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ABSTRACT
We present a new non-adiabatic ring polymer molecular dynamics (NRPMD) method based on the spin mapping formalism, which we refer
to as the spin mapping NRPMD (SM-NRPMD) approach. We derive the path-integral partition function expression using the spin coherent
state basis for the electronic states and the ring polymer formalism for the nuclear degrees of freedom. This partition function provides
an efficient sampling of the quantum statistics. Using the basic properties of the Stratonovich–Weyl transformation, we further justify a
Hamiltonian that we propose for the dynamical propagation of the coupled spin mapping variables and the nuclear ring polymer. The accuracy
of the SM-NRPMD method is numerically demonstrated by computing the nuclear position and population auto-correlation functions of
non-adiabatic model systems. The results obtained using the SM-NRPMD method agree very well with the numerically exact results. The
main advantage of using the spin mapping variables over the harmonic oscillator mapping variables is numerically demonstrated, where the
former provides nearly time-independent expectation values of physical observables for systems under thermal equilibrium. We also explicitly
demonstrate that SM-NRPMD provides invariant dynamics upon various ways of partitioning the state-dependent and state-independent
potentials.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0051456

I. INTRODUCTION

One of the central challenges in theoretical chemistry is to accu-
rately simulate chemical reactions involving non-adiabatic processes
and nuclear quantum effects.1 These reactions, such as the electron
transfer, the proton-coupled electron transfer, or the scattering reac-
tions involving non-adiabatic transitions among many electronic
states and nuclear quantum effects, are commonly encountered from
photo-catalysis, biochemistry and enzymatic reactions, to astro-
chemistry. Developing accurate yet numerically efficient approaches
has become a key focus in physical chemistry.

To this end, a large number of these approaches are developed,
including the popular trajectory surface-hopping method (mixed
quantum–classical approach),2–5 the linearized semi-classical (LSC)
path-integral approaches,6,7 the partially linearized density matrix
(PLDM) path-integral approaches,8–11 the mixed quantum–classical
Liouville equation,12–15 and the symmetrical quasi-classical (SQC)
approach,16,17 to name a few. Despite their success, these approaches

generally do not preserve the quantum detailed balance18,19 or the
zero-point energy (ZPE) associated with the nuclear degrees of free-
dom (DOFs) and often suffer from numerical issues, such as ZPE
leakage.20,21

Imaginary-time path-integral approaches,22–24 such as the
ring polymer molecular dynamics (RPMD),25,26 resemble classical
dynamics in an extended phase space and provide a convenient
way to compute approximate quantum time-correlation functions
(TCFs).25 The classical evolution of RPMD preserves its initial quan-
tum distribution captured by the ring polymer Hamiltonian and is
free of the ZPE leaking problem.20,25 Despite its success in describing
quantum effects in the condensed phase, RPMD is limited to one-
electron non-adiabatic dynamics27–31 or nuclear quantization25,32–35

and is lacking real-time electronic coherence effects.27,28

Recently emerged state-dependent RPMD approaches, such
as the non-adiabatic RPMD (NRPMD),36–38 the mapping vari-
able RPMD (MV-RPMD),39,40 and the coherent state RPMD
(CS-RPMD),41 are promising to provide accurate non-adiabatic
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dynamics with an explicit description of electronic states, in
addition to the reliable treatment of nuclear quantum effects
through ring polymer quantization. The common ingredient of
these approaches is the Meyer–Miller–Thoss–Stock (MMST) map-
ping formalism,42–44 which maps N electronic states onto N singly
excited harmonic oscillators. The electronic non-adiabatic dynamics
is hence mapped onto the phase space trajectories of the mapping
oscillators, which evolve together with the nuclear ring polymer.
Hence, these MMST-based RPMD approaches can be viewed as uni-
fied theories of the mapping oscillators and the ring polymer. These
methods are shown to provide both accurate non-adiabatic dynam-
ics and nuclear quantum effects.36–38 In particular, the NRPMD
approach has been rigorously derived from the non-adiabatic Mat-
subara dynamics framework.45

One potential limitation of these state-dependent RPMD
approaches is rooted in the MMST mapping representation. It is well
known that the MMST representation has a larger size of Hilbert
space than the original electronic subspace and requires a projec-
tion back to that subspace to obtain accurate results.14,46 In addition,
the total population along a single trajectory is not guaranteed to
be unitary, hence breaking the dynamical invariance under different
ways of partitioning the potentials into state-dependent and state-
independent components when approximate quantum dynamics
methods are used.14,44,47 Besides the widely used MMST representa-
tion, there exist other mapping formalisms based upon spin coher-
ent states.48–52 In particular, a new spin mapping formalism53,54

based on the Stratonovich–Weyl transform55 was recently devel-
oped by Runeson and Richardson. In this spin mapping approach,53

two electronic states are mapped onto two angles defining the spin
coherent state on the Bloch sphere. One of the advantages of this
approach, compared to the MMST formalism, is that the spin coher-
ent state basis is of the same dimensionality as the electronic state
basis of the original system; hence, it provides a more consistent
mapping than the MMST approach and it does not require any
additional projection back to the electronic subspace.53 The spin
mapping (SM) variables, being bounded to the Bloch sphere, also
guarantee the total population along a single trajectory to be uni-
tary. This further enforces the independence of the dynamics to the
splitting between the state-dependent and state-independent parts
of the Hamiltonian. It has been shown that in the LSC53,54 and the
PLDM56,57 approaches, using the spin mapping formalism provides
a more accurate non-adiabatic dynamics compared to the corre-
sponding approaches when using the MMST formalism.7,8 These
exciting theoretical developments of the spin mapping variables
have motivated us to develop an NRPMD approach using the spin
mapping representation.

In this paper, we develop a new non-adiabatic RPMD method,
which we refer to as the spin mapping NRPMD (SM-NRPMD),
based on the recently developed spin mapping formalism.53,54 We
first derive a partition function based on the SM representation that
allows one to efficiently sample the exact quantum statistics. We
then propose the SM-NRPMD Hamiltonian for propagating dynam-
ics. With the proposed SM-NRPMD approach, we compute the
Kubo-transformed position and population auto-correlation func-
tions with non-adiabatic model systems and demonstrate that this
approach is capable of accurately describing both the correct quan-
tum statistics and the electronic Rabi oscillations. Compared to the
MMST-based NRPMD approaches,58 SM-NRPMD seems to better

preserve the quantum detailed balance, resulting in a nearly time-
independent expectation value of the nuclear position or population
for the system under thermal equilibrium. Finally, we demonstrate
that the dynamics is invariant to the partitioning of the potential into
state-dependent and state-independent components.

II. BASIC THEORY OF THE TWO-LEVEL SPIN
MAPPING FORMALISM

In this section, we review the spin mapping formalism for elec-
tronic states introduced by Runeson and Richardson.53,54 A com-
prehensive introduction of this material can be found in Ref. 53. In
this paper, we focus on the spin mapping representation of two-level
systems. Generalizing the theory to many states is possible by using
the generators of the SU(N) Lie algebra,54 and we plan to apply this
formalism to develop a general SM-NRPMD approach in the future.

The total Hamiltonian operator of the system is

Ĥ = P̂2

2m
Î +U0(R̂)Î +

⎛
⎜
⎝

V1(R̂) Δ(R̂)
Δ(R̂) V2(R̂)

⎞
⎟
⎠

, (1)

where U0(R̂) represents the state-independent potential energy
operator and R̂ and P̂ are the position and momentum operators of
the nuclear DOF, respectively. The Hamiltonian can also be written
in terms of spin operators as49

Ĥ = H0Î +
1
h̵

H ⋅ Ŝ = H0Î +
1
h̵
(Hx ⋅ Ŝx +Hy ⋅ Ŝy +Hz ⋅ Ŝz), (2)

where Î is the 2 × 2 identity matrix and Ŝi =
̵h
2 σ̂i (for i ∈ {x, y, z}) is

the quantum spin operator, with the Pauli matrices σ̂i expressed as
follows:

σ̂x =
⎛
⎜
⎝

0 1

1 0

⎞
⎟
⎠

, σ̂y =
⎛
⎜
⎝

0 −i

i 0

⎞
⎟
⎠

, σ̂z =
⎛
⎜
⎝

1 0

0 −1

⎞
⎟
⎠

. (3)

The different components of the Hamiltonian in Eq. (2) are
expressed as

H0 =
P̂2

2m
+U0(R̂) +

1
2
(V1(R̂) + V2(R̂)), (4a)

Hx = 2R(Δ(R̂)), (4b)

Hy = 2I(Δ(R̂)), (4c)

Hz = V1(R̂) − V2(R̂), (4d)

where R and I represent the real and imaginary components of any
number, respectively. Note that for a molecular Hamiltonian, one
often has I(Δ(R̂)) = 0.

Following the original work on the spin mapping formalism,53

we introduce the spin coherent state (SCS) basis53,59
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∣u⟩ = cos
θ
2

e−iφ/2∣1⟩ + sin
θ
2

eiφ/2∣2⟩, (5)

with the two angles, θ and φ, defining the state of spin of the system
on the Bloch sphere. The SCS vector is normalized ⟨u∣u⟩ = 1. The
expectation value of the spin operator is

Si(u) = ⟨u∣Ŝi∣u⟩ =
h̵
2

ui, i ∈ {x, y, z}, (6)

where ux, uy, and uz are expressed as follows:

ux = sin θ cos φ, (7a)

uy = sin θ sin φ, (7b)

uz = cos θ. (7c)

We further introduce three functions for the
Stratonovich–Weyl (SW) transformation of any operator in
the SM representation, named the Q-, P-, and W-functions. These
functions depend on the kernel ŵs and the spin radius rs as follows:53

ŵs(u) =
1
2
Î + rsu ⋅ σ̂, s ∈ {Q, P, W}, (8a)

rQ =
1
2

, rP =
3
2

, rW =
√

3
2

, (8b)

where u ⋅ σ̂ = ux ⋅ σ̂x + uy ⋅ σ̂y + uz ⋅ σ̂z .
The SCS projection operator is ∣u⟩⟨u∣ = cos2 θ

2 ∣1⟩⟨1∣
+ cos θ

2 sin θ
2 e−iφ∣1⟩⟨2∣ + cos θ

2 sin θ
2 eiφ∣2⟩⟨1∣ + sin2 θ

2 ∣2⟩⟨2∣. Note
that

ŵQ = ∣u⟩⟨u∣, (9)

which can be easily verified using elementary trigonometric identi-
ties. On the other hand, ŵP and ŵW do not have a simple relation
with ∣u⟩⟨u∣.

A. Spin mapping of diabatic electronic states
The SW transform of an operator Â is defined as

As(u) ≡ [Â]s(u) = Tre[Âŵs], (10)

where the trace is taken in the electronic subspace, which is equiva-
lent to the two-state spin subspace.

Mapping an operator Â onto the spin Hilbert subspace corre-
sponds to the following relation:53

Â→ As(u) = Tre[Âŵs]. (11)

Generalizing the theory to many states is also possible54 by using the
generators of the SU(N) Lie algebra [when N = 3, it corresponds to
the Gell-Mann matrices in the SU(3)-symmetry theory of quarks].

For the s ≡ Q special case, this mapping relation means that

AQ(u) = Tre[ÂŵQ] = Tre[Â∣u⟩⟨u∣] = ⟨u∣Â∣u⟩. (12)

The Q-relation maps the spin operator Ŝi with [Ŝi]Q =
̵h
2 ui, which is

its expectation value in the SCS through Eq. (6).
Using the spin mapping defined in Eq. (11), it is easy to show

that [Î]s(u) = 1 (because Treσ̂i = 0 for all i), as well as

Ss(u) ≡ [Ŝ]s(u) = Tre[
h̵
2

σ̂(1
2
Î + rsu ⋅ σ̂)] = h̵rsu. (13)

The projection operators are transformed as

[∣1⟩⟨1∣]s(u) = [
1
2
Î + 1

h̵
Ŝz]

s
(u) = 1

2
+ rs cos θ, (14a)

[∣2⟩⟨2∣]s(u) = [
1
2
Î − 1

h̵
Ŝz]

s
(u) = 1

2
− rs cos θ, (14b)

[∣1⟩⟨2∣ + ∣2⟩⟨1∣]s(u) = 2[ 1
h̵

Ŝx]
s
(u) = 2rs sin θ cos φ, (14c)

[∣1⟩⟨2∣ − ∣2⟩⟨1∣]s(u) = 2i[ 1
h̵

Ŝy]
s
(u) = 2irs sin θ sin φ. (14d)

The Hamiltonian in Eq. (2) is mapped as Ĥ → [Ĥ]s(u)with the
following expression:

Hs(u) ≡ [Ĥ]s(u) = H0 + rsH ⋅ u

= P2

2m
+U0 + (

1
2
+ rs cos θ) ⋅ V1 + (

1
2
− rs cos θ) ⋅ V2

+ 2rs sin θ cos φ ⋅R(Δ). (15)

In the case where the coupling is complex as investigated in Ref. 60,
the additional term 2irs sin θ sin φ ⋅ I(Δ)is required in Eq. (15).

Note that H0 and H are, in principle, R-dependent. The SW
mapping is closely related to the MMST mapping approach, and
a brief discussion between these two formalisms is provided in
Appendix A, whereas a thorough comparison can be found in
Ref. 53. Compared to another recent spin mapping formalism by
Cotton and Miller,61 as well as shown by Liu62 from a unified map-
ping theory, the spin mapping used in the current work53 maps two
states onto one spin- 1

2 particle, whereas the Cotton–Miller (CM)
approach maps the two states onto two spin- 1

2 particles. Thus, in
the latter approach, there are more DOFs in the mapping space
than in the original quantum system and so does the MMST map-
ping. Another important difference is that the CM spin mapping
approach in Ref. 61 is not exact for pure electronic subsystem
dynamics,62 whereas the current spin mapping formalism gives the
exact dynamics for the isolated electronic subsystem.

To obtain the equations of motion (EOMs) governed by Hs(u)
in Eq. (15) for the spin mapping variables, we start with the following
Heisenberg EOM for Ŝ:
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d
dt

Ŝ = 1
ih̵
[Ŝ, Ĥ] = 1

h̵
H(R̂) × Ŝ, (16)

where × denotes the cross product of two vectors, and we have used
the fact that H0Î in Ĥ [Eq. (2)] is Ŝ-independent and, hence, com-
mutes with Ŝ. Applying the SW transform [Eq. (10)] on both sides
of the above equation, we have

d
dt

u = 1
h̵

H(R̂) × u. (17)

Note that the above equation is exact, regardless of the rs-
dependence of Ĥ. Of course, the EOM for the nuclear DOF is not
yet explicitly expressed. When choosing the Wigner representation
for the nuclei and using the quantum–classical Liouville equation
(QCLE),53 Eq. (17) can also be rigorously derived. This equation
can be solved by treating u as dynamical variables, or equivalently,
θ and φ. Further analysis of this is provided in Appendix B.

B. Properties of the Stratonovich–Weyl transform
Here, we briefly summarize several basic properties of the SW

transform, which will be used to derive the quantum partition func-
tion and the spin mapping NRPMD Hamiltonian in Sec. III. Using
the spin mapping formalism, the quantum mechanical trace of an
operator Â in the Q-function is expressed as

Tre[Â] = ∫ du⟨u∣Â∣u⟩ = ∫ duAQ(u)

= 1
2π∫

π

0
dθ sin θ∫

2π

0
dφAQ(θ, φ), (18)

where ∫ du = 1
2π ∫

π
0 dθ sin θ∫ 2π

0 dφ. Note that because ⟨u∣ÂB̂∣u⟩
≠ ⟨u∣Â∣u⟩⟨u∣B̂∣u⟩ (the uncertainty property), the Q-function can-
not be used to directly compute the quantum mechanical trace of
a product of operators, i.e., Tre[ÂB̂] ≠ ∫ duAQ(u)BQ(u).

To solve this issue, one can use the P-function and the following
property:

Tre[ÂB̂] = ∫ duAQ(u)BP(u) = ∫ duAP(u)BQ(u). (19)

The W-function can also be used for this purpose and is self-dual,

Tre[ÂB̂] = ∫ duAW(u)BW(u). (20)

Summarizing the above properties, we have

Tre[ÂB̂] = ∫ duAs(u)Bs̄(u), (21)

where {s, s̄} can be {Q, P}, {P, Q}, or {W, W}. The proof of Eq. (21)
is elementary and is provided in Appendix C.

Choosing B̂ = Î, Eq. (21) becomes

Tre[Â] = ∫ duAs(u)[Î]s̄(u) = ∫ duAs(u), (22)

where we have used the fact that [Î]s̄ = 1. This suggests that,
to evaluate the quantum mechanical trace of an operator Â, one
can freely choose any s ∈ {Q, P, W} index, even though each has
a different kernel ŵs and a different radius rs, as they all give the
correct result. Further using the definition of As(u) [Eq. (11)] into
Eq. (22), we have

Tre[Â] = ∫ du Tre[Âŵs] = Tre[Â ⋅ ∫ duŵs], (23)

where we have moved the du integral inside the trace (and note
that Â is u-independent). The above equality indicates the following
resolution of identity:

𝟙u = ∫ duŵs

= 1
2π∫

π

0
dθ sin θ∫

2π

0
dφ(1

2
Î + rsu ⋅ σ̂), (24)

where, to obtain the second line of the above equation, we used
the expressions of ∫ du [Eq. (18)] and ŵs [Eq. (8a)]. This identity
can also be easily verified through elementary integrals, which is
provided in Appendix C.

When choosing s ≡ Q, the resolution of identity is

𝟙u = ∫ duŵQ = ∫ du∣u⟩⟨u∣, (25)

where we used ŵQ = ∣u⟩⟨u∣.

III. QUANTUM PARTITION FUNCTION WITH SPIN
MAPPING VARIABLES
A. Spin coherent state (SCS) partition function

The canonical partition function is expressed as
Z = Trn Tre[e−βĤ], where Trn and Tre represent the traces
over the nuclear and electronic DOFs, respectively, and β = 1/kBT.
The partition function can be exactly evaluated in the limit N →∞
by the Trotter discretization,63 where N is the number of ring
polymer beads.

We start from expressing the quantum partition function as
follows:

Z = Tre Trn[(e−βN(H0 Î+ 1
̵h H⋅Ŝ))

N
], (26)

where βN = β/N. Inserting N copies of the identity in the nuclear
subspace, 𝟙R = ∫ dRα∣Rα⟩⟨Rα∣ and 𝟙P = ∫ dPα∣Pα⟩⟨Pα∣, where α is
the label of the imaginary-time slice (bead) index, and using the
standard path-integral techniques,22,23,64 we obtain

Z = 1
(2πh̵)N lim

N→∞∫ d{Rα}∫ d{Pα}e−βN H̃0(R)Tre[
N

∏
α=1

e−βN
1
̵h Hα ⋅Ŝ].

(27)

Here, we use the notation ∫ d{Xα} =∏N
α=1 ∫ dX1, . . . , dXN ,

R ≡ {Rα}, and Hα = [Hx(Rα), Hy(Rα), Hz(Rα)] [see their defi-
nitions in Eqs. (4b)–(4d)]. The state-independent ring polymer
Hamiltonian H̃0 is expressed as
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H̃0(R) =
N

∑
α=1
[ P2

α

2m
+ m

2β2
N h̵2 (Rα − Rα−1)2

+U0(Rα) +
1
2
(V1(Rα) + V2(Rα))]. (28)

To perform the electronic trace, we insert N copies of the spin
coherent state identity (by choosing s ≡ Q)

𝟙u = ∫ duα∣uα⟩⟨uα∣ = ∫ duαŵQ (29a)

= 1
2π∫

π

0
dθα sin θα∫

2π

0
dφα∣uα⟩⟨uα∣ (29b)

and rearrange the terms (as well as neglecting a normalization
constant), resulting in

Z∝ lim
N→∞∫ d{Rα}∫ d{Pα}∫ d{uα}e−βN H̃0(R)

×
N

∏
α=1
⟨uα∣e−βN

1
̵h Hα ⋅Ŝ∣uα+1⟩. (30)

The above partition function can also be equivalently expressed by
inserting electronic projection operators P̂ = ∑n∣n⟩⟨n∣, leading to

Z∝ lim
N→∞∫ d{Rα}∫ d{Pα}∫ d{uα}e−βN H̃0(R)

×
N

∏
α=1
⟨uα∣∑

n
∣n⟩⟨n∣e−βN

1
̵h Hα ⋅Ŝ∑

m
∣m⟩⟨m∣uα+1⟩. (31)

Note that the size of the spin mapping Hilbert space 𝟙u is the same
as the original electronic subspace P̂ = ∑n∣n⟩⟨n∣. Hence, with or
without P̂, the partition function is invariant. This is different than
the mapping in harmonic oscillators based on the MMST formal-
ism, where the mapping Hilbert space is larger than the original
electronic subspace and where projections often lead to a better
result.14,46

We further express the matrix elements of the spin coherent
state projected by P̂ as

C(uα) ≡ ⟨uα∣∑
n
∣n⟩⟨n∣

= cos
θα

2
ei φα

2 ⟨1∣ + sin
θα

2
e−i φα

2 ⟨2∣, (32a)

D(uα+1) ≡∑
m
∣m⟩⟨m∣uα+1⟩

= cos
θα+1

2
e−i φα+1

2 ∣1⟩ + sin
θα+1

2
ei φα+1

2 ∣2⟩. (32b)

Using these, we can write the special form of the Spin Coherent State
(SCS) partition function (with s ≡ Q case) as follows:

Z∝ lim
N→∞∫ d{Rα}∫ d{Pα}∫ d{uα}Tre[ΓQ] ⋅ e−βN H̃0(R), (33)

where the electronic trace has the following expression:

ΓQ =
N

∏
α=1
∑
n,m

Cn(uα)Mnm(Rα)Dm(uα+1), (34a)

Mnm(Rα) = ⟨n∣e−βN
1
̵h Hα ⋅Ŝ∣m⟩. (34b)

This partition function is analogous to those used with MMST map-
ping variables, such as the mapping-variable RPMD partition func-
tion39 or the coherent state mapping ring polymer partition func-
tion.41 In the latter, a similar derivation procedure is conducted
with the coherent-state representation of the MMST mapping
oscillators.41,65

The above procedure relies on inserting N copies of the identity
𝟙u = ∫ duα∣uα⟩⟨uα∣ ≡ ∫ duαŵQ(uα) (where α is the bead index). Of
course, one can insert the general resolution of identity 𝟙u = ∫ duŵs̄
[Eq. (24)] inside the Tre[⋅ ⋅ ⋅] of Eq. (27); then, by moving the ∫ duα
integral outside Tre, it results in

Z∝ lim
N→∞∫ d{Rα}∫ d{Pα}∫ d{uα}Tre[Γs] ⋅ e−βN H̃0(R), (35)

where the expression of the electronic trace is

Γs =
N

∏
α=1

e−βN
1
̵h Hα ⋅Ŝ ⋅ ŵs(uα). (36)

By Taylor expanding the Boltzmann operator and using the
properties of the Pauli matrices, we can prove the following
identity:

e−βN
1
̵h Hα ⋅Ŝ = cosh

βN ∣Hα∣
2

Î − sinh
βN ∣Hα∣

2
⋅ 2Hα ⋅ Ŝ

h̵∣Hα∣
, (37)

where ∣Hα∣ =
√

H2
x(Rα) +H2

y(Rα) +H2
z (Rα). Plugging this identity

back into Eq. (36), we obtain the general expression for Γs as
follows:

Γs = [
N

∏
α=1
(1

2
cosh

βN ∣Hα∣
2
− rs

Hα

∣Hα∣
⋅ uα sinh

βN ∣Hα∣
2
)Î

+ (rsuα cosh
βN ∣Hα∣

2
− 1
∣Hα∣
(Hα

2
+ irsHα × uα)

× sinh
βN ∣Hα∣

2
) ⋅ σ̂]. (38)

A detailed derivation of Eqs. (37) and (38) is provided in
Appendix D. When s ≡ Q, Eq. (38) is equivalent to the expression of
ΓQ in Eq. (33). The numerical advantage of Eq. (38) is that it replaces
the Mnm(Rα) matrix in Eq. (34b) with an analytic expression in
Eq. (37).

B. Spin mapping (SM)-NRPMD Hamiltonian
The SCS-partition function in Eq. (35) gives the exact quantum

statistics for a non-adiabatic system. The effective Hamiltonian from
the SCS-partition function can be used to propagate the dynamics.
However, it will not provide accurate electronic dynamics (such as
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electronic Rabi oscillation) due to the inter-bead coupling among the
different electronic and nuclear DOFs in Γs.

Instead of proposing a reasonable Hamiltonian for the dynam-
ics propagation, we try to theoretically justify a Hamiltonian from
an alternative expression of the partition function. To this end, we
evaluate the electronic trace in Eq. (27) using the property Tre[Â]
= ∫ duAs(u) in Eq. (22), leading to

Tre[
N

∏
α=1

e−βN
1
̵h Hα ⋅Ŝ] = ∫ du1[

N

∏
α=1

e−βN
1
̵h Hα ⋅Ŝ]

s

(u1), (39)

where s ∈ {Q, P, W}. We further separate ∏N
α=1e−βN

1
̵h Hα ⋅Ŝ into

e−βN
1
̵h H1 ⋅Ŝ∏N

α=2e−βN
1
̵h Hα ⋅Ŝ and use the property expressed in Eq. (21),

leading to

∫ du1[e−βN
1
̵h H1 ⋅Ŝ

N

∏
α=2

e−βN
1
̵h Hα ⋅Ŝ]

s

(u1)

= ∫ du1[e−βN
1
̵h H1 ⋅Ŝ]

s
(u1) ⋅ [

N

∏
α=2

e−βN
1
̵h Hα ⋅Ŝ]

s̄

(u1), (40)

where {s, s̄} can be any pair that is permitted based on Eq. (21).
To evaluate [e−βN

1
̵h H1 ⋅Ŝ]s(u1), we Taylor expand the exponential

and neglect the terms of order equal to or higher than β2
N (which is

exact under the limit N →∞), leading to

[1 − βN
1
h̵

H1 ⋅ Ŝ +O(β2
N)]

s
(u1) = exp[−βN ⋅

1
h̵

H1 ⋅ [Ŝ]s(u1)]

= exp[−βN ⋅
1
h̵

rsH1 ⋅ u1]. (41)

Putting it back into Eq. (40), we have

Tre[
N

∏
α=1

e−βN
1
̵h Hα ⋅Ŝ] = ∫ du1e−βN ⋅rsH1 ⋅u1 ⋅ [

N

∏
α=2

e−βN
1
̵h Hα ⋅Ŝ]

s̄

(u1)

= ∫ du1e−βN ⋅rsH1 ⋅u1 ⋅ Tre[
N

∏
α=2

e−βN
1
̵h Hα ⋅Ŝŵs̄(u1)].

(42)

Further inserting the identity ∫ du2ŵs(u2) [see Eq. (24)] inside the
Tre, we have

Tre[
N

∏
α=1

e−βN
1
̵h Hα ⋅Ŝ]

=∫ du1e−βN ⋅rsH1 ⋅u1 ⋅ Tre[∫ du2ŵs(u2)e−βN
1
̵h H2 ⋅Ŝ

N

∏
α=3

e−βN
1
̵h Hα ⋅Ŝŵs̄(u1)]

= ∫ du1e−βN ⋅rsH1 ⋅u1 ∫ du2[e−βN
1
̵h H2 ⋅Ŝ

N

∏
α=3

e−βN
1
̵h Hα ⋅Ŝŵs̄(u1)]

s

(u2)

=∫ du1e−βN ⋅rsH1 ⋅u1∫ du2e−βN ⋅rsH2 ⋅u2 Tre[
N

∏
α=3

e−βN
1
̵h Hα ⋅Ŝŵs̄(u1)ŵs̄(u2)],

(43)

where in the second equality, we moved the ∫ du2 outside the Tre,
as well as used the definition of [Â]

s
(u) in Eq. (11). In the third

equality, we have used the property previously used in Eq. (40).
Repeating the above argument for all N beads, we obtain the

following partition function:

Z∝ lim
N→∞∫ d{Rα}∫ d{Pα}∫ d{uα}Φs̄ ⋅ e−βN H̃s , (44)

where Φs̄ = Tre[∏N
α=1ŵs̄(uα)], and the spin mapping (SM)-NRPMD

Hamiltonian is

H̃s = H̃0(R) +
N

∑
α=1

rsHα ⋅ uα, (45)

which is the ring polymer generalization of Hs(u) in Eq. (15)
[with the additional ring polymer potential in Eq. (28)]. Based on
our previous experience with the MMST version of the NRPMD
approach, we conjecture that H̃s should be the Hamiltonian for the
NRPMD propagation when using the spin mapping variables. This is
because the correct EOM for the MMST mapping variables45,47 can
be derived based on the partition function38 through a similar pro-
cedure as above, which coincides with the Liouvillian derived from
the generalized Kubo-transformed TCF with the Matsubara approx-
imation and ring polymer approximation.45 We also note that, in
principle, the partition function in Eq. (44) should generate the same
result as the one in Eq. (35) under the limit N →∞. However, with
a finite N, we find that the numerical convergence using Eq. (44) is
much slower compared to Eq. (35), likely due to the limit we took
in Eq. (41) (which requires a large N). Hence, we emphasize that
Eq. (44) is only used as a justification for the Stratonovich–Weyl
NRPMD Hamiltonian in Eq. (45) and not used for sampling the
quantum initial distribution.

IV. SPIN MAPPING (SM)-NRPMD TIME-CORRELATION
FUNCTION

The Kubo-transform real-time-correlation function for two
operators Â and B̂ is expressed as

CK
AB(t) =

1
Zβ∫

β

0
dλ Tr[e−(β−λ)ĤÂe−λĤeiĤt/̵hB̂e−iĤt/̵h]. (46)

We propose that the above Kubo-transformed TCF [Eq. (46)]
can be approximated as follows:

CAB(t) =
1
Z

lim
N→∞∫ d{Rα}∫ d{Pα}∫ d{uα}

× Tre[Γs]e−βN H̃0[A]N(0)[B]N(t), (47)

where [A]N(0) = 1
N∑

N
α=1A(Rα) ≡ Ā(0) and [B]N(t)

= 1
N∑

N
α=1B(Rα(t)) ≡ B̄(t) for Â(R̂) and B̂(R̂) when they are

functions of R̂. When operators Â and B̂ are related to the electronic
DOF, the TCF is proposed as

CAB(t) =
1
Z

lim
N→∞∫ d{Rα}∫ d{Pα}∫ d{uα}

× Tre[ΓsÂ]e−βN H̃0[Bs̄]N(t), (48)
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with {s, s̄} being complementary indexes permitted by Eq. (21) in
order to satisfy the requirement at t = 0 to compute the trace of two
operators (i.e., e−βHÂ and B̂). The population estimator Ps

nn for the
operator Â = ∣n⟩⟨n∣ is obtained with Tre[Γs∣n⟩⟨n∣], which one can
write in a bead-averaged fashion as

Ps
nn = Tre[Γs∣n⟩⟨n∣]

= 1
N

N

∑
μ=1

⎡⎢⎢⎢⎣

N−μ

∏
α′=1

e−βN
1
̵h Hα′ ⋅Ŝ ⋅ ŵs(uα′)

× ∣n⟩⟨n∣
N

∏
α′′=N−μ+1

e−βN
1
̵h Hα′′ ⋅Ŝ ⋅ ŵs(uα′′)], (49)

to improve the statistical convergence. The analytic expression can
be evaluated in the same way as Γs in Eq. (38), leading to ∣n⟩⟨n∣
inserted in between the α and the α + 1 bead. Specifically, for s ≡ Q,
using Eq. (34a), we have

PQ
nn =

1
N

N

∑
α=1

∑mCn(uα)Mnm(Rα)Dm(uα+1)
∑n,mCn(uα)Mnm(Rα)Dm(uα+1)

. (50)

The population estimator for the operator B̂ is obtained by

[Bs̄]N =
1
N

N

∑
α=1

Bs̄(uα), (51)

where Bs̄(uα) is the SW transform of B̂, and when B̂ = ∣n⟩⟨n∣, it is
expressed as

Bs̄(uα) = Tre[∣n⟩⟨n∣ŵs̄] =
⎧⎪⎪⎨⎪⎪⎩

1/2 + rs̄ cos θα, n = 1

1/2 − rs̄ cos θα, n = 2.

The function [B]N(t) or [Bs̄]N(t) is evaluated along the classi-
cal trajectory {Rα(t), uα(t)}, and the dynamics is proposed to be
governed by

H̃ s̄ = H̃0(R) +
N

∑
α=1

rs̄H(Rα) ⋅ uα, (52)

where the Hamiltonian is justified in Eq. (45). The EOMs are
expressed as

Ṙα =
∂H̃ s̄

∂Pα
= Pα

m
, (53a)

Ṗα = −
∂H̃ s̄

∂Rα
= −∂H̃0

∂Rα
− rs̄

∂H(Rα)
∂Rα

⋅ uα, (53b)

u̇α =
1
h̵

H(Rα) × uα. (53c)

In the original NRPMD method, the corresponding EOMs were
first proposed36 and were then recently proved through the non-
adiabatic Matsubara dynamics formalism.45 We envision that the
above EOMs [Eqs. (53a)–(53c)] can also be proved in a similar way

when using the spin mapping variables, and we will explore this in
future studies.

V. COMPUTATIONAL DETAILS
To test the performances of the derived SCS-partition function

in Eq. (35) [with the Γs expression in Eq. (38)], we adapt a widely
used model system46,66,67 and compute the state-dependent nuclear
probability distribution. The model Hamiltonian is Ĥ = P̂2/2m + V̂ ,
with nuclear mass M = 3600 a.u., and the diabatic potential V̂ is
defined as

Vij =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
2

ki(R − Ri)2 + ϵi, i = j

5 × 10−5e−0.4R2

, i ≠ j,
(54)

where the model parameters are presented in Table I. We refer to
this model as model 0. The physical temperature of the system is set
to T = 8 K.

The initial quantum distribution is sampled using the
Metropolis–Hastings algorithm according to the following distribu-
tion function:

ρ({Rα, uα}) = ∣Tre[Γs]∣ ⋅ e−βN H̃0(R) (55)

with a complex weighting factor of

Ξs({Rα, uα}) = Tre[Γs]/∣Tre[Γs]∣. (56)

The nuclear probability distribution is obtained by computing

P(R0) =
Tr[e−βĤ δ(R̂ − R0)]

Z

= 1
⟨R(Ξs)⟩

⋅ ⟨R(Ξs) ⋅ δ(R − R0)⟩, (57)

where Tr = Trn Tre (trace over both nuclear and electronic DOFs)
and the bracket ⟨⋅ ⋅ ⋅⟩ indicates an ensemble average with respect to
ρ({Rα, uα}) in Eq. (55). The state-resolved probability distribution
is obtained by projecting the distribution onto a given state ∣n⟩⟨n∣,
leading to the probability

Pn(R0) =
Tr[e−βĤ ∣n⟩⟨n∣δ(R̂ − R0)]

Z

= 1
⟨R(Ξs)⟩

⋅ ⟨R(Ξs ⋅Ps
nn) ⋅ δ(R − R0)⟩, (58)

TABLE I. Parameters for model 0.

i 1 2

ki 4 × 10−5 3.2 × 10−5

Ri −1.75 1.75
ϵi 0.0 2.28 × 10−5
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with the estimator Ps
nn expressed in Eq. (49). To compute P(R0)

and Pn(R0), N = 10 beads were required to converge the results
using a total of 2.4 × 107 configurations sampled from the Monte
Carlo (MC) procedure for s ≡ Q. Exactly identical results can be
obtained with the same bead-convergence for other choices of s, but
the required number of configurations to achieve the same level of
convergence is much higher. In particular, for N = 10 beads, using
s ≡ W requires 24 times more trajectories, while using s ≡ P requires
almost 2000 times more trajectories.

To assess the accuracy of the SM-NRPMD approach, we com-
pute TCFs and compare our results with numerically exact Kubo-
transformed quantum TCFs, as well as TCFs computed with a
non-adiabatic RPMD approach based on the MMST formalism36

and a mean-field method, the mean-field RPMD (MF-RPMD).39,68

The model used for those calculations is a simple two-level system
linearly coupled to a harmonic potential

Ĥ = P̂2

2m
+ 1

2
mω2R̂2 +

⎛
⎜
⎝

R̂ + ϵ Δ

Δ −R̂ − ϵ

⎞
⎟
⎠

, (59)

where Δ is the constant electronic coupling and 2ϵ is the energy bias
between the two electronic states. We choose m = h̵ = ω = β = 1 and
the rest of the parameters are provided in Table II, changing the
non-adiabaticity of the system from adiabatic (model I with βΔ = 10)
to highly non-adiabatic (model VII with βΔ = 0.1). The number of
beads required to generate the converged results is also provided in
Table II.

The position and population auto-correlation functions are
computed as follows:

CRR(t) =
1

⟨R(Ξs)⟩
⋅ ⟨R(Ξs) ⋅ R̄(0) ⋅ R̄(t)⟩, (60)

Cnn(t) =
1

⟨R(Ξs)⟩
⟨R(Ξs ⋅Ps

nn(0)) ⋅ [Bs̄]N(t)⟩. (61)

The initial conditions are sampled from the Metropolis algo-
rithm with the distribution function in Eq. (55). The variables
{Rα, Pα, θα, φα} are then propagated using the symplectic algorithm
for NRPMD,37 which separately updates the motion of the mapping
variables and the ring polymer. The velocity Verlet algorithm is used
to update the spin mapping variables based on Eq. (B2), with details
provided in Appendix B. For s ≡ W, between 104 and 106 trajecto-
ries were run for four–six beads for the results presented hereafter,
with a time step of 0.01 a.u. The NRPMD results presented for com-
parison require eight beads and up to 106 trajectories to converge.
The MF-RPMD calculations require between four and five beads and
103 trajectories to converge.

TABLE II. Parameters for models I–VII.

Models I II III IV V VI VII

Δ 10 4 1 1 1 0.1 0.1
ϵ 0 0 2 0.5 0 1.5 0
Beads 4 6 6 6 6 6 4

VI. RESULTS AND DISCUSSION
Figure 1 presents the nuclear probability distribution P(R0)

(black solid curve) and the state-resolved nuclear probability dis-
tributions P1(R0) (blue dashed curve) and P2(R0) (red dashed
curve) for a widely used model system described in Eq. (54).
These distributions agree perfectly with the numerically exact
results obtained from discrete variable representation (DVR) calcu-
lations.69 The numerical convergence is achieved with only N = 10
beads. The SCS-partition function in Eq. (35) only requires two
independent variables {θα, φα} for each bead, which is consis-
tent with the number of electronic states, whereas the MMST-
based partition functions, such as those used in the NRPMD or
MV-RPMD methods require four independent variables. As the
number of beads increases, the MMST-based approaches become
numerically expensive. In addition, previous numerical investiga-
tions suggest that 16–32 beads are required to reach the same level
of convergence with the MMST-based path-integral approaches.46

This is likely due to the larger set of free variables to be sam-
pled. Moreover, the general formalism of Γs in Eq. (38) does
not explicitly require the evaluation of Mnm(Rα) = ⟨n∣e−βN

1
̵h Hα ⋅Ŝ∣m⟩

matrix, avoiding explicit diagonalization of the 2 × 2 matrix at a
given Rα.

Figure 2 presents the nuclear position auto-correlation func-
tions computed from SM-NRPMD (black solid lines), NRPMD36,37

(green dashed lines), mean-field RPMD (MF-RPMD)39,68 (blue
dashed lines), and a numerically exact method (red dots). A brief
description of the NRPMD and the mean-field RPMD approaches
is provided in Appendix E. The SM-NRPMD calculations have
been done with the index s = s̄ ≡W (sampling with Γs ≡ ΓW and
dynamics with H̃ s̄ ≡ H̃W). In the adiabatic regime (βΔ≫ 1) in panel
(a), all methods agree perfectly with the exact result as expected.
In the intermediate regime βΔ ≈ 1 in panel (b), all RPMD based
approaches capture the correct oscillation frequency of the TCF,
but they give different amplitudes that deviate from the exact

FIG. 1. Nuclear probability distribution (black solid curve) P(R0) of model 0
obtained from the SCS-partition function with N = 10 beads. The state specific dis-
tributions for state 1 (blue dashed curve) and state 2 (red dashed curve) are also
shown. The results are compared with quantum exact calculations (filled circles).
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FIG. 2. Kubo-transformed nuclear position auto-correlation functions for (a) model
I, (b) model V, (c) model VI, and (d) model VII. The results are obtained from
SM-NRPMD with s ≡ W (black solid lines), MF-RPMD (blue dashed lines), and
NRPMD36 (green dashed lines), as well as numerically exact results (red dots).

result except the SM-NRPMD approach, which provides an excel-
lent agreement with the exact TCF. In the non-adiabatic regime
though βΔ≪ 1 in panels (c) and (d), the MF-RPMD method can-
not provide the correct amplitude nor oscillation frequency for the
TCF. This is due to the fact that the MF-RPMD method does not
have any explicit electronic state dynamics.39,68 On the other hand,
the results from both the SM-NRPMD and the NRPMD meth-
ods are in agreement with the exact results on all the range con-
sidered in panel (c) and at short time for panel (d). The non-
adiabatic RPMD methods fail to capture the correct oscillation
amplitude of CRR(t) at a longer time in panel (d), likely due to the
Matsubara approximation70 and the RPMD approximation,71 from
which the NRPMD dynamics is based upon.45 The adiabatic poten-
tial of the model system considered here is E± = U0(R) + 1

2 [V1(R)
+ V2(R)] ±

√
(V1(R) − V2(R))2 + 4Δ2; hence, when ∣Δ∣≫ ∣V1(R)

− V2(R)∣ [the adiabatic limit in panel (a)], the ground adiabatic state
is purely harmonic, and the dynamics is purely adiabatic (where
the nuclear DOF stays on the ground adiabatic surface without any
non-adiabatic transitions). Under this limit, the RPMD approach
is known to be exact,25 explaining the perfect agreement between
all of the RPMD related methods and the exact results in the adia-
batic case [Fig. 2(a)]. However, in the non-adiabatic case [Fig. 2(d)],
∣Δ∣≪ ∣V1(R) − V2(R)∣, the adiabatic potential is far from the har-
monic one, and there is a lot of non-adiabatic transitions among
the two adiabatic surfaces; hence, the agreement between the exact
result and the NRPMD TCF is not as perfect as the adiabatic
case. Nonetheless, we notice that even in the most challenging
highly non-adiabatic case, only four beads are required to converge
the results. Again, for all cases investigated here, a smaller or an
equal number of beads are required to converge the SM-NRPMD

results compared to the TCF computed from the previous NRPMD
approach based on the MMST mapping formalism.36,41 We have
also performed the SM-NRPMD simulations with (i) s ≡ Q sampling
and dynamics obeying s̄ ≡ P and (ii) s ≡ P sampling and dynamics
obeying s̄ ≡ Q. Additional results and discussions are provided in
Appendix E.

Figure 3 presents the nuclear position and the state 1 elec-
tronic population auto-correlation functions computed from the
SM-NRPMD (black solid lines) and NRPMD (green dashed lines)
methods, as well as with a numerically exact approach (red dots) for
models II, III, and V. Accurately describing electronic Rabi oscil-
lations are essential for non-adiabatic dynamics simulations. Both
the SM-NRPMD and the NRPMD results agree well with the exact
results in the adiabatic regime for model II, presented in Fig. 3(a),
and provide reasonably good results for the model systems in the
intermediate regimes presented in Figs. 3(b) and 3(c). MV-RPMD,39

on the other hand, cannot correctly capture the electronic oscil-
lations in these population auto-correlation functions (results not

FIG. 3. Kubo-transformed nuclear position auto-correlation functions (left panels)
and state 1 electronic population auto-correlation functions (right panels) for (a)
model II, (b) model III, and (c) model V. The results are obtained from SM-NRPMD
with s ≡ W (black solid lines) and NRPMD36 (green dashed lines), compared to
the numerically exact results (red dots).
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shown) due to the contamination of the true electronic Rabi oscil-
lations with the inter-bead couplings in the mapping ring poly-
mer Hamiltonian.39 Note that the MMST formalism47 as well as
the NRPMD approach45 indeed rigorously conserves the electronic
Rabi oscillations for an isolated electronic subsystem. Based on the
connection between the MMST formalism and the spin mapping
formalism [Eq. (A4)], we expect that the latter should also rigor-
ously conserve the electronic Rabi oscillations for an isolated elec-
tronic subsystem. The algebraic proof of this is subjected to future
investigations.

Figure 4 presents the time-dependent expectation values of
the nuclear position ⟨R⟩ [using Â = Î⊗ �̂�R and B̂ = R̂ in CK

AB(t)]
and the state 1 population ⟨P1⟩ (using Â = Î⊗ �̂�R and B̂ = ∣1⟩⟨1∣)
in model IV (a non-adiabatic case with bias). These expectation
values are computed with both the SM-NRPMD (solid lines) and
NRPMD (dashed lines) methods and are compared to the exact val-
ues. Because the system is under thermal equilibrium, these values
should be conserved along the dynamics. As we can see in Fig. 4,
by increasing the number of beads from N = 2 (magenta) to N = 4
(blue) and N = 6 (green), the SM-NRPMD method (with s ≡ W)
almost provides time-independent expectation values. The MMST-
based approaches, such as the NRPMD method36,58 (dashed lines),
cannot provide a constant expectation value with the same num-
ber of beads. We conjecture that for a large number of beads, SM-
NRPMD (with s ≡ W) might preserve the initial quantum Boltz-
mann distribution (QBD). This conjecture is also corroborated
by the numerical evidence that the initial distribution function
Tre[Γs] ⋅ e−βN H̃0(R) [inside Eq. (35)] is conserved by the EOMs in
Eqs. (53a)–(53c) at the single-trajectory level with a large num-
ber of beads (N > 32). On the other hand, we do not have a rig-
orous analytical proof that whether SM-NRPMD preserves QBD,
and this is subject to further investigations. To summarize, with a
finite number of beads, the SM-NRPMD (with s ≡ W) largely con-
serves the initial quantum Boltzmann distribution, providing an
almost time-independent expectation value for systems under ther-
mal equilibrium. This is a significant improvement compared to the
MMST-based NRPMD dynamics.36,37,58

Compared to the previous NRPMD approach with the MMST
formalism, the SM-NRPMD approach provides the additional

FIG. 4. Expectation values of the nuclear position operator (left panel) and the elec-
tronic population of state 1 (right panel) for model IV (intermediate regime). The
results are obtained from SM-NRPMD with s ≡ W (solid lines) and NRPMD36,58

(dashed lines) methods. The results for N = 2 (magenta lines), N = 4 (blue lines),
and N = 6 (green lines) beads are shown.

advantage that the dynamics is invariant with respect to the split-
ting between the state-independent potential U0(R̂) and the state-
dependent potential. This is because the spin mapping formalism
explicitly enforces the total population to be 1 such that [Î]s(u) = 1.
More explicitly, this can be seen in Eqs. (14a) and (14b), leading to
U0 = ( 1

2 + rs cos θ) ⋅U0 + ( 1
2 − rs cos θ) ⋅U0. The MMST formal-

ism, on the other hand, does not guarantee this property when using
approximate quantum dynamics, and a brief discussion between
these two mapping approaches is provided in Appendix A. In
order to explicitly demonstrate this advantage, we incorporate the
state-independent quadratic term potential into the state-dependent
Hamiltonian as follows:

Ĥ = P̂2

2m
+
⎛
⎜⎜
⎝

1
2

mω2R̂2 + R̂ + ϵ Δ

Δ
1
2

mω2R̂2 − R̂ − ϵ

⎞
⎟⎟
⎠

.

Figure 5 presents the Kubo-transformed nuclear position and
state 1 population auto-correlation functions for model V (non-
adiabatic case) when including the quadratic potential U0(R) into
the state-dependent part. The results are obtained with the NRPMD
method36 using the MMST formalism [panels (a)–(d)] and with
the SM-NRPMD method using the spin mapping formalism [pan-
els (e)–(h)]. When including U0 into the state-dependent poten-
tial, the NRPMD dynamics becomes unstable and completely breaks
down at t ≈ 3.5 a.u., as some trajectories within the ensemble start
to diverge, causing numerical instabilities. The nuclear position and
state 1 population of three representative trajectories when including
U0 into the state-dependent potential are shown with dashed lines
in Figs. 5(c) and 5(d), compared to the case where the quadratic
term U0 is treated as a state-independent potential (solid lines).
When individual trajectories have a total population that deviates
from 1 [as shown in Fig. 5(d)] in the MMST formalism, the total
population also multiplies in front of U0, resulting in an incorrect
force acting on the nuclear DOF, as well as unstable motion. Due
to this, including U0 into the state-dependent Hamiltonian could
be numerically challenging and eventually causes numerical insta-
bilities. In addition, the results of the auto-correlation functions
(before diverging) are different than those obtained in Figs. 2(b) and
3(c), indicating that different splitting of state-dependent and state-
independent potential in the MMST formalism can lead to differ-
ent numerical results when using approximate quantum dynamics
approaches.44

Figures 5(e)–5(h) present the same comparisons using the SM-
NRPMD method (with s ≡ W). As expected, the dynamics is invari-
ant under different ways of partitioning U0(R). Figures 5(e) and
5(f) present the Kubo-transformed TCFs when including U0(R) in
the state-dependent potential, providing identical results to those
presented in Figs. 2(b) and 3(c). In fact, the dynamics is invari-
ant at the single-trajectory level, as clearly indicated in Figs. 5(g)
and 5(h). This is guaranteed because the total population is always
bounded by 1 in spin mapping;54 hence, the quadratic potential is
always ( 1

2 + rs cos θ) ⋅U0 + ( 1
2 − rs cos θ) ⋅U0 = U0. This is another

unique numerical advantage of using the spin mapping formalism
compared to the MMST mapping formalism, in addition to the bet-
ter preservation of the initial quantum distribution demonstrated in
Fig. 4.
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FIG. 5. The influence of including the quadratic potential U0(R) into the state-dependent Hamiltonian for model V. Left panels (a)–(d) present the results obtained from
the NRPMD method36 using the MMST mapping formalism. The Kubo-transformed position auto-correlation functions [panel (a)] and state 1 population auto-correlation
functions [panel (b)] are computed with NRPMD (black lines) and exact approaches (red dots). Panels (c) and (d) present three representative trajectories (blue lines,
magenta lines, and green lines) along which R̄ = 1

N∑
N
α=1Rα [panel (c)] and P̄1 =

1
N∑

N
α=1

1
2
([qα]

2
1 + [pα]

2
1 − 1) are computed [see Eq. (E4) in Appendix E]. The dynam-

ics is propagated using the NRPMD approach with U0(R) (dashed lines) and without U0(R) (solid lines) inside the state-dependent potential. Right panels (e)–(h)
present the results obtained from the SM-NRPMD method using the spin mapping with s ≡ W. Panels (g) and (h) present three representative trajectories along which
R̄ = 1

N∑
N
α=1Rα(t) [panel (c)] and P̄1 =

1
N∑

N
α=1

1
2
+ rW ⋅ cos θα are computed using SM-NRPMD.

Note that in the SM approach, a negative population is still pos-
sible in the case of the H̃P and H̃W [see Fig. 5(h)], but the population
is not directly involved in the potential related to U0. This negative
population at the single-trajectory level, as can be seen in Fig. 5(h)
at t = 2 a.u. (green curve), is due to the fact that the trajectory is
moving outside the range of 0 ≤ 1

2 + rW cos θα ≤ 1. This problem is
closely related to the mapping oscillator ZPE leakage problem21 in
the MMST formalism as the MMST ZPE is closely related to the
Bloch sphere radius rs as shown in Eq. (A5). In that sense, when
the Bloch angle θα in the spin mapping formalism is moving into the
negative population region, it corresponds to a situation where the
total action in the MMST formalism becomes smaller than the map-
ping ZPE parameter.53 On the other hand, the negative population
will be a less severe problem when performing an ensemble aver-
age of trajectories, but the problem still persists,54,56 even though it
is significantly improved than the situation in the original MMST
formalism.56 In addition, we observed that the bead average in the
SM-NRPMD formalism further improves the results when examin-
ing the population from individual trajectories as we increase the
number of beads.

Recent theoretical investigations in the MMST formalism have
focused on choosing different ZPE parameters [γ in Eq. (A5)] to
improve the population dynamics.16,21,72,73 Based on the connection
between the MMST and the spin mapping formalism [Eqs. (A4) and
(A5)], adjusting the ZPE parameter γ corresponds to adjusting the
radius of the spin Bloch sphere rs, so we envision that this can also
be accomplished in the spin mapping formalism. This is subject to
the future investigations.

In addition, during the dynamics, the spin mapping vari-
ables θ and φ are bounded on the Bloch sphere of radius rs, as
opposed to unbounded phase space variables (in the mapping oscil-
lator phase space) in the MMST formalism (see Appendix A).
Together, these advantages of the spin mapping variables make it
a more accurate and convenient mapping representation for devel-
oping non-adiabatic dynamics methods,54,58 and we extend it to the
non-adiabatic RPMD dynamics in this work.

VII. CONCLUSION
In this paper, we present a new non-adiabatic RPMD method

based on the recent development of a spin mapping (SM) formal-
ism.54 The basis of the spin mapping variables, the spin coher-
ent states, is of the same dimensionality as the electronic Hilbert
subspace of the original system. Hence, the SM approach presents
numerical advantages compared to the original harmonic oscillator-
based mapping approach,43,44,49 especially when the approximate
dynamics method is used. These include that the total popula-
tion for a single trajectory is always equal to 1, the dynamics is
invariant under different ways of partitioning the state-independent
and state-dependent potentials, and projections back to the elec-
tronic subspace46 are no longer necessary to compute physical
observables.

Using the spin mapping representation, we derive a general
quantum partition function for the coupled electronic–nuclear sys-
tem, which we refer to as the Spin Coherent State (SCS) partition
function. We test the performance of the SCS-partition function
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by computing state-dependent nuclear distributions in a two-level
system coupled to a harmonic DOF. Our results suggest that the
SCS-partition function provides the exact quantum results using
N = 10 beads, requiring fewer beads compared to the MMST-
based quantum partition functions.36,39,41,46 Furthermore, the SCS-
partition function provides an analytical expression of the matrix
elements of the thermal Boltzmann operator [Eq. (37)], facilitating
the Monte Carlo numerical simulations. Using the different choices
of index s in the Stratonovich–Weyl transformation, we find that the
s ≡ Q approach requires the fewest MC configurations to converge,
whereas the s ≡ W approach requires ten times more than the s ≡ Q
approach, and the s ≡ P approach requires 103 more configurations
to converge for N = 10 beads (this ratio increases when increasing
the number of beads). Compared to the MMST-based approaches,
the s ≡ W approach requires a similar amount of configurations
and a fewer number of beads to converge compared to the original
NRPMD36,37 method or the CS-RPMD method.41

Using the properties of the Stratonovich–Weyl transforma-
tion, we further justify the spin mapping (SM)-NRPMD Hamil-
tonian, which can be viewed as the unified Hamiltonian of the
spin mapping Hamiltonian and the ring polymer Hamiltonian.
Based on this Hamiltonian, we propose the SM-NRPMD dynam-
ics, where the initial sampling is governed by the SCS-partition
function and the dynamics is governed by the SM-NRPMD Hamil-
tonian. Using the DOF of rs and rs̄, we find that by choosing
{s ≡W, s̄ ≡W}, the SM-NRPMD method provides accurate Kubo-
transformed nuclear position auto-correlation functions compared
to the exact results for model systems that exhibit a broad range of
parameters, from the electronically adiabatic to the non-adiabatic
regime. It can also provide accurate population auto-correlation
functions with the correct electronic Rabi oscillation frequency,
as shown in our numerical results. The accuracy of SM-NRPMD
appears to be equivalent (with some slight improvements in cer-
tain cases) to the accuracy obtained from MMST-based non-
adiabatic RPMD methods, such as NRPMD36,37 or CS-RPMD,41

with a similar number of beads required to converge the dynam-
ics and a similar amount of trajectories required to converge the
calculations.

From our numerical results, the SM-NRPMD method seems to
almost preserve the initial quantum Boltzmann distribution by pro-
viding nearly time-independent expectation values of the nuclear
position and electronic population. Note that this is a numerical
observation and the analytical proof is still required in the future.
The MMST-based RPMD approaches, on the other hand, fail to gen-
erate expectation values of an observable with a so small deviation
with time for systems under thermal equilibrium. Moreover, the
SM-NRPMD method provides stable and invariant results regard-
less of how to partition the state-independent and state-dependent
potentials, whereas the dynamics of MMST-based NRPMD
method is highly sensitive to the specific choice of splitting of the
potentials.

To summarize, SM-NRPMD provides accurate electronic
non-adiabatic dynamics with explicit nuclear quantization, with
additional advantages compared to the original MMST-based
approaches including a normalized total population along a sin-
gle trajectory and the invariant dynamics under different ways of
partitioning the Hamiltonian. Future directions include generaliz-
ing the current formalism to multi-electronic states54 as well as

rigorously deriving the SM-NRPMD approach through the recent
development of the non-adiabatic Matsubara framework.45
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APPENDIX A: CONNECTION BETWEEN THE SPIN
MAPPING AND THE MMST MAPPING

The spin mapping Hamiltonian Hs(u) in Eq. (15) can be trans-
formed into the MMST mapping Hamiltonian. The connection
between these two mapping formalisms has been extensively dis-
cussed in Ref. 53. Consider the following variable transformations
between the spin mapping variables u and the MMST mapping
variables q = {q1, q2} and p = {p1, p2}:

2rsux = q1q2 + p1p2, (A1a)

2rsuy = q1p2 − q2p1, (A1b)

2rsuz =
1
2
(q2

1 + p2
1 − q2

2 − p2
2). (A1c)

Using the above transformations in Hs(u) [Eq. (15)] leads to

Hs =
P2

2m
+U0 +

1
2
(V1 + V2) +

1
4
(V1 − V2) ⋅ (q2

1 + p2
1 − q2

2 − p2
2)

+ Δ(q1q2 + p1p2), (A2)

which is the MMST Hamiltonian for Hamiltonian Ĥ in Eq. (2),
with a form that separates the trace 1

N Tre V̂ and the trace-less part
V̂ − 1

N Tre V̂ , as recommended in the MMST literature.14,74

Using ∣u∣2 = sin2 θ cos2 φ + sin2 θ sin2 φ + cos2 θ = 1 and
Eq. (A1), one can show that

4rs = q2
1 + q2

2 + p2
1 + p2

2, (A3)

which is often referred to as the total action of the mapping vari-
ables.7 It is also a conserved quantity of the MMST Hamiltonian in
Eq. (A2). Using this property, one can rewrite the MMST Hamilto-
nian in Eq. (A2) as follows:

Hs =
P2

2m
+U0 + Δ(q1q2 + p1p2)

+ 1
2

V1 ⋅ (
q2

1 + p2
1 − q2

2 − p2
2

2
+ 1 + 2rs − 2rs)

+ 1
2

V2 ⋅ (
q2

2 + p2
2 − q2

1 − p2
1

2
+ 1 + 2rs − 2rs)

= P2

2m
+U0 + Δ(q1q2 + p1p2) +

1
2

2

∑
n=1

Vn ⋅ (q2
n + p2

n − γ), (A4)
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where the MMST mapping oscillators’ zero-point energy correction
is defined as

γ = 2rs − 1. (A5)

Connecting to the spin mapping Hamiltonian, we can hence iden-
tify HQ as MMST formalism with γ = 0, HP as γ = 2, and HW as
γ =
√

3 − 1 [which is the recommended value in the symmetric
quasi-classical (SQC) approach74 that was derived based on analogy
with spin].

Note that the MMST Hamiltonian in Eq. (A4) has been his-
torically introduced through the mapping relation ∣i⟩⟨ j∣→ a†

i âj

= 1
√

2
(q̂i − ip̂i) ⋅ 1

√

2
(q̂j + p̂j), as well as using [ pi, qi] = i (or effec-

tively, [pi, qi] = iγ for the adjusted mapping oscillator ZPE); hence,

∑
ij

Vij(R̂)∣i⟩⟨ j∣→∑
ij

Vija†
i âj =

1
2∑ij

Vij(R̂)(q̂iq̂j + p̂ip̂j − γδij). (A6)

The fundamental differences between the spin mapping Hamilto-
nian in Eq. (2) and the MMST Hamiltonian in Eq. (A4) are the
following: (i) for a two-state system, the spin mapping Hamil-
tonian only has two independent variables θ and φ, thus the
same dimensionality of the original electronic subspace, whereas
the MMST Hamiltonian has effectively four independent variables
{p1, q1, p2, q2}, hence a larger dimensionality. (ii) The total popu-
lation of the spin mapping is always 1, whereas this is not always
guaranteed in the MMST mapping formalism.53

APPENDIX B: EQUATIONS OF MOTION FOR θ AND φ

Equation (17) can also be equivalently expressed as EOMs in
θ and φ. Using u̇z = −θ̇ sin θ = Hxuy −Hyux as well as u̇x = θ̇ cos θ
cos φ − φ̇ sin θ sin φ = Hyuz −Hzuy, we can derive the following
equations:

θ̇ = 1
h̵
(−Hx sin φ +Hy cos φ), (B1a)

φ̇ = 1
h̵
(Hz −Hx

cos φ
tan θ

−Hy
sin φ
tan θ

). (B1b)

It is interesting to note that the above equations are equivalent
to the following:

θ̇ = 1
rs sin θ

∂Hs(u)
∂φ

, (B2a)

φ̇ = − 1
rs sin θ

∂Hs(u)
∂θ

, (B2b)

from which we obtain the conjugate variables φ̇ and rs cos θ related
to the spin mapping representation, where the latter plays the role of
conjugate momentum48 to φ as

d
dt
(rs cos θ) = −∂Hs(u)

∂φ
, (B3a)

φ̇ = ∂Hs(u)
∂(rs cos θ) . (B3b)

The relationship between the Hamiltonian Hs(u) and the
Lagrangian is H(θ, φ) = φ̇ ⋅ (rs cos θ) −L(φ, φ̇).

Note that under the non-equilibrium condition with a focused
initial condition, such as [∣1⟩⟨1∣]s(u) = 1

2 + rs cos θ = 1 [Eq. (14a)],

it requires cos θ = 1 under s ≡ Q, which makes the above EOMs ill-
defined in terms of 1/sin θ and 1/tan θ. Thus, u is a more convenient
dynamical variable than {θ, ϕ} for this scenario. Under the thermal
equilibrium condition (such as examples in this paper), the system
will never reach θ = 0, and we find that using Eq. (B2) is numeri-
cally more convenient. We hence use the velocity Verlet algorithm to
evolve θ and φ, which avoids the necessity to compute any derivative
of the potential, as is the case for u̇.

Using the fact that {φ, rs cos θ} are the canonical variables
of the Hamiltonian Hs, we use the velocity Verlet algorithm to
propagate the equation of motion, with (i) a half time step of the
“momentum” rs cos θ (or θ as evolving the former is equivalent to
the latter using the chain rule), (ii) then followed by a full time step
of the “position” φ, and (iii) finally, the second half time step to prop-
agate rs cos θ. Note that a more stable propagation scheme of the
MMST mapping variables is available,14,75 which rigorously guaran-
tees the symplectic propagation. Based on the connection between
the spin mapping formalism and the MMST mapping formalism,
one should be able to use these algorithms for the spin variable
propagation.

APPENDIX C: ELEMENTARY RELATIONS IN SPIN
MAPPING REPRESENTATION

Here, we verify several basic properties of the
Stratonovich–Weyl transforms. We begin by explicitly expressing
ŵs as follows:

ŵs(u) =
⎛
⎜⎜
⎝

1
2
+ rs cos θ rs sin θ ⋅ e−iφ

rs sin θ ⋅ eiφ 1
2
− rs cos θ

⎞
⎟⎟
⎠
≡
⎛
⎜
⎝
ws

11 ws
12

ws
21 ws

22

⎞
⎟
⎠

.

First, we verify that ∫ duAs(u) = Tre[Â] by computing Tre[Â] for a
general operator Â as follows:

∫ duAs(u) =
1

2π∫
2π

0
dφ∫

π

0
dθ sin θ Tre[Âŵs]

= 1
2π∫

2π

0
dφ∫

π

0
dθ sin θ(A11(

1
2
+ rs cos θ)

+ A12rs(sin θ cos φ + i sin θ sin φ)
+ A21rs(sin θ cos φ − i sin θ sin φ)

+ A22(
1
2
− rs cos θ))

= A11 + A22 = Tre[Â], (C1)

where we have used the elementary results of integrals ∫ π
0 dθ sin θ

= 2, ∫ π
0 dθ cos θ sin θ = 0, ∫ 2π

0 dφ cos φ = 0, and ∫ 2π
0 dφ sin φ = 0.

Using these integrals, it is also straightforward to verify that

∫ duŵs(u) =
1

2π∫
2π

0
dφ∫

π

0
dθ sin θ(1

2
Î + rsu ⋅ σ̂) = Î, (C2)

proving the resolution of identity in the spin mapping coherent state
basis.
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For the Stratonovich–Weyl transform of the product of two
operators Â and B̂, one can show that

∫ duAsBs̄(u) = ∫ du Tre[Âŵs]Tre[B̂ŵs̄]

= ∫ du(A11w
s
11 + A12w

s
21 + A21w

s
12 + A22w

s
22)

⋅ (B11w
s̄
11 + B12w

s̄
21 + B21w

s̄
12 + B22w

s̄
22). (C3)

Note that any of the above terms that contains ∫ 2π
0 dφe±iφ or

∫ 2π
0 dφe±2iφ will be zero. Hence, only the terms without e±iφ survive.

They are either ws
11w

s̄
11, ws

22w
s̄
22, or ws

12w
s̄
21, ws

21w
s̄
12. For the term

related to A11B11 ⋅ ∫ duws
11w

s̄
11, the integral related to the mapping

variables is

∫ duws
11w

s̄
11 = ∫

π

0
dθ sin θ(1

2
+ rs cos θ)(1

2
+ rs̄ cos θ) = 1,

where we used the fact that rs ⋅ rs̄ = 3/4, ∫ π
0 dθ sin θ = 2, and

∫ π
0 dθ sin θ cos2 θ = 2

3 . Similarly, one can show that ∫ duws
22w

s̄
22

= 1 as well. The other non-zero terms are A12B21 ⋅ ∫ duws
21w

s̄
12 and

A21B12 ⋅ ∫ duws
12w

s̄
21, with the weighting factor

∫ duws
21w

s̄
12 = ∫ duws

12w
s̄
21 = ∫

π

0
dθ sin θ ⋅ rsrs̄ ⋅ sin2 θ = 1,

where ∫ π
0 dθ sin3 θ = 4/3. Putting all these results together, we have

∫ duAsBs̄(u) =A11B11 + A12B21 + A21B12 + A22B22

=Tre[ÂB̂], (C4)

which is Eq. (21) of the main text.

APPENDIX D: DERIVATION OF THE SCS-PARTITION
FUNCTION

We derive an analytic expression of the Boltzmann operator in
the spin mapping representation. For that, we first Taylor expand
it as

e−βN
1
̵h Hα ⋅Ŝ = Î − βN

1
h̵

Hα ⋅ Ŝ +
β2

N

2!
( 1

h̵
Hα ⋅ Ŝ)

2
− β3

N

3!
( 1

h̵
Hα ⋅ Ŝ)

3
+ ⋅ ⋅ ⋅ ,

(D1)

where we explicitly keep all terms. Using the fact that ( 1
̵h Hα ⋅ Ŝ)2

= ∣Hα∣2/4 × Î, Eq. (D1) leads to an expression with two differ-
ent types of terms that can be identified as Taylor expansions of
hyperbolic cosine and hyperbolic sine as follows:

e−βN
1
̵h Hα ⋅Ŝ =

∞

∑
j=0

1
(2j)!(βN

∣Hα∣
2
)

2j

Î − 2Hα ⋅ Ŝ
h̵∣Hα∣

×
∞

∑
j=0

1
(2j + 1)!(βN

∣H(Rα)∣
2
)

2j+1

= cosh
βN ∣Hα∣

2
Î − Hα ⋅ σ̂

∣Hα∣
sinh

βN ∣Hα∣
2

. (D2)

Using the above result as well as the identity (A ⋅ σ̂)(B ⋅ σ̂)
= A ⋅ BÎ + iA × B ⋅ σ̂, one can show that

e−βN
1
̵h Hα ⋅Ŝŵs(uα) = cosh(βN ∣Hα∣

2
)(1

2
Î + rsuα ⋅ σ̂)

− 1
∣Hα∣

sinh(βN ∣Hα∣
2
)

× (1
2

Hα ⋅ σ̂ + rs(Hα ⋅ uαÎ + iHα × uα ⋅ σ̂))

= (1
2

cosh
βN ∣Hα∣

2
− rs

Hα

∣Hα∣
⋅ uα sinh

βN ∣Hα∣
2
)Î

+ (rsuα cosh
βN ∣Hα∣

2
− 1
∣Hα∣
(Hα

2
+ irsHα × uα)

× sinh
βN ∣Hα∣

2
) ⋅ σ̂. (D3)

This is the general expression of Γs in the SCS-partition function
[Eq. (35)] for any SW transformation.

APPENDIX E: NRPMD AND MEAN-FIELD-RPMD

The NRPMD method36 was first proposed by Thoss and
Richardson as a model dynamics. Recently, it was rigorously derived
from the non-adiabatic Matsubara dynamics formalism.45 It uses the
MMST formalism [Eq. (A6)] to describe the electronic DOFs and the
ring polymer path-integral formalism to describe the nuclear DOFs.
When operators Â and B̂ are both functions of R̂, the NRPMD TCF
is expressed as

CAB(t) =
1
Z

lim
N→∞∫ d{Rα}∫ d{Pα}∫ d{qα}∫ d{pα}

× Tre[Γ′(R, q, p)]e−βN Hrp(R)Ā(R)B̄(Rt), (E1)

where Hrp(R) = ∑N
α=1

P2
α

2m +
m

2β2
N
̵h2 (Rα − Rα−1)2 +U0(Rα) corre-

sponds to the ring polymer Hamiltonian with the state-independent
potential, Ā(R) = 1

N∑
N
α=1A(Rα) and B̄(Rt) = 1

N∑
N
α=1B(Rα(t)), and

Γ′(R, q, p) is expressed as36

Γ′(R, q, p) = e−GN
N

∏
α=1
[M′(Rα)qαqT

αM
′(Rα)pαpT

α],

with GN = ∑N
α=1(qT

α qα + pT
α pα) and M′

ij(Rα) = ⟨i∣e−
1
2 βN V̂e(Rα)∣j⟩.

Note that Tre[Γ′(R, q, p)] can also be equivalently expressed as
Tre[Γ′(R, q, p)] = e−GN∏N

α=1[pT
α−1M

′(Rα)qα] ⋅ [q
T
αM

′(Rα)pα].
The dynamics is governed by the following NRPMD

Hamiltonian:36

HN =
1
N

N

∑
α=1

⎡⎢⎢⎢⎢⎣

P2
α

2m
+ m

2β2
N h̵2 (Rα − Rα−1)2 +U0(Rα)

+ 1
2

K

∑
i,j=1

Vij(Rα)([pα]i[pα]j + [qα]i[qα]j − δij)
⎤⎥⎥⎥⎥⎦

. (E2)

The NRPMD Hamiltonian was derived from both the partition
function expression38 and a quantum Liouvillian.45 It is closely
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related to the SM-NRPMD Hamiltonian in Eq. (45) through the
transformations in Eq. (A1a).

When Â = ∣i⟩⟨i∣ and B̂ = ∣j⟩⟨ j∣, the NRPMD TCF is

CAB(t) =
1
Z

lim
N→∞∫ d{Rα}∫ d{Pα}∫ d{qα}∫ d{pα}

× Tre[Γ′∣i⟩⟨i∣]e−βN Hrp(R)[â†
j âj]N(t), (E3)

with the electronic state estimator36,37

Pj(t) = [â†
j âj]N =

1
N

N

∑
α=1

1
2
([qα]

2
j + [pα]

2
j − 1). (E4)

The mean-field (MF)-RPMD approach68 can be viewed as a
special limit of the NRPMD TCF [Eq. (E1)] by analytically integrat-
ing out the mapping variables in Eq. (E1) at t = 0. The MF-RPMD
TCF39,68 is

CMF
AB (t) =

1
Z

lim
N→∞∫ d{Rα}∫ d{Pα}Tre[Γ′′(R)]e−βN Hrp Ā(R)B̄(Rt),

(E5)

where Γ′′(R) =∏N
α=1M(Rα) and Mij(Rα) = ⟨i∣e−βN V̂e(Rα)∣j⟩. The

MF-RPMD dynamics is governed by the MF-RPMD effective
Hamiltonian39,68 HMF = Hrp − 1

β ln ∣Tre[Γ′′(R)]∣. Note that MF-
RPMD is not a new method and has been derived without using the
mapping representation.68

APPENDIX F: ADDITIONAL RESULTS OF SM-NRPMD

In this section, we explore other possible choices of {s, s̄} in
the SM-NRPMD dynamics. Using the model systems, we find that
the {s ≡ Q, s̄ ≡ P} choice provides the most efficient initial sam-
pling, which requires ten times smaller configurations (trajectories)
than the {s ≡W, s̄ ≡W} choice when using N = 6 beads for a con-
verged dynamics (due to a more severe sign problem). Thus, for
pure quantum statistical quantities, {s ≡ Q} provides the most effi-
cient sampling. The TCF dynamics, unfortunately, seems to require
more beads to converge. For correlation function calculations, this
disadvantage counterbalances its advantage and makes the {s ≡W,
s̄ ≡W}more favorable.

The choice of {s ≡ P, s̄ ≡ Q}, on the other hand, provides a
more accurate electronic auto-correlation function at a longer time.
This finding agrees with the out of equilibrium calculations, which
conclude that the s̄ ≡ Q choice in the mapping Hamiltonian pro-
vides the most accurate electronic dynamics.53 For the thermal TCF
calculations, however, the initial sampling with the choice of s ≡ P
typically requires 10–102 more configurations to achieve a numerical
convergence.

Figure 6 presents the SM-NRPMD position and state 1 pop-
ulation auto-correlation functions for models II, III, and V with
the choice of {s ≡ Q, s̄ ≡ P} (green solid lines) and {s ≡ P, s̄ ≡ Q}
(black solid lines), compared to the numerically exact results (red
dots). Indeed, the s ≡ P choice, hence s̄ ≡ Q for the SM-NRPMD
Hamiltonian, provides the most accurate electronic dynamics (more
accurate than the {s ≡W, s̄ ≡W} results in Fig. 3), with the price

FIG. 6. Position auto-correlation functions (left panels) and their correspond-
ing state 1 population auto-correlation functions (right panels) with s ≡ P in
black solid lines of models II (four beads), III (six beads), and V (four
beads), respectively, in panels (a)–(c). Similar calculations with s ≡ Q are pre-
sented in green solid lines for models II (eight beads), III (18 beads), and V
(18 beads). The SM-NRPMD results are compared to the exact results (red
dots).

of using more trajectories to achieve numerical convergence of the
TCF.

The {s ≡ Q, s̄ ≡ P} calculations (green lines) show a gener-
ally good agreement with the exact results but require more beads
to converge (with up to 18 beads in the model calculations pre-
sented here). Calculations with such a large number of beads are
made possible by the fast convergence of s ≡ Q sampling (with 106

configurations for N = 18 beads).
Figure 7 presents the expectation values of the nuclear posi-

tion operator and the state 1 electronic population for {s ≡ Q,
s̄ ≡ P} (solid lines) and {s ≡ P, s̄ ≡ Q} (dashed lines). Both choices
fail to provide the nearly time-independent expectation values
that the choice of {s ≡W, s̄ ≡W} can provide in Fig. 4. It also
seems that both {s ≡ Q, s̄ ≡ P} and {s ≡ P, s̄ ≡ Q} require even
more beads to converge these expectation values compared to
the MMST-based NRPMD method,58 as shown in Fig. 4 (dashed
lines).
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FIG. 7. Expectation values of the nuclear position operator (left panel) and the state
1 electronic population (right panel) for model IV (intermediate regime). The results
are obtained from the SM-NRPMD method using {s ≡ Q, s̄ ≡ P} (solid lines) and
{s ≡ P, s̄ ≡ Q} (dashed lines), with N = 2 (magenta lines), N = 4 (blue lines) and
N = 6 (green lines) beads, respectively. The numerically exact results are shown
in black dotted lines.
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The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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