
NTlnQn, and we have defined the

following mapping integral as

Γ(Q,q,p) ≡∫ dΔ
N

∏
l=1

e
i
̵h plΔl⟨ql−1 −

1
2
Δl−1∣P̂e−βN V̂e(Rl)P̂∣ql +

1
2
Δl⟩.

(B8)

We further explicitly integrate out ∫ dDn in the last line of Eq. (B7)
(by denoting ξn = nπ/N) as follows:

In =∫ dDn exp[
i
h̵

NPnDn −N
2m
βN h̵2 (−Q−n sin ξn +

1
2
Dn cos ξn)

2
]

= exp[−
2mN
βN h̵2 Q

2
−n sin2 ξn] exp[−N

βN

2m cos2 ξn
P2

n]

× ∫ dDn exp[−N
m

βN h̵2
cos2 ξn

2
(Dn − i

βN h̵
m cos2 ξn

Pn)

2

]

× exp[N
2m
βN h̵2 sin ξn ⋅ cos ξn ⋅Q−nDn]. (B9)

Note that the Gaussian term inside the above ∫ dDn integral is

exp[−N
m

βN h̵2
cos2 ξn

2
(Dn − i

βN h̵
m cos2 ξn

Pn)

2

]

∼ δ(Dn − i
βN h̵

m cos2 ξn
Pn), (B10)

which again allows the dDn integral to be evaluated through the
steepest-descent fashion, resulting in

In =Cn ⋅ exp[−N
βN

2m cos2 ξn
P2

n + iN
2 tan ξn

h̵
Q−nPn]

× exp[−
2mN
βN h̵2 Q

2
−n sin2 ξn], (B11)

where Cn =
√
π/
√

N m
βN h̵2

cos2 ξn
2 .

Because the dDn integral is in the Matsubara domain, we
can further simplify the expression by taking the Matsubara limit
(N → ∞ and n ∈ M ≪ N), resulting in cos2 ξn → 1, sin2 ξn
∼ O(( n

N )
2
) → 0, and tan ξn → ξn = nπ/N. Thus, the final expression

of the thermal Boltzmann operator in Eq. (B7) is expressed as

[e−βĤ
]N̄(PM ,Q,q,p) = (

2πm
βN
)

(N−M)/2
e−βN ∑N

l=1 V0(Rl)

× exp
⎡
⎢
⎢
⎢
⎢
⎣

−
mβN

2

(N−1)/2
∑

n=(M+1)/2
ω2

nN(Q2
n + Q2

−n)

⎤
⎥
⎥
⎥
⎥
⎦

× Γ(Q,q,p) ⋅ exp[−β
P2

n

2m
]

⋅ exp[2i(
nπ
h̵
)Q−nPn]. (B12)

In addition, one can explicitly evaluate the electronic mapping
integral in Eq. (B8). Recall that P̂ = ∑i ∣i⟩⟨i∣ is the projection operator

in SEO mapping subspace, and the overlap with electronic states is
expressed as

⟨q∣i⟩ =
√

2
h̵

1
(πh̵)K/4

[q]ie−q
Tq/2h̵. (B13)

Using Eq. (B13), one can re-express Γ as follows:

Γ(Q,q,p) =
2N

h̵N
1

(πh̵)NK/2

N

∏
l=1
∫ dΔl(ql−1 − Δl−1/2)

T

×M(Rl(Q)).(ql + Δl/2)e
− 1
̵h (

1
4 Δ

T
l Δl+qT

l ql−ipT
l Δl). (B14)

Rearranging the pre-factors of Eq. (B14) and grouping terms
associated with Δl (using the cyclic property of trace), we have

Γ(Q,q,p) =
2N

h̵N
1

(πh̵)NK/2 e−∑
N
l=1(q

T
l ql+p

T
l pl)

N

∏
l=1
∫ dΔl

× Tre[(ql + Δl/2) ⋅ (ql − Δl/2)
T
⋅M(Rl(Q))]

× e−
1
̵h ∑l( 1

2 Δl−ipl)
2

. (B15)

Analytically performing the integration over Δl (which is a
standard Gaussian integral) leads to the final form of Γ(Q,q,p) as
follows:

Γ(Q,q,p) = ϕ ⋅ e−
GN
̵h Tre[

N

∏
l=1
(Cl −

1
2
I)M(Rl(Q))], (B16)

which has the same expression in Eq. (63), except that Eq. (B16)
depends on all normal modes Q.

Using the above results, we have the following thermal-
Boltzmann operator:

[e−βĤ
]N̄(PM ,Q,q,p)

= (
2πm
βN
)

(N−M)/2
Γ(Q,q,p) ⋅

(M−1)/2
∏

n=−(M−1)/2
e−β

P2
n

2m ⋅ eiβω̃nPnQ−n

× exp
⎡
⎢
⎢
⎢
⎢
⎣

−βN

N

∑
l=1

V0
⎛

⎝

(N−1)/2
∑

n=−(N−1)/2

√
NTlnQn

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

× exp
⎡
⎢
⎢
⎢
⎢
⎣

−
mβN

2

(N−1)/2
∑

n=(M+1)/2
ω2

nN(Q2
n + Q2

−n)

⎤
⎥
⎥
⎥
⎥
⎦

. (B17)

Substituting Eq. (B17) into Eq. (57), we get

C[M]AB (t) = lim
N→∞

αN

ZN
∫ dQ∫ dPM ∫ dq∫ dp

× A(Q)[e−βĤ
]N̄(PM ,Q,q,p)eL

[M]tB(Q). (B18)

Under the Matsubara limit M → ∞, and M ≪ N, one recognize
that the Gaussian part of the non-Matsubara normal modes in
[e−βĤ

]N̄(PM ,Q,q,p) are nascent Dirac delta functions [by noting
the expression of ωn in Eq. (35)] as follows:

lim
M→∞
M≪N

exp(−
2mN2 sin2

(nπ/N)Q2
n

βh̵2 ) ∼ δ(Qn). (B19)
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Thus, we can further integrate out the non-Matsubara Q modes
from Eq. (B17) (based on a steepest descent argument), leading
to the following effective changes inside the nuclear coordinate
integral:

exp
⎡
⎢
⎢
⎢
⎢
⎣

−βN

N

∑
l=1

V0
⎛

⎝

(N−1)/2
∑

n=−(N−1)/2
TlnQn

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

→ exp[−βU[M]0 (QM)], (B20)

where U[M]0 (QM) is defined in Eq. (60), as well as

Tre[
N

∏
l=1
(Cl −

1
2
I)M(Q)] → Tre[

N

∏
l=1
(Cl −

1
2
I)M(QM)] (B21)

for the Γ related term. Note that the Liouvillian L[M] only depends
on Matsubara modes QM . Because these quantities only depend on
the Matsubara mode QM , we can move them outside the integral of
the non-Matsubara modes,

C[M]AB (t) = lim
N→∞

αN

ZN
∫ dQM ∫ dPM ∫ dq∫ dp

× A(QM)[e
−βĤ
]N̄(QM ,PM ,q,p)eL

[M]tB(QM)

×

(N−1)/2
∏

n=(M+1)/2
∫ dQndQ−ne−β∑

(N−1)/2
n=(M+1)/2

m
2 ω

2
n(Q

2
n+Q2

−n),

(B22)

where Gaussian integral in the last line of the above equation can be
analytically performed, resulting in the constant αM in Eq. (59). The
final results of C[M]AB (t) is expressed in Eq. (58).

APPENDIX C: DETAILED BALANCE FOR SYSTEM
WITH DECOUPLED ELECTRONIC AND NUCLEAR DOF

For the system that has a decoupled electronic–nuclear
interaction,

Ĥ =
P̂2

2m
+ V0(R̂) +

K
∑
i,j=1

Vij∣i⟩⟨ j∣ = Ĥ0 + V̂e, (C1)

where Vij is a constant, leading to ∂Vij/∂R = 0. This case also
includes two limits: (1) electronically adiabatic system (V̂e = 0) or
(2) there is only electronic subsystem (T̂ + V̂0 = 0).

For the electronic–nuclear decoupling case, the exact thermal
Boltzmann operator is

[e−βĤ
]N̄ = Γ(q,p)∫ dD

N

∏
l=1

e
i
̵h PlDl⟨Rl−1 −

1
2

Dl−1∣e
−βN Ĥ0 ∣Rl +

1
2

Dl⟩,

(C2)

where the electronic part Γ(q, p) becomes

Γ(q,p) = ϕ ⋅ e−
GN
̵h Tre[

N

∏
l=1
(Cl −

1
2
I)M], (C3)

where Mij = ⟨i∣e−βN V̂e ∣ j⟩.
The exact Liouvillian in Eq. (24) becomes

L[N] =
N

∑
l=1

⎧⎪⎪
⎨
⎪⎪⎩

Pl

m

Ð→
∂

∂Rl
− V0(Rl)

2
h̵

sin
⎛

⎝

h̵
2

←Ð
∂

∂Rl

Ð→
∂

∂Pl

⎞

⎠

+
1
h̵
[pT

l V
Ð→
∇ ql
− qT

l V
Ð→
∇ pl
]

⎫⎪⎪
⎬
⎪⎪⎭

, (C4)

where the nuclear Liouvillian (the first term) and the electronic Liou-
villian (the second term) are completely decoupled. The detailed
balance condition L[N][e−βĤ

]N̄ = 0 leads to
N

∑
l=1
[pT

l V
Ð→
∇ ql

Γ − qT
l V
Ð→
∇ pl

Γ] = 0 (C5)

for the electronic subsystem and L[N]{∫ dD∏N
l=1 e

i
̵h PlDl⟨Rl−1

− 1
2 Dl−1∣e−βN Ĥ0 ∣Rl + 1

2 Dl⟩} = 0 for the nuclear DOF.
Under the same decoupling limit, the non-adiabatic Matsubara

Liouvillian becomes

L[M] =
(M−1)/2
∑

n=−(M−1)/2

Pn

m

Ð→
∂

∂Qn
−
∂U[M]0 (QM)

∂Qn

Ð→
∂

∂Pn

+
1
h̵

N

∑
l=1
(pT

l V
Ð→
∇ ql
− qT

l V
Ð→
∇ pl
).

Hence, under this limit, the non-adiabatic Matsubara Liouvillian
becomes the separable addition of the Matsubara Liouvillian for the
nuclear DOF (first line) and the exact mapping Liouvillian for the
isolated electronic DOF (second line). Comparing with the exact
Liouvillian in Eq. (C4), one can see that the electronic part of the
Liouvillian is also exact in L[M] for this special case. The effective
Hamiltonian H̃M in the initial distribution becomes

H̃M = HM(PM ,QM) −
1
β

ln ∣Γ(q,p)∣,

=

(M−1)/2
∑

n=−(M−1)/2

P2
n

2m
+ U[M]0 (QM) −

1
β

ln ∣Γ(q,p)∣. (C6)

We can explicitly show that under such a decoupling limit, non-
adiabatic Matsubara dynamics preserves the QBD as follows:

L[M]H̃M(PM ,QM ,q,p)

= L[M]HM(PM ,QM) −
N

∑
l=1

1
βh̵∣Γ(q,p)∣

× [pT
l V
Ð→
∇ ql
∣Γ(q,p)∣ − qT

l V
Ð→
∇ pl
∣Γ(q,p)∣] = 0, (C7)

where we have used Eq. (C5), as well as L[M]HM(PM ,QM) = 0,
which can be easily verified (see Ref. 72 for details) by acting L[M] on
HM(PM ,QM). Hence, we proved that under the decoupling limit,
non-adiabatic Matsubara dynamics preserves the QBD.

APPENDIX D: CONNECTIONS TO LINEARIZED
PATH-INTEGRAL APPROACHES

We would like to connect the current formalism of C[N]AB (t)
with the previously developed linearized path-integral approaches.
Most of these approaches are based on the Wigner representation
for the mapping and the nuclear DOF, which can be formally viewed
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as various approximate forms of the N = 1 case of C[N]AB (t). Since
they are extensively used to compute density matrix dynamics, we
will mainly focus our discussion on the non-equilibrium correla-
tion function [Eq. (103)]. On the other hand, the following dis-
cussions on Liouvillians are also valid for the thermal-equilibrium
time-correlation function [Eq. (14)].

We begin by writing down the non-equilibrium TCF in
Eq. (105) with N = 1 as follows:

C[1]AB (t) =
α1

Z∫
dR∫ dP∫ dq∫ dp[Â]W[e−βĤ0]WeL

[1]t
[B̂]W, (D1)

where α1 = 1/(2πh̵)K+1, [Â]W = ∫ dΔe
i
̵h pΔ⟨q − Δ

2 ∣i⟩⟨i∣q + Δ
2 ⟩, and

[e−βĤ0]W = ∫ dDe
i
̵h PD
⟨R − D

2 ∣e
−βN Ĥ0 ∣R + D

2 ⟩, and the Liouvillian L[1]

is expressed in Eq. (A6). The expressions of C[1]AB (t) and the Liou-
villian L[1] are, in principle, exact, giving rise to the exact quantum
dynamics. Note that the mapping variables qi, pi are in the order
of O(

√
h̵) [because [pi, qi] = ih̵, hence there is an 1/h̵ term in the

MMST Hamiltonian in Eq. (4)].
One can make approximations to L[1] by truncating all terms

up to O(h̵) as follows:

2
h̵

sin
⎛

⎝

h̵
2

←Ð
∂

∂R

Ð→
∂

∂P
⎞

⎠
≈

←Ð
∂

∂R

Ð→
∂

∂P
+ O(h̵2

), (D2)

1
h̵

cos
⎛

⎝

h̵
2

←Ð
∂

∂R

Ð→
∂

∂P
⎞

⎠
≈

1
h̵

+ O(h̵), (D3)

and dropping the third line in L[1] [Eq. (A6)], which corresponds to
a term that is in the order of O(h̵0

), the Liouvillian L[1] is reduced
to the following form:

L[1]LSC =
P
m

Ð→
∂

∂R
−

2
h̵
[V0(R) + Ve(R,q,p)]

←Ð
∂

∂R

Ð→
∂

∂P

+
1
h̵
[pTV(R)Ð→∇ q − qTV(R)Ð→∇ p] + O(h̵0

), (D4)

which is the Liouvillian used in the Linearized Semi-classical Initial
Value Representation (LSC-IVR)16 approach. Note that the error for
the first line in LLSC is O(h̵2

) and the error for the second line in
LLSC is O(h̵). However, the dropped term (the third line) in L[1]
corresponds to a term of O(h̵0

). This ultimately determines the
accuracy of L[1]LSC to be up to O(h̵0

).
On the other hand, if one chooses to truncate L[1] up to the lin-

ear order of the nuclear operator Λ̂n
=
←Ð
∂
∂P

Ð→
∂
∂R −

←Ð
∂
∂R

Ð→
∂
∂P , which is com-

monly referred to as the mixed quantum–classical (MQC) Liouville
approximation,98 then L[1] reduces to the following expression:

L[1]MQC =
P
m

Ð→
∂

∂R
−

2
h̵
[V0(R) + Ve(R,q,p)]

←Ð
∂

∂R

Ð→
∂

∂P

+
1
h̵
[pTV(R)Ð→∇ q − qTV(R)Ð→∇ p]

+
h̵
8
[
Ð→
∇

T
qV(R)

Ð→
∇ q +Ð→∇T

pV(R)
Ð→
∇ p]

←Ð
∂

∂R

Ð→
∂

∂P
+ O((Λ̂n

)
2
),

(D5)

which was first derived in the Poisson Bracket Mapping Equation
(PBME) approach.25,82 Note that the last term scales as O(h̵0

),
leading to the accuracy of L[1]MQC up to O(h̵). However, the last
term was not straightforward to evaluate.82 Hence, in the common
PBME approach, this term is often dropped, and L[1]LSC is used in
the PBME calculation. Later, it was shown82,84 that this term can be
approximately expressed as

h̵
8
[
Ð→
∇

T
qV(R)

Ð→
∇ q +Ð→∇T

pl
V(R)Ð→∇ p]

←Ð
∂

∂R

Ð→
∂

∂P

= ∑
ij

K
2(K + 4)h̵

(qjqj + pipj −
h̵
2
δij)

∂Vij(R)
∂R

Ð→
∂

∂P
. (D6)

Explicitly including this term and using L[1]MQC for QCLE (which
is referred to as the non-Hamiltonian PBME84) indeed improve
the accuracy of the population dynamics in spin-boson problems.84

Note that under the Matsubara limit, this term can be made as small
as needed based on the mixed-time slicing argument [see Eq. (A14)
in Appendix A].

Of course, the form of the Liouvillian is not the only factor
that influences the results of C[1]AB (t). For the population dynamics,
how to approximate [Â]W and [B̂]W will also significantly influence
the accuracy of these approximated methods.109 For example, when
computing ρjj(t) = Tr[ρ̂(0)e

i
̵h Ĥt
∣ j⟩⟨ j∣e−

i
̵h Ĥt
], the standard LSC-IVR

approach16,18 corresponds to

CLSC
AB (t) =

α1

Z∫
dR∫ dP∫ dq∫ dp[∣i⟩⟨i∣]W[e

−βĤ0]WeL
[1]
LSC ⋅t[∣ j⟩⟨ j∣]W,

(D7)

and the standard PBME approach25,82 corresponds to

CPBME
AB (t) =

α1

Z∫
dR∫ dP∫ dq∫ dp[∣i⟩⟨i∣]W[e−βĤ0]WeL

[1]
LSC ⋅t[â†

j âj]W,

(D8)

where |j⟩⟨j| is the electronic projection operator and â†
j âj is the cor-

responding operator in the mapping representation. Their Wigner
transforms are

[∣ j⟩⟨ j∣]W =
2K+1

h̵
e−

1
̵h ∑i(q2

i +p2
i )(q2

j + p2
j −

h̵
2
), (D9)

[â†
j âj]W =

1
2h̵
(q2

j + p2
j − h̵). (D10)

The numerical comparisons between these two approaches
have been extensively discussed in the recent work,109–111 and recent
development on choosing the identity operator109,111,112 has also
shown to significantly improve the population dynamics, even just
using a less accurate Liouvillian L[1]LSC. Along the same direction,
one can use the mapping action variable’s Wigner transform113 to
construct [Â]W and [B̂]W and engineer various shapes of Window
functions for these estimators.107,108,114 This idea has also lead to a
significant improvement of the population dynamics.33
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Finally, if one takes N = 1 for the nuclear DOF and N = 2
for the electronic mapping DOF, as well as making the truncation
in Eqs. (D2) and (D3) and dropping the last term in Eq. (A6), the
exact Liouvillian L[N] [Eq. (24)] reduces to the partially linearized
Liouvillian as follows:

LPL =
P
m

Ð→
∂

∂R
−

2
h̵
[V0(R) +

2

∑
l=1

Ve(R,ql,pl)]

←Ð
∂

∂R

Ð→
∂

∂P

+
2

∑
l=1

1
h̵
[pT

l V(R)
Ð→
∇ ql
− ql

TV(R)Ð→∇ pl
], (D11)

which is reminiscent of the Liouvillian used in the Forward–
Backward trajectory solution (FBTS) for the QCLE26,27 and is also
closely related to the equation of motion in the Partial Linearized
Density Matrix (PLDM) path-integral approach.22,115,116 In addi-
tion, the recently proposed two-oscillator mapping of PBME117 also
adapts the same Liouvillian LPL, even though the two copies of
the mapping variables are introduced through the mapping relation
of the electronic states. However, we have to be cautious to draw
any further connections between the correlation function C[N]AB (t)
in Eq. (105) and those in FBTS and PLDM, as the latter two
approaches use the coherent state representation for the mapping
DOFs instead of the Wigner representation used in this work, and
hence should be viewed as the hybrid Husimi (mapping)–Wigner
(nuclear) representation for non-adiabatic path-integral dynamics.

APPENDIX E: NUMERICAL TESTS OF THE
NON-ADIABATIC RPMD

Finally, we provide discussions of the current approach with the
previous state-dependent RPMD approaches, as well as preliminary
numerical tests of the non-adiabatic RPMD correlation function in
Eq. (82).

The originally proposed NRPMD does not sample the MV-
RPMD initial distribution Γ ⋅ e−βHRP

N described in Eq. (82). Instead, it
uses a simple position and momentum mapping variable resolution
in the initial QBD,54 resulting in the following TCF:

CNRP′
AB (t) =

1
ZRP

N
∫ dP∫ dQ∫ dq∫ dp

× Γ′(Q,q,p)e−βHRP
N (P,Q)A(Q) ⋅ eL

[N]
RP tB(Q), (E1)

where Γ′(Q,q,p) is expressed as54

Γ′(Q,q,p) = ϕ′e−
GN
̵h

N

∏
l=1
[pT

l−1M(Rl)ql] ⋅ [q
T
l M(Rl)pl]

= ϕ′e−
GN
̵h Tre

N

∏
l=1
[M(Rl)qlq

T
l M(Rl)plp

T
l ], (E2)

where ϕ′ = ( 4
πK )

N , GN = ∑
N
l=1(q

T
l ql + pT

l pl), and Mij(Rl)

= ⟨i∣e−
1
2 βN V̂e(Rl)∣ j⟩. Thus, the only difference between the original

NRPMD54 and the NRPMD formalism in this work is the expres-
sion of the initial Boltzmann operator. Note that Γ′ is pure real, as
opposed to the complex Γ in Eq. (82).

The MV-RPMD approach, on the other hand, samples the ini-
tial distribution with H̃RP

N = HRP
N (P,Q) − 1

β ln ∣R[Γ(Q,q,p)]∣ and
uses the same Hamiltonian to propagate dynamics, resulting in the
following TCF:

CMV
AB (t) =

1
ZRP

N
∫ dP∫ dQ∫ dq∫ dp

× ∣R[Γ(Q,q,p)]∣e−βHRP
N (P,Q)A(Q) ⋅ eL

[N]
MV tB(Q), (E3)

where the MV-RPMD Liouvillian is expressed as

L[N]MV = ∑
n

Pn

m

Ð→
∂

∂Qn
−

⎡
⎢
⎢
⎢
⎢
⎣

mω2
nQn +

∂U[N]0 (Q)
∂Qn

−
1

β∣R[Γ]∣
∂∣R[Γ]∣
∂Qn

]

Ð→
∂

∂Pn
+

1
β∣R[Γ]∣

×
N

∑
l=1

⎡
⎢
⎢
⎢
⎢
⎣

−(
∂∣R[Γ]∣
∂pl

)

T

⋅
Ð→
∇ ql

+ (
∂∣R[Γ]∣
∂ql

)

T

⋅
Ð→
∇ pl

⎤
⎥
⎥
⎥
⎥
⎦

, (E4)

which directly corresponds to the MV-RPMD Hamiltonian57 H̃RP
N

= HRP
N (P,Q) − 1

β ln ∣R[Γ(Q,q,p)]∣. To the best of our knowl-
edge, there is no rigorous theoretical justification of the Liouvillian
L[N]MV . Because of using L[N]MV , MV-RPMD is not capable to pro-
vide the correct electronic Rabi oscillations when the electronic and
nuclear DOFs are decoupled.57,101 In contrast, non-adiabatic Mat-
subara dynamics and NRPMD are exact under the electron–nuclear
decoupled limit when the nuclear potential is harmonic.79 On the
other hand, MV-RPMD does preserve the QBD at any given N
because it uses the same Hamiltonian for initial sampling and for
dynamics propagation.57

Note that in the MV-RPMD approach,57 to facilitate the calcu-
lation with real trajectories, it was proposed to use R[Γ] (only taking
the real part of Γ) in both the initial Boltzmann distribution as well
as in the above Liouvillian. This argument is based on the fact that
the partition function ZRP

N is real, and the operator estimators do not
contain any imaginary part; hence, the real and the imaginary part
of the estimators are completely separated, and the ensemble aver-
age of the imaginary part should go to zero. This is true if both Â
and B̂ are not related to electronic states (mapping variables). On
the other hand, there is no rigorous justification why this should
also be applied to the Liouvillian. For general operators, one should
recognize that Γ is indeed complex, and a more rigorous trajectory
approach in MV-RPMD should be replacing Γ→ |Γ| in the distribu-
tion and the Liouvillian and then performing the ensemble average
by weighting each trajectory with phase Γ/|Γ|.

To numerically compute TCF with the current NRPMD
approach, we rewrite Eq. (82) as follows:

CNRP
AB (t) =

αN ⋅ αM

ZRP
N
∫ dP∫ dQ∫ dq∫ dp

×
Γ(Q,q,p)
∣Γ(Q,q,p)∣

⋅ ∣Γ(Q,q,p)∣ ⋅ e−βHRP
N (P,Q)A(Q)

× eL
[N]
RP tB(Q), (E5)
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where the initial distribution ∣Γ(Q,q,p)∣ ⋅ e−βHRP
N (P,Q) is sampled by

Monte Carlo (based on a simple metropolis algorithm), the dynam-
ics is propagated by eL

[N]
RP through a simple numerical integrator,55

and each trajectory is weighted by a complex phase Γ
∣Γ∣ . However, we

can further take advantage of the pure real estimators for A and B, as
well as the Liouvillian L[N]RP , to rewrite Eq. (82) as

CNRP
AB (t) =

αN ⋅ αM

ZRP
N
∫ dP∫ dQ∫ dq∫ dp

× sgn(R[Γ(Q,q,p)]) ⋅ ∣R[Γ(Q,q,p)]∣

× e−βHRP
N (P,Q)A(Q)eL

[N]
RP tB(Q), (E6)

where sgn(R[Γ]) is the sign (plus or minus) of the real part of Γ.
The above expression is based on the fact that C[N]AB (t) is pure real
and the Im[Γ] part is completely separated from the R[Γ] and does
not contribute to the value of the C[N]AB (t). (Note that the ensem-
ble average of Im[Γ] is 0, but Im[Γ] for the individual trajectory is
not).

To assess the numerical performance of the current NRPMD
formalism, we adapt a commonly used model system that contains
one nuclear coordinate and two electronic states,54,57

Ĥ =
P̂2

2M
+

1
2

Mω2R̂2 + [ε + cR̂ Δ
Δ −ε − cR̂], (E7)

where Δ is the electronic coupling, c is the vibronic coupling, and
2ε is the energy bias between the two diabatic states. We choose
a reduced unit system such that M = h̵ = 1 and ω = β = c = 1.
We choose N = 8 beads for models I and V and N = 6 beads for

TABLE I. Parameters (in a.u.) for model systems I–VI.

I II III IV V VI

ε 0 0 1.5 0 0 2
Δ 10 0.10 0.10 1 4 1

models II–IV and for model VI. A total of 106 trajectories are used
for tight numerical convergence, even though only 104 trajectories
are sufficient to provide the basic trend.

Table I presents the parameters for all of the model systems
used in this paper. In particular, models I and V are in the adiabatic
regime, where Δ ≫ β−1; models II and III are in the non-adiabatic
regime, where Δ≪ β−1; and models IV and VI are in the intermedi-
ate regime, where Δ ∼ β−1. Models III and VI are asymmetric cases
with finite diabatic energy bias 2ϵ, and the rest of the model systems
are symmetric cases with ϵ = 0.

Figure 4 presents the nuclear position auto-correlation func-
tion computed from NRPMD (black), MV-RPMD (blue dashed),
and the numerical exact method (red) for models I–IV. Model I
in Fig. 4(a) is in the adiabatic regime. In this case, NRPMD goes
back to the standard RPMD and agrees with the exact result due
to the near Harmonic adiabatic potential. Model II in Fig. 4(b) is
in the non-adiabatic regime. This is the most challenging case and
the most relevant regime for non-adiabatic electron transfer46 and
proton-coupled electron transfer reactions.47 In this regime, mean-
field RPMD starts to break down even at a very short time, as shown
in the previous work.57 NRPMD, on the other hand, performs rea-
sonably well compared to numerically exact discrete value represen-
tation (DVR)118 calculations at a longer time. Model III corresponds

FIG. 4. The Kubo-transformed nuclear
position auto-correlation function for
models I–IV obtained from NRPMD
(black solid), MV-RPMD (blue dashed),
and numerical exact results (red dots).
Results for (a) model I (symmetric, adi-
abatic), (b) model II (symmetric, non-
adiabatic), (c) model III (asymmetric,
non-adiabatic), and (d) model IV (sym-
metric, intermediate).
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FIG. 5. The Kubo-transformed population correlation function for models IV–VI
obtained from NRPMD (black solid) with numerical exact results (red dots). Results
for (a) model V (symmetric, adiabatic), (b) model VI (asymmetric, intermediate),
and (c) model IV (symmetric, intermediate).

to the asymmetric non-adiabatic regime [Fig. 4(c)] with diabatic
energy bias 2ϵ, and model IV is in the intermediate regime. In both
regimes, NRPMD behaves reasonably well.

Figure 5 presents the electronic population correlation func-
tion CK

11(t) [where Â = B̂ = ∣1⟩⟨1∣ in CK
AB(t)] computed from the

NRPMD approach (black) and the numerically exact approach (red
dots) from DVR.118 For the NRPMD simulations, we use Eq. (98)
and the expression of [B̂]N in Eq. (100). Again, NRPMD agrees very
well with exact results in both the adiabatic regime for model V pre-
sented in Fig. 5(a) and for the intermediate regimes for models VI
and IV presented in Figs. 5(b) and 5(c).

We find that the numerical results obtained with the current
NRPMD formalism (for the current model systems) are not signif-
icantly different than those obtained from the original NRPMD54

due to the same Liouvillian used in both formalisms. On the other
hand, the correlation function obtained from MV-RPMD57 starts to
oscillate with a different frequency [see Fig. 4(b)] compared to the
quantum result at a longer time, especially for models II and III, even
though it uses the same initial QBD for NRPMD. This might happen
because of the inter-bead couplings for mapping DOF in the Liou-
villian [Eq. (E4)], which starts to contaminate the physical frequency
of the system. The same behavior has also been found for population
related quantities,57 and MV-RPMD is not capable to capture the
electronic Rabi oscillations presented in Fig. 5. On the other hand,
MV-RPMD does preserve QBD for any arbitrary number of beads
N, whereas for a finite number of N, there is no rigorous proof that
NRPMD preserve QBD54,55,97 at a single trajectory level.

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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