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ABSTRACT
We theoretically demonstrate that the chemical reaction rate constant can be significantly suppressed by coupling molecular vibrations with
an optical cavity, exhibiting both the collective coupling effect and the cavity frequency modification of the rate constant. When a reaction
coordinate is strongly coupled to the solvent molecules, the reaction rate constant is reduced due to the dynamical caging effect. We demon-
strate that collectively coupling the solvent to the cavity can further enhance this dynamical caging effect, leading to additional suppression of
the chemical kinetics. This effect is further amplified when cavity loss is considered.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0074106

I. INTRODUCTION

Inside an optical cavity, hybridizing molecular vibrations and
photonic excitations1–3 form vibrational polaritons [Fig. 1(a)]. Sev-
eral recent experiments3–9 have demonstrated that it is possi-
ble to modify ground-state chemical reactions by coupling the
cavity radiation mode with the vibrational degrees of freedom
(DOF) of molecules. This new strategy of vibrational strong cou-
pling (VSC), if feasible, will offer a paradigm shift in chemical
transformations.3,5

Despite recent theoretical progress,10–18 a clear theoretical
explanation of such remarkable VSC effects in ground-state reac-
tivity remains elusive, including explanations of both (i) the collec-
tive effect (

√

N-dependent effect, where N is the total number of
molecules inside the cavity) on chemical reaction rates, and (ii) the
resonant effect, where the suppression of the rate is achieved with a
particular cavity photon frequency.

Our previous work12 suggests that the VSC modification of the
rate constant is purely dynamical, originating from the caging effect
of the cavity mode coupled to the reaction coordinate, as opposed
to modifying the reaction barrier height.15,19 However, these previ-
ous theoretical discussions are often limited to the case of a single
molecule12,16 or a few molecules20 coupled to the cavity. It is thus

an open question whether these theoretical explanations also sur-
vive to the large N limit and exhibit the collective effect.17,19,21 On the
other hand, both effects do show up in a VSC non-adiabatic electron
transfer reaction11,22 with an enhancement of the rate upon reso-
nant coupling between molecular vibration and the cavity, although
the applicability of this theory on the VSC ground-state adiabatic
reactions remains an open question. Similarly, in the recent the-
oretical work of vibrational energy transfer, one can exhibit both
the resonant effect and the collective effect for these energy trans-
fer rates.10 However, their connection to the chemical reaction
rate constant remains to be discussed. Finally, recent theoretical
works17,23 have suggested a coherent mechanism where collective
coupling effects appear if “the polariton is activated collectively to
the transition state”17 such that the chemical reaction occurs via the
collective bright mode comprising all reaction coordinates. How-
ever, the physical origin of such a collective mechanism remains
unclear.15

In this work, we theoretically demonstrate that the chemi-
cal reaction rate constant can be modified when a set of solvent
DOF is collectively coupled to both a reaction coordinate of a
solute molecule and the cavity radiation mode. Our results demon-
strate both the collective coupling effect and the cavity frequency-
dependent modifications of the reaction rate constant,3,5 which
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FIG. 1. (a) Schematic illustration of the reactive molecule coupled to a set of sol-
vent modes (phonon), which are, in turn, coupled to the quantized radiation mode
in a cavity. (b) Double-well potential (black solid line) for a chemical reaction as
a function of the reaction coordinate R0 where the barrier can be approximated
as an inverted Harmonic potential (red dashed line). (c) Potential energy of a har-
monic phonon mode (solvent) and (d) a bare cavity mode. The vibrational state
and photon state hybridization leads to a Rabi splitting hΩR.

purely originate from a change of the transmission coefficient
(recrossing factor) of the rate constant due to the dynamical caging
effects from the cavity.12

II. THEORY AND THE MODEL SYSTEM
We begin by writing the light–matter interaction Hamiltonian

in the minimal coupling form as follows:

ĤC = ∑
j

1
2mj
(p̂j − zjÂ)

2
+ V̂(x̂) + Ĥph, (1)

where the sum is performed over all charged particles, including
both electrons and nuclei; mj and zj are the mass and charge for
particle j, respectively; and V̂ represents the Coulomb potential
of all charged particles. The total dipole operator of the matter is
μ̂ = ∑jzjxj. In addition, x̂ ≡ {x̂j} = {R̂, r̂} with R̂ and r̂ representing
the nuclear and electronic coordinates, respectively, p̂ ≡ {p̂R, p̂r}

≡ {p̂j} is the canonical momentum operator such that
p̂j = −i̵h∇j. The cavity photon field Hamiltonian under the
single mode assumption is expressed as Ĥph =

̵hωc(â† â + 1
2)

=
1
2(p̂

2
c + ω2

c q̂2
c), where ωc is the frequency of the mode in the cavity,

â† and â are the photonic creation and annihilation operators, and
q̂c =
√
̵h/2ωc(â†

+ â) and p̂c = i
√
̵hωc/2(â†

− â) are the photonic
coordinate and momentum operators, respectively. Choosing the
Coulomb gauge, ∇ ⋅ Â = 0, the vector potential becomes purely
transverse as Â = Â�. Under the long-wavelength approximation,
Â = A0(â + â†

) = A0
√

2ωc/̵h q̂c for a Fabry–Pérot cavity, where

A0 =
√
̵h/2ωcε0V ⋅ ê, with V as the quantization volume inside

the cavity, ε0 as the permittivity, and ê as the unit vector of field
polarization.

Using the Power–Zienau–Woolley (PZW)24,25 gauge trans-
formation operator Û = exp[− i

h̵ μ̂ ⋅A0(â + â†
)] and the unitary

phase transformation operator Ûϕ = exp[−i π
2 â† â], the Pauli–Fierz

(PF) non-relativistic QED Hamiltonian26,27 ĤPF = ÛϕÛ ĤCÛ†Û†
ϕ is

obtained as follows:

ĤPF = Ĥm +
1
2

p̂2
c +

1
2

ω2
c
⎛

⎝

q̂c +

√

2
̵hωc

μ̂ ⋅A0
⎞

⎠

2

, (2)

where the matter Hamiltonian is Ĥm = T̂R + T̂r + V̂ , with T̂R
and T̂r representing the nuclear and electronic kinetic energies,
respectively. The presence of the dipole self-energy (DSE) term
ωc
h̵ (μ̂ ⋅A0)

2 in Eq. (2) is necessary in order to have a gauge
invariant Hamiltonian,26–28 and it has shown to be crucial for an
accurate description of light–matter interactions under the dipole
gauge.26,27,29

In Sec. I of the supplementary material, we started the theo-
retical derivation for the most general case of the molecular dipole
orientation with respect to the field polarization direction. We found
that when the molecules have an isotropic distributions, there is
no collective VSC modification on the reaction rate constant (see
Sec. I B in the supplementary material). This also agrees with
the other recent theoretical findings.19 We, thus, assume that the
dipole of the matter is oriented in the field polarization direction
such that μ̂ ⋅A0 = μ̂ ⋅ A0, and this should be viewed as an addi-
tional assumption. We should note that in the VSC experiments,3,5

the molecules are more likely to have a completely isotropic dis-
tribution with respect to the cavity polarization direction. On the
other hand, it is certainly possible to have chemical reactions in
anisotropic solvents, such as liquid crystals30–32 inside an optical
cavity.33

Because all these VSC experiments3–8 are performed with elec-
tronically adiabatic reactions in the ground adiabatic states, we only
consider the electronic ground state of the system defined as

(Ĥm − T̂R)∣Ψg(R)⟩ = Eg(R)∣Ψg(R)⟩, (3)

where Eg(R) is the ground adiabatic potential and ∣Ψg(R)⟩ is the
ground adiabatic electronic state of the matter. Projecting Ĥm and
μ̂ in the ground electronic state with P̂ = ∣Ψg⟩⟨Ψg ∣, we obtain the
following model Hamiltonian:

Ĥg
PF =

p̂2

2
+ Eg(R) +

p̂2
c

2
+

1
2

ω2
c
⎛

⎝

q̂c +

√

2
̵hωc

A0 ⋅ μg(R)
⎞

⎠

2

, (4)

where μg(R) = ⟨Ψg ∣μ̂∣Ψg⟩. Note that projecting μ̂ inside the dipole
self-energy term is the accurate matter state truncation scheme for
the dipole-gauge Hamiltonian28,29 because it ensures that all opera-
tors are properly confined in the same truncated electronic subspace
P̂ = ∣Ψg⟩⟨Ψg ∣ in order to generate consistent results compared to the
full Hamiltonian.34

In this work, we consider a model system for Eg(R), where
R = {R0, R1, . . . , RN} include a reactive molecule with a single reac-
tion coordinate R0 and N solvent DOFs Ri (where i ∈ [1, N]) that
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couples to R0. Using the typical Caldeira–Leggett35 system–bath
Hamiltonian, Eg(R) is modeled as

Eg(R) = U0(R0) +
N

∑

i=1

1
2

ω2
i (Ri +

ci

ω2
i

R0)

2

. (5)

The solute molecule is modeled as a double-well potential U0(R0)

= a ⋅ R4
0 − b ⋅ R2

0, as shown in Fig. 1(b) (solid black line), to represent
the chemical reaction along R0, and the details of the parameters
are provided in Sec. V of the supplementary material. At the top
of the barrier R0 = R‡

0 , U0(R0) ≈ −
1
2 ω2

‡(R0 − R‡
0)

2 as indicated by
the red dashed line in Fig. 1(b), where ω‡ = 1048 cm−1 is the top
of the barrier frequency. Furthermore, the total dipole of the sys-
tem is μg(R) = ∑N

i=1μi(Ri), and we assume that μ0(R0) = 0. Note
that the coupling strength between the cavity mode and individual
molecules is very weak under the collective coupling regime; thus,
the result of this work does not change if μ0(R0) ≠ 0. We further
simplify our consideration of the solute–solvent coupling as ci = cs
and ωi = ωs = 1400 cm−1, where we denote ωs as the solvent vibra-
tional frequency for all modes i ∈ [1, N]. These values are typical for
nuclear vibrations and are within the range of the recent experiments
of VSC modified reactivities,3,4 ranging from 800 to 3000 cm−1.
The amplitude of the solvent friction is λ = ∑N

i=1
c2

i
ω2

i
= Nc2

s /ω2
s . In this

work, we keep λ as a constant throughout. This means that as we
increase N, the corresponding cs will be decreased by 1/

√

N and
the overall solvent–solute interactions characterized by λ will not
change as we increase N. In particular, we use λ = 3.84 × 10−4 a.u.,
and for N = 2500, which corresponds to the solvent–solute cou-
pling as cs = 2.5 × 10−6 a.u. The physical solvent–solute interactions
require a distribution of values for ci that satisfies a particular spec-
tral density. Further generalization of the solvent–solute coupling ci
with an arbitrary spectral density is possible,36 with the details pro-
vided in Sec. I C of the supplementary material. On the other hand,
the light–matter coupling strength A0 in Eq. (4) is kept fixed, cor-
responding to the situation where the cavity-per-molecule coupling
is a constant. Thus, the collective coupling between the molecules
and the cavity2,5 increases as one increases N, which shows up
in both the Rabi splitting and modification of the reaction rate
constant.

The physical realization of our model reaction in Eq. (5) could
be the proton transfer reaction in the ground state, where the pro-
ton transfer coordinate R0 couples to many solvent molecules due
to the long-range electrostatic interactions.37–41 A well-established
model of this problem is the Azzouz–Borgis model42–47 in theoreti-
cal literature, where the proton transfer coordinate often effectively
couples to more than hundreds of explicit solvent molecules. One
can also extract the global solvent coordinate that couples to the
reaction coordinate.48–50 The cavity mode, on the other hand, inter-
acts with all solvent modes, resulting in delocalized interactions that
can be observed from the Rabi splitting from spectroscopy.2 For
the solvent–solute interactions, with an increase in the number of
solvent molecules, the outer sphere solvents will only be weakly cou-
pled to the solute, while the inner sphere solvent strongly coupled
to the solute, resulting in a solute–solvent distance specific coupling
strength ci. Here, we consider a simplified picture in which we scale
all ci values to be smaller when we increase N such that λ is fixed.
In Sec. I C of the supplementary material, we have considered the

case of distributions of ci and we found that the collective effects
survive. On the other hand, our model reaction in Eq. (5) cannot
describe reactions that involve local covalent bond-breaking, where
the reaction coordinate is likely only locally coupled to a few solvent
molecules in the immediate neighborhood of the solute.

Treating both R and qc in Eq. (4) on an equally clas-
sical footing,10,12,15,19,21 the VSC polariton chemical kinetics
can be viewed as a barrier crossing process on the cavity
Born–Oppenheimer surface (CBO),51

ECBO(R, qc) = Eg(R) +
1
2

ω2
c
⎛

⎝

q̂c +

√

2
̵hωc

A0 ⋅ μg(R)
⎞

⎠

2

. (6)

One can then express the reaction rate constant as follows:52–54

k = lim
t→tp

κ(t) ⋅ kTST, (7)

where kTST is the Transition State Theory (TST) rate constant and tp
is the plateau time of the transmission coefficient κ(t). It has been
shown that the classical potential of mean force (free energy pro-
file) is invariant under the change of light–matter coupling strength
or the photon frequency.15 Other theoretical investigations based on
a simple TST analysis also suggest no significant change of the reac-
tion rate constant.19,55 The TST rate56 is expressed as kTST =

ω0
2π e−βE‡

,
where E‡

= ECBO(R‡
0) − ECBO(Req

0 ) is the CBO potential energy bar-
rier height measured from the bottom of the well Req

0 to the top of
the barrier R‡

0 , ω0 ≈ 1484 cm−1 is the vibrational frequency of the
reactant at R = Req

0 on the ECBO [Eq. (6)], and β = (kBT)−1. When
the DSE is explicitly considered, E‡ remains invariant to changes
of the light–matter coupling strength or the photon frequency. This
is because the equilibrium position along the photonic coordinate
qc is q0

c(R) = −
√

2
h̵ωc

A0 ⋅ μg(R) for all possible R (for more details,
see Sec. II of the supplementary material). Thus, the last term in
Eq. (6) is always 0 for the stationary points (either a minimum or
a transition state) on the cavity BO surface. This explains why one
cannot observe any effects from a simple TST analysis when treat-
ing qc classically.15,19,55 A recent work57 on VSC chemistry treating
qc quantum mechanically suggests that even when the zero-point
energy along qc is fully considered, the change of E‡ is less than 20
cm−1 across a large range of coupling strengths.

The transmission coefficient captures the dynamical recrossing
effects through the flux-side correlation function formalism,52–54

κ(t) =
⟨F(0) ⋅ h[R0(t) − R‡

0]⟩

⟨F(0) ⋅ h[Ṙ‡
0(0)]⟩

, (8)

where h[R0 − R‡
0] is the Heaviside function of the reaction coordi-

nate R0 with the dividing surface R‡
0 that separates the reactant and

the product regions (for the model system studied here, R‡
0 = 0),

the flux function F(t) = ḣ(t) = δ[R0(t) − R‡
0] ⋅ Ṙ0(t) measures the

reactive flux across the dividing surface [with δ(R) as the Dirac
delta function], Ṙ‡(0) represents the initial velocity of the nuclei
on the dividing surface, and ⟨⋅ ⋅ ⋅⟩ represents the canonical ensem-
ble average with the constraint on the dividing surface enforced
by δ[R(t) − R‡

0] inside F(t). Since kTST does not change under the
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VSC condition, we have conjectured12 that VSC chemical reactivities
purely originate from the transmission coefficient κ. Based on this,
we have demonstrated the cavity frequency dependence of the VSC
modification of κ for a single molecule coupled to the cavity.12 In this
work, we consider the scenario in which such a cavity modification
can also be observed in the collective coupling regime.

We numerically compute κ(t) using the flux-side correlation
function formalism in Eq. (8) with the details provided in Sec. V
of the supplementary material. On the other hand, κ = limt→tp κ(t)
can also be obtained using the Grote–Hynes (GH) theory56,58–62

through the multidimensional transition-state treatment.56,63–65 The
transmission coefficient using the GH theory is

κGH =
1

ω‡

√

−(Ω‡
−)

2, (9)

where Ω‡
− is the unstable imaginary normal-mode frequency at

the dividing surface R0 = R‡
0 . To obtain Ω‡

−, we further approxi-
mate the dipole of the ith solvent molecule around its equilibrium
position Ri = 0 as μi(Ri) ≈ μ0 + μ′Ri, where μ0 = μ(Ri = 0) and μ′

=
∂μg(Ri)

∂Ri
∣Ri=0, and define the collective bright mode of the solvent19

as RB =
1√
N∑

N
i=1Ri. The QED Hamiltonian Hg

PF can be shown to
have three coupled modes, x = {R0, RB, qc}, whereas the rest of the
normal modes (commonly referred to as the dark modes19) are
completely decoupled. At the dividing surface R0 = R‡

0 , the Hessian
matrix in the three-mode x subspace is

Hx ≡
∂2Hg

PF
∂xi∂xj

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−ω2
‡ +N

c2
s

ω2
s

√

Ncs 0
√

Ncs ω2
s +N

C2

ω2
c

√

NC

0
√

NC ω2
c

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (10)

where C = A0μ′
√

2ω3
c

h̵ and N is the number of solvent DOFs. A
detailed derivation of Eq. (10) is provided in Sec. I A of the sup-
plementary material. The imaginary frequency Ω‡

− can be obtained
by diagonalizing Hx in Eq. (10). The key to the emerging collective
VSC effects is the

√

Ncs term and
√

NC in the above Hessian matrix,
which does not exist if one ignores dipole self-energies or considers
N solute molecules (with potential U0) coupled to the cavity.19

While Ω‡
− can be easily computed by numerically diagonalizing

Eq. (10), a simple and concise analytical expression for Ω‡
− is not

readily available. Nonetheless, we find an approximate expression
of Ω‡

− (see the detailed derivation in Sec. III of the supplementary
material) as follows:

Ω‡
− ≈ [

1
2
(ω̃2

‡ − ω2
c) +

1
2

√

(ω2
c + ω̃2

‡)
2
+ 4N sin2Θ‡C2

]

1/2

, (11)

where −ω̃2
‡ =

1
2(−ω2

‡ +N c2
s

ω2
s
+ ω2

s +N C2

ω2
c
) −

1
2

√

(ω2
‡ −N c2

s
ω2

s
+ ω2

s +N C2

ω2
c
)

2
+ 4Nc2

s and Θ‡ =
1
2 tan−1

[2
√

Ncs/(−ω2
‡ +N c2

s
ω2

s
− ω2

s −N C2

ω2
c
)]. It is interesting to note

that Eq. (11) has a similar (but not identical) structure as the case of
a single molecule coupled to the cavity.12 That said, the dependence

of Ω‡
− (or κGH) on ωc is complicated as both Θ‡ and ω̃‡ depend on

ωc in a non-trivial fashion. Nevertheless, one can clearly see from
Eqs. (10) and (11) that Ω‡

− depends on both ωc and N, giving rise
to the cavity frequency dependence and the collective coupling
effect. Furthermore, both Ω‡

− and κGH are functions of
√

Nμ′, which
is a signature of the collective coupling effect. This is similar to
the collective Rabi splitting hΩ, which depends on

√

Nμ′ when
hybridizing the solvent modes {Ri} to the cavity mode qc [as shown
in Figs. 1(c) and 1(d)].

In the Travis–Cummings model, under the resonant condition
when ωs = ωc, hΩ is given as

̵hΩ =
√

Nμ′A0

√

2̵hωs ≡ 2η ⋅ ̵hωc, (12)

where the unitless parameter η (defined above) characterizes the
normalized light–matter coupling strength. On the other hand, the
transmission coefficient based on Eq. (11) is minimized at a different
frequency, which we denote as ω0

c . This frequency has a dependence
of both omegas and ω‡, as later shown in our numerical results.

III. RESULTS AND DISCUSSION
Figure 2 demonstrates both (a) the cavity frequency depen-

dence and (b) the collective effects on modifying the reaction rate
constant. Outside the cavity, the transmission coefficient in the
absence of light–matter interaction is κ(η = 0) = κ0 ≈ 0.317, which
is much lower than 1 due to solvent molecules coupled to the reac-
tion coordinate R0 around the barrier region. This choice is within
the range of many chemical reactions, for example, κ0 ≈ 0.3–0.5 in
Refs. 66 and 67. Since kTST remains invariant for all results presented
in this work, we only use the change of κ to characterize the VSC
modification of the reactivities.

Figure 2(a) presents the results of coupling N = 2500 solvent
DOFs to the cavity and obtaining κ using both the GH theory
(solid lines) and the direct numerical simulations (dotted lines)
using Eq. (8). The results from both approaches are nearly identical.
Importantly, we observe a strong dependence of κ on the photon fre-
quency hωc, and κ is minimized at a certain photon frequency, which
we refer to as ω0

c . While we do not have a simple analytic expression

FIG. 2. (a) Cavity frequency-dependent suppression of the transmission coefficient
κ (where κ0 represents the cavity-free scenario) as a function of the cavity photon
frequency ωc with N = 2500 solvent modes at various collective light–matter cou-
pling strengths η. (b) κ as a function of N while keeping collective solvent–solute
coupling

√
Ncs a constant.
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of ω0
c (which can be, in principle, obtained from ∂κGH/∂ωc = 0), it

is a function of ωs, ω‡, cs, and η [see its definition in Eq. (12)]. As
shown, an increase in η results in a significant redshift in ω0

c , which
has not been observed experimentally. Interestingly, this redshift is
also observed in a recent quantum TST theory, assuming a coher-
ent polariton activation mechanism [see Fig. 4(b) in Ref. 17]. This
is likely due to the fact that we (see Ref. 17) assume a perfect cav-
ity, whereas in the real VSC experiments,3,5 the optical cavity often
has a very low-quality factor. When explicitly including the cavity
loss (as shown in Fig. 3), ω0

c also shifted back to the value closer
to ωc.

Note that η signifies collective coupling, and the individual
solvent–cavity coupling is weak (η/

√

N < 0.0093). However, we
should point out that the coupling strength is still larger than
the estimated values in the experiments (which typically have N
≈ 109–1010 molecules effectively coupled to the cavity) with a nor-
malized coupling eta [see definition in Eq. (12)] ranging from
η = 0.03–0.063,5 to η = 0.1.6 Nevertheless, our model calculations
clearly demonstrate the same essential feature of the collective cou-
pling effects observed in the experiments, which is the rate con-
stant suppression as increasing the number of molecules (or the
concentration of the molecules).5

We emphasize that the suppression of the κ is originated from
the collective dynamical caging effects, where the cavity radiation
mode is effectively acting as an additional “solvent” DOF coupled to
the collective bright solvent coordinate RB, which, in turn, coupled to
the reactive coordinate R0 such that the presence of the cavity mode
enhances the recrossing of the reaction coordinate and reduces the
transmission coefficient. As a result, with an increase in light–matter
coupling strength, the plateau value of κ(t) keeps decreasing and, at
the same time, becomes more oscillatory [see Fig. S3 of the supple-
mentary material (Sec. V)]. This phenomenon is well explored in the
context of solvent-mediated dynamical caging effects.56,59,68–70 More
detailed discussions on the dynamical caging hypothesis of the VSC
reaction can be found in Ref. 12. We should point out that the reso-
nance condition for the modification of the reaction rate in Fig. 2(a)
is much wider than the narrower resonant condition observed in the
experiments.4 We suspect that this is due to the purely classical treat-
ment of qc, and a quantum mechanical treatment of qc should give a

FIG. 3. Transmission coefficient κ when explicitly considering the cavity loss Γc

at η = 0.28. (a) Cavity frequency dependence of the transmission coefficient κ at
various Γc. (b) κ as a function of photon frequency and cavity loss Γc.

narrower resonant condition. This has been recently discussed in a
quantum TST-based theoretical analysis.17

Figure 2(b) demonstrates the N-dependence of the transmis-
sion coefficient using the GH theory while keeping ωc constant. Note
that to clearly identify the effect of increasing N on the light–matter
interactions, we have kept λ a constant. We find that the increase
in N effectively increases the light–matter interaction strength [see
Eq. (12)], leading to an additional suppression of chemical kinet-
ics. Interestingly, unlike the hΩ, which linearly depends on

√

N [see
Eq. (12)], κ has a non-linear monotonic dependence of

√

N. This
theoretical prediction agrees with the recent VSC experiments by
Ebbesen and co-workers [such as Fig. 3(d) in Ref. 5 and Fig. 3(a)
in Ref. 4].

Up until now, we have considered a perfect microcavity setup
with no photon leaking. Despite the recent progress in the devel-
opment of high-quality factor Fabry–Pérot cavities, optical micro-
cavities are generally leaky. The typical values of cavity losses for
a Fabry–Pérot cavity is in the range of Γc = 5–100 meV.3,71–73 In
the classical Markovian limit, the cavity loss (dissipation) can be
described with Langevin dynamics of the cavity radiation mode (see
Sec. III of the supplementary material for derivations), with the
equation of motion

q̈c = −
dHg

PF
dqc

− Γcpc + Fc(t), (13)

where Γc is the cavity loss rate and Fc(t) is a Gaussian ran-
dom force bounded by the fluctuation–dissipation theorem through
⟨Fc(0)Fc(t)⟩ = 2ΓckBTδ(t). Using this approach, we can numeri-
cally compute κ using the flux-side correlation function expression
in Eq. (8). Incorporating such dissipative dynamics in the GH theory
makes it nontrivial to derive a simple analytic expression for κGH,
and therefore, we study the effect of the cavity loss only through
direct numerical simulations.

Figure 3 demonstrates the effect of cavity loss on κ. Here, we
choose η = 0.28 and keep N = 2500 (with per-molecule coupling
η/
√

N = 0.0056) as a constant while varying the cavity loss rate Γc.
In Fig. 3(a), we observe that increasing Γc results in further suppres-
sion of the chemical rate constant while concurrently blueshifting
the maximum suppression frequency ω0

c . It can be seen in Fig. 3(b)
that an increase in Γc shifts ω0

c gradually toward the value of ω0,
which is the vibrational frequency of the solvent molecules. This cav-
ity loss-assisted suppression of chemical kinetics can be attributed to
the fact that the cavity loss dynamics arises when the cavity mode is
coupled to other non-cavity radiation modes, which act as additional
dissipative baths74 (see Sec. IV of the supplementary material). Just
like the cavity mode which acts like a dissipative bath to the collective
solvent coordinate RB that leads to suppression of chemical kinetics
(as shown in Fig. 2), introducing an additional dissipative environ-
ment to the cavity mode itself also leads to further suppression of the
chemical rate constant. Note that when explicitly considering cavity
loss dynamics, the collective coupling effects (Fig. 2) still persist, as
demonstrated in Sec. IV of the supplementary material.

IV. CONCLUSIONS AND FUTURE PERSPECTIVES
In conclusion, we theoretically demonstrate both the collective

coupling effects and the cavity frequency-dependent modifications
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of the reaction rate constant in the polaritonic vibrational strong
coupling regime. The suppression in chemical kinetics is cavity
photon-frequency-dependent such that maximal suppression occurs
around a particular photon frequency ω0

c . Outside the cavity, when
a collective solvent mode is strongly coupled to a reaction coordi-
nate in the non-Markovian limit, the reaction coordinate becomes
dynamically caged near the barrier region. When coupling to the
cavity, we find that the cavity radiation mode and intrinsic cavity
loss assist in dynamical caging of the reaction coordinate, leading
to further suppression of the reaction rate constant if the solvent
dipoles are aligned in the cavity polarization direction. This effect
operates under the collective coupling regime and survives when
per-molecule (per-solvent DOF) light–matter coupling is weak.

We should emphasize that by no means, this theoretical work
provides the ultimate answer to the mysteries of the VSC modifi-
cation of the reactivities. Future work should aim to address the
following limitations of this work.

(1) The resonant condition. Experimentally, the resonant condi-
tion is referred to as when the cavity frequency ωc matches
the frequency of the vibration ωs such that it generates a
large vibrational polariton Rabi splitting under the condition
ωc = ωs [see Eq. (12)]. It is also believed that3,4 the maxi-
mum reduction of the rate constant is achieved by tuning
the cavity frequency ω0

c to match the same bond vibrational
frequency ωs. Our theoretical work, on the other hand, pre-
dicts that a maximum reduction of the rate constant (purely
through transmission coefficient) is achieved by matching
ω0

c to a value determined by both the top of the barrier fre-
quency of the reaction coordinate ω‡ and the equilibrium
vibrational frequency ωs [see Eq. (11)]. Note that in a recent
work based on quantum TST, the maximum reduction of
the rate constant is related to both the vibrational frequency
(through the quantum entropy correction) and the reactive
barrier frequency (through κGH, as we have shown in our
previous work12) is high. Thus, it might suggest that our cur-
rent results (as well as those in Ref. 17) are inconsistent with
the experimental results. Interestingly, a significant rate sup-
pression can also be achieved without perfectly matching the
cavity frequency with any bond vibrational frequency ωs; for
example, see Fig. 3A in Ref. 3 for the rate constant reduction
peak around 1250 cm−1. Thus, a precise experimental mea-
surement on the value of ω0

c and its relation with ωs will be
extremely valuable to further scrutinize different theories.

(2) Disorders of molecular orientations. Our current theory
requires all solvent molecules to be perfectly aligned with the
quantized radiation mode inside the cavity. The VSC experi-
ments take place in the solution, where the molecules should,
in principle, be isotropically distributed. Future theoretical
work needs to focus on releasing the requirement of perfect
alignment of all solvent molecules and allowing isotropic dis-
order of the molecules. On the other hand, the current exper-
iments33 can already achieve strong light–matter couplings
between anisotropic solvents, such as liquid crystals30,31

inside an optical cavity.32,33 Thus, it will be interesting to
test this theoretical prediction in its current form for chem-
ical reactions within those liquid crystals inside an optical
cavity.

(3) Enhancement of the rate constant. There are also VSC exper-
iments suggesting that the rate constants can be enhanced8,75

by a large amount when solvent DOFs are coupled to the cav-
ity, although the validity of the observed enhancement for
some experiments76 is still subject to debate.76,77 This theo-
retical framework cannot explain such a significant enhance-
ment of the rate constant due to coupling to the cavity.
Classically, the Kramers turnover theory predicts that in
the under-damped regime, an increase in the system–bath
friction will first enhance the rate constant, then approach
the plateau regime of the rate constant, and finally reach
the over-damped regime that decreases the rate constants.
Coupling the cavity mode (photonic environment) could
enhance the reaction rate constant if the reaction is origi-
nally in the under-damped regime. However, it is hard to
believe that the reactions investigated in those experiments
are in that regime,8 and future theoretical work is required to
fully understand this behavior.

We envision that this theoretical work brings us one step
closer to finally resolving the mysteries of VSC enabled chem-
istry demonstrated in recent experiments3–8 by demonstrating both
the collective coupling effect and the cavity frequency-dependent
modification of the rate constant. Future theoretical works as
suggested above are needed to fully resolve these mysteries of
vibrational strong coupling modified reactivities inside an optical
cavity.

SUPPLEMENTARY MATERIAL

See the supplementary material for the details of the Hessian
matrix of the model system, invariance of the barrier height and kTST
upon changing light–matter coupling, an approximate expression of
Ω‡
−, cavity dissipation, and numerical simulations.

ACKNOWLEDGMENTS
This work was supported by the National Science Founda-

tion CAREER Award under Grant No. CHE-1845747, a Cottrell
Scholar award (a program by Research Corporation for Science
Advancement), and a University Research Award from the Uni-
versity of Rochester. Computing resources were provided by the
Center for Integrated Research Computing (CIRC) at the Univer-
sity of Rochester. The authors appreciate valuable discussions and
comments from Mike Taylor, Eric Koessler, and Braden Weight. The
authors also appreciate the help from two reviewers and the journal
editor to improve the quality of this paper.

AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts to disclose.

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

J. Chem. Phys. 156, 014101 (2022); doi: 10.1063/5.0074106 156, 014101-6

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp
https://www.scitation.org/doi/suppl/10.1063/5.0074106


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

REFERENCES
1J. George, T. Chervy, A. Shalabney, E. Devaux, H. Hiura, C. Genet, and T. W.
Ebbesen, “Multiple Rabi splittings under ultra-strong vibrational coupling,” Phys.
Rev. Lett. 117, 153601 (2016).
2A. Shalabney, J. George, J. Hutchison, G. Pupillo, C. Genet, and T. W. Ebbe-
sen, “Coherent coupling of molecular resonators with a microcavity mode,” Nat.
Commun. 6, 5981 (2015).
3A. Thomas, L. Lethuillier-Karl, K. Nagarajan, R. M. A. Vergauwe, J. George,
T. Chervy, A. Shalabney, E. Devaux, C. Genet, J. Moran, and T. W. Ebbe-
sen, “Tilting a ground-state reactivity landscape by vibrational strong coupling,”
Science 363, 615–619 (2019).
4A. Thomas, J. George, A. Shalabney, M. Dryzhakov, S. J. Varma, J. Moran,
T. Chervy, X. Zhong, E. Devaux, C. Genet, J. A. Hutchison, and T. W. Ebbe-
sen, “Ground-state chemical reactivity under vibrational coupling to the vacuum
electromagnetic field,” Angew. Chem. 128, 11634–11638 (2016).
5A. Thomas, A. Jayachandran, L. Lethuillier-Karl, R. M. A. Vergauwe, K. Nagara-
jan, E. Devaux, C. Genet, J. Moran, and T. W. Ebbesen, “Ground state chemistry
under vibrational strong coupling: Dependence of thermodynamic parameters on
the Rabi splitting energy,” Nanophotonics 9, 249–255 (2020).
6R. M. A. Vergauwe, A. Thomas, K. Nagarajan, A. Shalabney, J. George, T. Chervy,
M. Seidel, E. Devaux, V. Torbeev, and T. W. Ebbesen, “Modification of enzyme
activity by vibrational strong coupling of water,” Angew. Chem., Int. Ed. 58,
15324–15328 (2019).
7K. Hirai, R. Takeda, J. A. Hutchison, and H. Uji-i, “Modulation of Prins cycliza-
tion by vibrational strong coupling,” Angew. Chem., Int. Ed. 59, 5332–5335
(2020).
8J. Lather, P. Bhatt, A. Thomas, T. W. Ebbesen, and J. George, “Cavity cataly-
sis by cooperative vibrational strong coupling of reactant and solvent molecules,”
Angew. Chem., Int. Ed. 58, 10635–10638 (2019).
9J. Lather, A. N. K. Thabassum, J. Singh, and J. George, “Cavity catalysis: Modify-
ing linear free-energy relationship under cooperative vibrational strong coupling,”
Chem. Sci. (online 2021).
10T. E. Li, A. Nitzan, and J. E. Subotnik, “Collective vibrational strong coupling
effects on molecular vibrational relaxation and energy transfer: Numerical insights
via cavity molecular dynamics simulations,” Angew. Chem. 133, 15661–15668
(2021).
11M. Du and J. Yuen-Zhou, “Can dark states explain vibropolaritonic chemistry?,”
arXiv:2104.07214 (2021).
12X. Li, A. Mandal, and P. Huo, “Cavity frequency-dependent theory for
vibrational polariton chemistry,” Nat. Commun. 12, 1315 (2021).
13C. Climent and J. Feist, “On the SN2 reactions modified in vibrational strong
coupling experiments: Reaction mechanisms and vibrational mode assignments,”
Phys. Chem. Chem. Phys. 22, 23545–23552 (2020).
14M. Du, J. A. Campos-Gonzalez-Angulo, and J. Yuen-Zhou, “Nonequilibrium
effects of cavity leakage and vibrational dissipation in thermally-activated
polariton chemistry,” J. Chem. Phys. 154, 084108 (2021).
15T. E. Li, A. Nitzan, and J. E. Subotnik, “On the origin of ground-state vacuum-
field catalysis: Equilibrium consideration,” J. Chem. Phys. 152, 234107 (2020).
16C. Schafer, J. Flick, E. Ronca, P. Narang, and A. Rubio, “Shining light on
the microscopic resonant mechanism responsible for cavity-mediated chemical
reactivity,” arXiv:2104.12429 (2021).
17P.-Y. Yang and J. Cao, “Quantum effects in chemical reactions under polaritonic
vibrational strong coupling,” J. Phys. Chem. Lett. 12, 9531–9538 (2021).
18D. S. Wang, T. Neuman, S. F. Yelin, and J. Flick, “Cavity-modified unimolec-
ular dissociation reactions via intramolecular vibrational energy redistribution,”
arXiv:2109.06631 (2021).
19J. A. Campos-Gonzalez-Angulo and J. Yuen-Zhou, “Polaritonic normal modes
in transition state theory,” J. Chem. Phys. 152, 161101 (2020).
20X. Li, A. Mandal, and P. Huo, “Theory of mode-selective chemistry through
polaritonic vibrational strong coupling,” J. Phys. Chem. Lett. 12, 6974–6982
(2021).
21J. Galego, C. Climent, F. J. Garcia-Vidal, and J. Feist, “Cavity Casimir-Polder
forces and their effects in ground-state chemical reactivity,” Phys. Rev. X 9, 021057
(2019).

22J. A. Campos-Gonzalez-Angulo, R. F. Ribeiro, and J. Yuen-Zhou, “Resonant
catalysis of thermally activated chemical reactions with vibrational polaritons,”
Nat. Commun. 10, 4685 (2019).
23H. Hiura, A. Shalabney, and J. George, “A reaction kinetic model for vacuum-
field catalysis based on vibrational light-matter coupling,” chemRxiv:9275777.v1
(2019).
24E. A. Power and S. Zienau, “Coulomb gauge in non-relativistic quantum electro-
dynamics and the shape of spectral lines,” Philos. Trans. R. Soc. London, Ser. A
251, 427–454 (1959).
25C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Photons and Atoms:
Introduction to Quantum Electrodynamics (John Wiley & Sons, Inc., Hoboken,
1989).
26V. Rokaj, D. M. Welakuh, M. Ruggenthaler, and A. Rubio, “Light–matter inter-
action in the long-wavelength limit: No ground-state without dipole self-energy,”
J. Phys. B: At., Mol. Opt. Phys. 51, 034005 (2018).
27C. Schäfer, M. Ruggenthaler, V. Rokaj, and A. Rubio, “Relevance of
the quadratic diamagnetic and self-polarization terms in cavity quantum
electrodynamics,” ACS Photonics 7, 975–990 (2020).
28M. A. D. Taylor, A. Mandal, W. Zhou, and P. Huo, “Resolution of gauge
ambiguities in molecular cavity quantum electrodynamics,” Phys. Rev. Lett. 125,
123602 (2020).
29D. D. Bernardis, P. Pilar, T. Jaako, S. D. Liberato, and P. Rabl, “Breakdown of
gauge invariance in ultrastrong-coupling cavity QED,” Phys. Rev. A 98, 053819
(2018).
30M. Lilichenko and D. V. Matyushov, “Control of electron transfer rates in liquid
crystalline media,” J. Phys. Chem. B 107, 1937–1940 (2003).
31T. Kato, M. Yoshio, T. Ichikawa, B. Soberats, H. Ohno, and M. Funahashi,
“Transport of ions and electrons in nanostructured liquid crystals,” Nat. Rev.
Mater. 2, 17001 (2017).
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