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ABSTRACT
We derive the L-mean-field Ehrenfest (MFE) method to incorporate Lindblad jump operator dynamics into the MFE approach. We map the
density matrix evolution of Lindblad dynamics onto pure state coefficients using trajectory averages. We use simple assumptions to construct
the L-MFE method that satisfies this exact mapping. This establishes a method that uses independent trajectories that exactly reproduce
Lindblad decay dynamics using a wavefunction description, with deterministic changes of the magnitudes of the quantum expansion coeffi-
cients, while only adding on a stochastic phase. We further demonstrate that when including nuclei in the Ehrenfest dynamics, the L-MFE
method gives semi-quantitatively accurate results, with the accuracy limited by the accuracy of the approximations present in the semiclassi-
cal MFE approach. This work provides a general framework to incorporate Lindblad dynamics into semiclassical or mixed quantum-classical
simulations.
Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0099922

I. INTRODUCTION

Accurately and efficiently simulating the quantum dynamics
of an open quantum system remains a challenging task in modern
quantum physics and chemical physics due to the unfavorable expo-
nential scaling of the quantum problem. To resolve this challenge,
mixed quantum-classical (MQC) approaches1,2 have been developed
by treating the crucial part of the system as the quantum subsys-
tem and the other parts as classical degrees of freedom (DOFs).
This type of approach is particularly successful for describing
non-adiabatic molecular dynamics that involve electronic–nuclear
interactions, given the fact that the nuclear DOFs are, in general,
anharmonic and their interactions with the electronic DOFs are
non-Markovian, thus rendering many approximate master equa-
tions not directly applicable. One major category of these mixed
quantum-classical methods is surface hopping, most notably Tully’s
fewest-switches surface hoping approach3 and several later addi-
tions to this method.1,4,5 Another major category is the mean-field
Ehrenfest (MFE) approach6 or, more generally, semiclassical map-
ping approaches based on the Meyer–Miller mapping formalism.7–9

All of these approaches explicitly propagate the classical DOFs

and capture their influence on the quantum DOFs through the
parametric dependence of the quantum equations of motion (EOM)
on the classical trajectories.

At the same time, the quantum subsystem, in principle, can also
interact with other environmental DOFs. Examples of these inter-
acting environmental DOFs include the interaction of the electro-
magnetic field with molecules that causes spontaneous emission10–12

and far-field electromagnetic modes that couple to a quantized radi-
ation mode inside an optical cavity that causes photon leakage.13–17

It is often desirable to implicitly capture the environmental influ-
ence on the dynamics and avoid simulating these environmental
DOFs explicitly. Another example is the presence of high fre-
quency vibrations in molecules18–20 that are essentially Markovian
for the subsystem dynamics. These high frequency vibrations, how-
ever, cause difficulties for MQC simulations due to the inadequate
description of them using classical trajectories.18,19 A number of
approaches seek to phenomenologically incorporate these effects of
population decay from a higher energy state to a lower energy state
through an imaginary Hamiltonian approach,15,21–26 incorporating
ad hoc first-order decay processes27–29 or a posteriori probabilistic
collapse into the ground state.30 These approaches do not capture the
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full nature of the decay dynamics as they generally do not describe
the dynamics of the ground state at the wavefunction level or do
not account for proper decoherence processes during the population
decay dynamics.

When a Markovian approximation of the system–environment
interaction is valid, the Lindblad master equation31,32 offers the
most general and quantum mechanically valid description of an
open system’s quantum dynamics, as it guarantees the positivity
and preserves the trace of the reduced density matrix.31,32 Thus, it
is ideal to use this computationally efficient and analytically sim-
ple Lindblad master equation to describe the influence of those
Markovian environmental DOFs on the quantum subsystem while
simultaneously using the MQC approximation to incorporate the
influence of the anharmonic, non-Markovian nuclear DOFs on the
quantum subsystem. Indeed, the density matrix hybrid method,18–20

which is based on this idea, has been developed recently to study
non-adiabatic dynamics by combining MQC methods and master
equation approaches. However, solving the Lindblad master equa-
tion with many states in the quantum system is computationally
challenging due to the need to propagate the density matrix in the
Liouville space.

To reduce this unfavorable scaling related to density matrix
propagation in the Liouville space, one can equivalently describe
dynamics as a stochastic wavefunction in the open system’s Hilbert
space that exactly reproduces the reduced density matrix of the
open system, thus reducing the cost of solving the same dynamics
by utilizing an ensemble of trajectories in the Hilbert space. This
is referred to as the unraveling of the master equation.33,34 It is
well known that the Lindblad mater equation can be equivalently
expressed as the stochastic Schrödinger equation (SSE)35–37 with
jump processes that captures the projective action of the environ-
ment on the system, which randomly collapses the system wave-
function into a pure system state. Through the trajectory average
of a large number of realizations of the jump trajectories, the SSE
generates identical reduced density matrix dynamics as the Lind-
blad master equation. The SSE approach has also been combined
with mixed quantum-classical (MQC) approaches38–40 to describe
both Markovian and non-Markovian environments. However, when
combining the SSE with MQC approaches,40 the large fluctuations
in the population of the system induces a large change of nuclear
forces, sometimes causing numerical instability for the dynamics
propagation.40 The Ehrenfest + R method10,11 was recently devel-
oped to simulate the electronic quantum subsystem coupled to the
classical electromagnetic field in order to accurately describe sponta-
neous emission processes. It effectively captures Lindblad dynamics
with a deterministic change of the magnitude of the quantum coef-
ficients and stochastic changes of the phases. The Ehrenfest + R
method,10 however, cannot exactly reproduce the Lindblad mas-
ter equation due to a specific choice of the off-diagonal decay
rate.

In this paper, we develop a general framework for simulat-
ing Lindblad-type dynamics with a wavefunction description. As
opposed to the SSE approaches that stochastically change both
the magnitudes and the phases of the quantum expansion coeffi-
cients, our new method only stochastically changes the phases of
the expansion coefficients and exactly reproduces the jump operator
dynamics of the Lindblad master equation. In particular, we give the
derivation of an independent trajectory-based method to propagate

the coefficients of the MFE method that fully agrees with Lind-
blad dynamics. The coefficient-propagation method derived using
this framework is inspired by the Ehrenfest + R method;10–12,41,42

however, our approach exactly recovers Lindblad dynamics, whereas
the Ehrenfest + R approach does not. Additionally, we derive a
simple fix to the approximations present in the Ehrenfest + R
method and give rigorous justifications for particular algorithmic
choices. Our wavefunction description of Lindblad dynamics can
be seamlessly integrated into mixed quantum-classical methods that
simulate coupled electronic–nuclear dynamics, such as the mean-
field Ehrenfest approach, and we refer to this particular approach
as the L-MFE method. We have tested the accuracy, efficiency,
and robustness of the L-MFE method through numerical simula-
tions. We envision that our work will provide a general framework
for future theoretical work into incorporating Lindblad dynam-
ics into more accurate semiclassical and mixed quantum-classical
approaches.8,43–48

II. THEORETICAL BACKGROUND
In order to clearly understand the assumptions underpinning

the method that incorporates Lindblad dynamics into MFE and to
give a framework for deriving similar methods for other semiclassi-
cal approaches, we discuss the theoretical background of the Lind-
blad master equation, the MFE approach, and their combination in
the density matrix form.

The total Hamiltonian of a system plus its environment can be
written as

ĤT = ĤS ⊗ ÎE + ÎS ⊗ ĤE + ĤI, (1)

where ĤS is the system Hamiltonian, ÎS is the identity in the sys-
tem Hilbert space HS, ĤE is the environment Hamiltonian, ÎE
is the identity in the environment Hilbert space HE, and ĤI is
the interaction Hamiltonian between the system and the environ-
ment. Note that the partitioning of the system and environment is
not unique. Any part of the total system that we do not want to
explicitly simulate10 or is difficult to simulate can be treated as the
environment.18

The time evolution of the density matrix ρ̂T describing a quan-
tum state of the entire system plus the environment is governed by
the following quantum Liouville equation:

dρ̂T

dt
≡ LT[ρ̂T] = −

i
h̵
[ĤT, ρ̂T], (2)

where LT[⋅] is the Liouvillian superoperator that acts on operators
and [⋅, ⋅] is the commutator between two operators.

When the quantum system of interest interacts with a large
environment, the dynamics of the composite system and environ-
ment is generally too complicated and computationally expensive to
keep track of in full detail. Instead, the dynamics of the system alone
can be tracked using the reduced density matrix ρ̂S [associated with
ĤS in Eq. (1)] defined as follows:

ρ̂S(t) = TrE[ρ̂T(t)], (3)

where TrE[ρ̂T(t)] = ∑i⟨iE∣ρ̂T(t)∣iE⟩ is the partial trace over the
Hilbert space of the environment with basis {∣iE⟩}.
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For a closed quantum system (isolated system) with no entan-
glement or interaction with the environment [ĤI = 0 in Eq. (1)], the
total density matrix can be factorized as ρ̂T = ρ̂S ⊗ ρ̂E, and the quan-
tum Liouville equation for the reduced density matrix of the system
is expressed as

dρ̂S

dt
= −

i
h̵
[ĤS, ρ̂S]. (4)

Likewise, the reduced density matrix of the environment ρ̂E for
a closed quantum system also satisfies its own quantum Liouville
equation as dρ̂E/dt = − i

h̵ [ĤE, ρ̂E].
When there are explicit system–environment interactions

(ĤI ≠ 0), however, the dynamics of the reduced density matrix of
the system ρ̂S(t) can no longer be described by the unitary evolu-
tion of Eq. (4). An exact calculation of ρ̂S(t) could be performed
using Eq. (3) if ρ̂T(t) is fully known, but this is generally infeasible
to obtain due to the large number of environmental DOFs. Approx-
imations of the environment and system–environment interactions
can be made to calculate ρ̂S(t) under certain conditions.

In situations where there are many system DOFs, further
approximations must be made to calculate ρ̂S(t). A common
approach when there are several nuclear DOFs present in a molecu-
lar system is to separate the system into a classical subsystem and a
quantum subsystem. The corresponding system Hamiltonian ĤS in
this case is

ĤS = ÎQ ⊗ ĤC + ĤQ ⊗ ÎC + ĤQC, (5)

where the quantum subsystem belonging to the Hilbert space HQ,
with Hamiltonian ĤQ and identity ÎQ, and the classical subsystem
(typically nuclear DOF) belonging to the Hilbert space HC, with
Hamiltonian ĤC and identity ÎC, interact through ĤQC. In reac-
tive molecular systems, the Hamiltonian ĤC is usually anharmonic
and cannot easily be directly considered as ĤE. When possible,
the system dynamics of Eq. (5) can be evaluated fully quantum
mechanically; however, when the classical subsystem is too large,
the semiclassical approximation can be made. Under the semiclas-
sical approximation, the classical subsystem evolves using classical
mechanics, while the quantum subsystem evolves using quantum
mechanics.

For molecular quantum dynamics, we consider the model sys-
tem Hamiltonian that contains diabatic electronic states {∣ψa⟩}

(defining the quantum subsystem Hilbert space HQ) and nuclear
DOFs R (defining the classical subsystem Hilbert space HC) with the
following form:

ĤS = ÎQ ⊗ T̂R + ÎQ ⊗U0(R̂) +∑
a,b
εab∣ψa⟩⟨ψb∣⊗ ÎC

+∑
a,b
∣ψa⟩⟨ψb∣⊗ Vab(R̂), (6)

where T̂R is the kinetic energy of the nuclear DOFs, U0(R̂) is
the state independent potential, εab = ⟨ψa∣ĤQ∣ψb⟩ is a matrix ele-
ment of the diabatic quantum subsystem Hamiltonian, and Vab(R̂)
= ⟨ψa∣ĤQC∣ψb⟩ is a state dependent potential. Thus, in this model, we
have

ĤC = T̂R +U0(R̂), (7a)

ĤQ =∑
a,b
εab∣ψa⟩⟨ψb∣, (7b)

ĤQC =∑
a,b
∣ψa⟩⟨ψb∣⊗ Vab(R̂). (7c)

Note that the theoretical approach described here is not lim-
ited to diabatic states. Additionally, the quantum subspace may
include photonic degrees of freedom, as is the case for systems with
polaritons.

The reduced density matrix of the quantum subsystem can be
formally evaluated as

ρ̂(t) = TrC[ρ̂S(t)], (8)

where the trace is performed over the classical nuclear DOFs R
(or whatever the classical DOFs happen to be). When the mixed
quantum-classical approximation is used,1 the nuclear coordinates
evolve classically and the quantum subsystem evolves using the
time-dependent Schrödinger equation governed by ĤQ + ĤQC(R).
In this case, since only states in the quantum subspace are evolved
using quantum mechanics, ρ̂(t) can be computationally evaluated
without performing a trace on the much larger system Hilbert space,
which greatly improves computational efficiency.

A. Lindblad jump operator dynamics
The Lindblad master equation31,32,49–53 is the most general

Markovian description of a system density matrix ρ̂S(t) interacting
with the environment. It forms a dynamical semigroup of reduced
density matrices that are trace-preserving (norm-preserving) and
completely positive for population. The Lindblad master equation
is expressed as

dρ̂S

dt
= −

i
h̵
[ĤS, ρ̂S] +∑

k
Γk(L̂kρ̂SL̂†

k −
1
2
{L̂†

k L̂k, ρ̂S})

≡ LĤ[ρ̂S] +∑
k
LL̂k
[ρ̂S], (9)

where L̂k is a Lindblad jump operator that imparts the impact of the
environment onto the system with interaction strength Γk (with a
unit of rate or inverse time) and {Â, B̂} = ÂB̂ + B̂Â represents the
anti-commutator. The superoperatorLĤ[⋅] is the part of the Liouvil-
lian that describes the Hermitian dynamics of the system governed
by ĤS defined as

LĤ[ρ̂S] = −
i
h̵
[ĤS, ρ̂S], (10)

and LL̂k
[⋅] is the part of the Liouvillian that describes the

non-Hermitian Lindbladian dynamics associated with jump
operator L̂k,

LL̂k
[ρ̂S] = Γk(L̂kρ̂SL̂†

k −
1
2
{L̂†

k L̂k, ρ̂S}), (11)

governed by the approximations of ĤE and ĤI during the derivation
of the Lindblad master equation.31 The sum ∑kLL̂k

[ρ̂S] is some-
times referred to as the “dissipator.” The Lindblad master equation
provides a dynamical map for ρ̂S that forms a dynamical semi-
group with generator LĤ +∑kLL̂k

. The Lindblad master equation
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in Eq. (9) can also be derived through the full quantum dynam-
ics of ĤT by assuming weak system–environment interactions, the
Born–Markov approximation, and the secular approximation.

In this work, we consider only a single decay channel char-
acterized by the jump operator L̂S in the system Hilbert space
HS (which the system Hamiltonian ĤS = ĤC + ĤQ + ĤQC belongs
to) and interaction strength Γ. This leads to the Lindblad master
equation as follows:

dρ̂S

dt
= −

i
h̵
[ĤS, ρ̂S] + Γ(L̂Sρ̂SL̂†

S −
1
2
{L̂†

S L̂S, ρ̂S}). (12)

One of the most commonly used jump operators corresponds to a
transition from one state to another state in the quantum subsys-
tem. For example, for a transition from state ∣ψ1⟩ of the quantum
subsystem to state ∣ψ0⟩ of the quantum subsystem with interaction
strength Γ, the system Lindblad jump operator is

L̂S = ∣ψ0⟩⟨ψ1∣⊗ ÎC = L̂⊗ ÎC, (13)

and the jump operator L̂ only acts on the quantum DOFs in the sub-
space HQ. The above jump operator corresponds to a transition in
the quantum subspace HQ with no impact on the classical (such as
nuclear) subspace HC. We can represent this jump operator L̂S as
well as the system Hamiltonian ĤS in a convenient basis ∣ψa⟩⊗ ∣χν⟩,
where ∣ψa⟩ is the diabatic basis for the quantum subsystem and ∣χν⟩
is the discrete variable representation (DVR) basis for the classical
subsystem.

B. Mean-field Ehrenfest approach
The mean-field Ehrenfest (MFE) approach is a semiclassical,

mixed quantum-classical dynamics approach that simultaneously
evolves a quantum subsystem and a classical subsystem. Multi-
ple classical trajectories are evolved such that their distribution
through time can be tracked to estimate, e.g., the time evolution of
the probability density of the wavefunction that the classical sub-
system is approximating. For the electronic–nuclear dynamics of
molecules, the electrons (or electrons and photons) are treated quan-
tum mechanically, while the nuclei are treated classically such that
the distribution of the classical nuclear trajectories estimates the
probability density of the nuclear wavefunction through time. The
trajectory average of the electronic wavefunction is used to compute
quantum estimators, such as the elements of the electronic density
matrix.

The MFE approach treats the electronic–nuclear dynamics
such that each nuclear trajectory has a corresponding electronic
wavefunction assigned to it. The nuclear coordinates parameterize
the electronic Hamiltonian that evolves the electronic wavefunction
at each time step, while the coefficients of the electronic wavefunc-
tion generate a mean-field potential that exerts a classical force on
the corresponding nuclear trajectory at each time step.

For the Hamiltonian ĤS [Eq. (5)], the time dependent quantum
state vector in the diabatic representation is expressed as

∣Ψξ(t)⟩ =∑
a

ca,ξ(t)∣ψa⟩, (14)

where {∣ψa⟩} is a diabatic basis (not R-dependent) and {ca,ξ} are
expansion coefficients associated with the ξth nuclear trajectory

Rξ(t). Note that the label of ξ inside ∣Ψξ(t)⟩ indicates its dependence
on trajectory Rξ(t). The trajectory-dependent equation of motion of
the coefficient is

d
dt

ca,ξ = −
i
h̵∑b
(Vab(Rξ) + εab) ⋅ cb,ξ , (15)

where Vab(Rξ) = ⟨ψa∣ĤQC(Rξ)∣ψb⟩ is a matrix element of the
quantum-classical interaction Hamiltonian parameterized by
the nuclear coordinates Rξ(t) and εab is a matrix element of ĤQ.
The nuclear force in the diabatic representation is expressed as

Fξ = −∑
a,b

ca,ξ∇RVab(Rξ)c
∗
b,ξ , (16)

and the nuclear coordinates evolve according to classical equations
of motion with the above force. More details on the derivation
and implementation of the MFE approach can be found in the
literature.6,54–57

The MFE approach can also be equivalently written down in
terms of the reduced density matrix of the quantum subsystem
[Eq. (8)] as follows:

d
dt
ρ̂ξ = −

i
h̵
[ĤQ + ĤQC(Rξ), ρ̂ξ], (17)

where ρ̂ξ is the reduced density matrix operator in the quantum sub-
space [defined in Eq. (8)] associated with the ξth independent nuclear
trajectory Rξ(t). More explicitly, the MFE reduced density matrix
EOM and nuclear force are

d
dt
ρab,ξ = −

i
h̵∑c
((Vac(Rξ) + εac)ρcb,ξ) − ρac,ξ(Vcb(Rξ) + εcb), (18)

Fξ = −∑
a,b
ρab,ξ∇RVab(Rξ). (19)

The estimator of the reduced density matrix elements ρab(t)
= ⟨ψa∣ρ̂(t)∣ψb⟩ can be evaluated through averaging the Ehrenfest
trajectories as follows:

ρab(t) =
1
N

N

∑
ξ=1

ρab,ξ(t), (20)

where N is the total number of trajectories used in the MQC
description.

C. Ehrenfest approach combined with Lindblad
dynamics

When the nuclear DOFs R are treated as classical DOFs under
the mixed quantum-classical approximation [through independent
trajectories R(t) instead of basis {∣χν⟩}], the Lindblad master equa-
tion can still be used to describe the evolution of the quantum
subsystem of ρ̂ under the MFE approximation as follows:

dρ̂
dt
= −

i
h̵
[ĤQ + ĤQC(R), ρ̂] +LL̂[ρ̂], (21)

where the motion of R is governed by the specific mixed quantum-
classical approximation [governed by the mean-field force in

J. Chem. Phys. 157, 064101 (2022); doi: 10.1063/5.0099922 157, 064101-4

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

Eq. (19) for MFE], and the Lindblad superoperator LL̂[⋅] applied in
the quantum subspace HQ is expressed as follows:

LL̂[ρ̂] = Γ ⋅ (L̂ρ̂L̂ †
−

1
2
{L̂ †L̂, ρ̂}). (22)

Equation (21) can be viewed as taking the mixed quantum-classical
approximation on − i

h̵ [ĤS, ρ̂S] in Eq. (12) and then tracing out the
classical DOFs R. Equation (21) can be viewed as a special case of the
recently developed density matrix hybrid method18–20 that combines
MQC methods and master equation approaches, where the master
equation is chosen to be Lindblad dynamics.

The single jump operator that we consider in this paper is the
one that causes transitions from state ∣1⟩ to state ∣0⟩ (of the quantum
subsystem HQ) as

L̂ = ∣ψ0⟩⟨ψ1∣ ≡ ∣0⟩⟨1∣, (23)

where the corresponding system jump operator L̂S (in the system
Hilbert space HS) is expressed in Eq. (13). The corresponding super-
operator that describes the Lindbladian jump dynamics [based on
Eq. (22)] acting on the reduced density matrix of the quantum
subsystem is then

LL̂[ρ̂] =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Γρ11 −
Γ
2
ρ01 0 0 . . .

−
Γ
2
ρ10 −Γρ11 −

Γ
2
ρ12 −

Γ
2
ρ13 . . .

0 −
Γ
2
ρ21 0 0 . . .

0 −
Γ
2
ρ31 0 0 . . .

⋮ ⋮ ⋮ ⋮
. . .

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (24)

From Eq. (24), it can be seen that the jump operator L̂ = ∣0⟩⟨1∣ causes
the population of state ∣1⟩ to decay with a rate of Γ, state ∣0⟩ to
gain the population lost by state ∣1⟩, and state ∣1⟩ to decohere from
every other state with a rate of Γ

2 . This is an important feature of the
Lindblad dynamics.

To better understand the dynamical picture, it is convenient to
look at the superoperator acting on the reduced density matrix of
only states ∣0⟩ and ∣1⟩ as follows:

LL̂

⎡
⎢
⎢
⎢
⎢
⎢
⎣

ρ00 ρ01

ρ10 ρ11

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Γρ11 −
Γ
2
ρ01

−
Γ
2
ρ10 −Γρ11

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (25)

In this simplified picture, considering state ∣1⟩ to be the excited
state and state ∣0⟩ to be the ground state, the jump operator L̂ = ∣0⟩⟨1∣
causes the excited state to decay to the ground state and both excited
and ground states to decohere from each other. When ĤQ = ĤQC = 0
and no other jump operators have non-zero interaction strength, the
time evolution of the reduced density matrix [in Eq. (25)] can be
analytically expressed as

eL L̂ t
⎡
⎢
⎢
⎢
⎢
⎢
⎣

ρ00 ρ01

ρ10 ρ11

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

ρ00 + (1 − e−Γt
)ρ11 e−Γt/2ρ01

e−Γt/2ρ10 e−Γtρ11

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (26)

From Eq. (26), it can be seen that the jump operator L̂ = ∣0⟩⟨1∣
causes exponential decay of the excited state to the ground state
with a rate of Γ and exponential decay of the excited-ground coher-
ence with a rate of Γ/2. This dynamical picture approximately
corresponds to many physical phenomena, such as spontaneous
emission10,11 and photonic cavity loss when a single decay channel
dominates.14,15

Expressing the MFE approach in the density matrix form18–20

[Eq. (17)] allows for Lindblad dynamics to be implemented in a
straightforward manner. This involves performing MFE dynamics
in the Liouville space where each element ∣ψa⟩⟨ψb∣ is now treated
as a basis vector. Equations (19) and (21) describe the nuclear force
and equation of motion of the density matrix elements, respectively.
However, this density matrix formalism of MFE requires K 2 den-
sity matrix elements to be dynamically updated for a dimension
K of the original quantum subsystem Hilbert space HQ, with a
formal scaling in the range of N ⋅K 3 to N ⋅K 4 in terms of com-
putational cost,33 where N is the number of trajectories used to
perform the MFE part of the Liouvillian in Eq. (21). The coefficient
formalism MFE [Eq. (14)], on the other hand, only requires K coef-
ficients to be dynamically updated, with a formal cost of N ⋅K 2.
Due to the numerically favorable scaling of a wavefunction based
approach, together with the consideration that the trajectory aver-
age is required anyway in performing the MQC dynamics governed
by Eq. (15), we choose to incorporate Lindblad dynamics into the
regular coefficient-based approach of MFE. This requires a formu-
lation of Lindblad dynamics in a coefficient-based formalism, which
is derived in Sec. III.

III. THEORETICAL APPROACH
A. Independent trajectory-based solution
of Lindblad dynamics in the Hilbert space

Consider the following short time propagation, from t to t + dt,
of the reduced density operator ρ̂ [Eq. (8)] of a K ≥ 2 level system
evolving under the dynamics of the quantum subsystem Hamilto-
nian Ĥ = ĤQ + ĤQC(R) and a single non-zero Lindblad jump opera-
tor L̂ = ∣0⟩⟨1∣. For a small dt, the time evolution can be approximated
as

ρ̂(t + dt) = eL dt
[ρ̂(t)] ≈ eL Ĥ dteL L̂ dt

[ρ̂(t)], (27)

such that the jump operator evolution is applied separately from the
Hamiltonian evolution.

The dynamics of the reduced density matrix elements in the
subspace of {∣0⟩, ∣1⟩}, governed by the jump operator L̂ [as described
in Eq. (26)], are expressed as follows:

ρ11(t + dt) = e−Γdtρ11(t), (28a)

ρ00(t + dt) = ρ00(t) + (1 − e−Γdt
)ρ11(t), (28b)

ρ01(t + dt) = e−Γdt/2ρ01(t), (28c)

ρ10(t + dt) = e−Γdt/2ρ10(t). (28d)

Furthermore, for the coherences that involve states ∣ j⟩ ∉ {∣0⟩, ∣1⟩}
due to the influence of the jump operator L̂, the following equations
hold:
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ρj1(t + dt) = e−Γdt/2ρj1(t), (29a)

ρ1j(t + dt) = e−Γdt/2ρ1j(t), (29b)

ρj0(t + dt) = ρj0(t), (29c)

ρ0j(t + dt) = ρ0j(t), (29d)

due to the matrix elements of Eq. (24) that involve states {∣ j⟩}. The
equation of motion for the coefficients {ca,ξ(t)} governed by the
evolution of ĤQ + ĤQC [or eL Ĥ dt in Eq. (27)] can be computed based
on the simple MFE approach in Eq. (15). The rest of the derivation
will be focused on updating the coefficients to match these jump
operator dynamics, separate from any Hamiltonian dynamics [as
Eq. (27) allows us to do].

In order to achieve the same Lindblad dynamics from a mixed
quantum-classical method, such as MFE, the coefficients c1 and c0
(and {cj}) must be evolved in a way such that their time evolution
corresponds to Eq. (28a) through Eq. (29d). The density matrix ele-
ments of Eq. (28a) through Eq. (29d) cannot, however, be directly
replaced with the usual products of the coefficients c1 and c0 (and
{cj}). This is because this density matrix, in general, represents a
mixed quantum state due to the fact that Lindblad dynamics describe
an interaction with an external environment. The density matrix of a
mixed quantum state cannot, in general, be represented by the den-
sity matrix of a single pure state as c0∣ψ0⟩ + c1∣ψ1⟩. Thus, alternative
approaches must be used to perform the time evolution of c1 and c0
with a combined result that satisfies Eq. (28a) through Eq. (29d).

To this end, we take advantage of the existing multiple indepen-
dent trajectories that are already present in mixed quantum-classical
or semiclassical methods. We propose to evolve multiple indepen-
dent trajectories and use the trajectory average of the electronic
coefficients of these trajectories to compute the reduced density
matrix elements at each time step, with the estimator of the reduced
density matrix elements evaluated as

ρab(t) =
1
N

N

∑
ξ=1

ρab,ξ(t) =
1
N

N

∑
ξ=1

ca,ξ(t)c
∗
b,ξ(t), (30)

where ca,ξ and cb,ξ are the coefficients of states ∣a⟩ and ∣b⟩,
respectively, for trajectory Rξ(t).

In addition, we introduce random variation of the time evolved
coefficients as

ca,ξ(t + dt) = ηa,ξ ⋅ ca,ξ(t) ≡ eiθa,ξ ⋅ χa,ξ ⋅ ca,ξ(t), (31)

where {ηa,ξ} are random complex variables with a certain probabil-
ity distribution yet to be determined, such that the expectation value
of the estimator of the time evolved reduced density matrix elements
will exactly correspond to Eqs. (28a)–(29d). Furthermore, {θa,ξ} are
the phases and {χa,ξ} are the magnitudes of the complex variables.

Thus, the estimator of the time evolved reduced density matrix
elements is

ρab(t + dt) =
1
N

N

∑
ξ=1

ca,ξ(t + dt)c∗b,ξ(t + dt)

=
1
N

N

∑
ξ=1

ηa,ξ ⋅ ca,ξ(t) ⋅ η
∗
b,ξ ⋅ c

∗
b,ξ(t). (32)

To determine the detailed properties of the random variables {ηa,ξ},
we calculate the expectation value of functions of these random
variables over their probability distribution P(η) such that a given
function f (η) has the following expectation value:

⟨ f (η)⟩ = ∫ f (η)P(η)dη, (33)

where P(η) is the joint probability distribution of all random
variables η.

Performing the above expectation value on Eq. (32), we have

⟨ρab(t + dt)⟩ = ⟨
1
N

N

∑
ξ=1

ca,ξ(t + dt)c∗b,ξ(t + dt)⟩. (34)

Under the converging limit where the number of trajectories tends
to infinity, the estimator of the time evolved reduced density matrix
elements equals its expectation value as follows:

lim
N→∞

ρab(t + dt) = lim
N→∞
⟨ρab(t + dt)⟩. (35)

Thus, we propose to relate the estimator ρab(t + dt) in Eq. (34)
and the estimator ρab(t) in Eq. (30) through Lindblad dynamics
[Eqs. (28a)–(29d)] such that

⟨ρab(t + dt)⟩ = eL L̂ dt
[ρ̂(t)]ab, (36)

where eL L̂ dt
[ρ̂(t)] generates the Lindblad jump dynamics found in

Eqs. (28a)–(29d).
To this end, we establish the following equations to govern the

time evolution of the coefficients:

⟨
1
N

N

∑
ξ=1
∣c1,ξ(t + dt)∣2⟩ = e−Γdt 1

N

N

∑
ξ=1
∣c1,ξ(t)∣

2, (37a)

⟨
1
N

N

∑
ξ=1
∣c0,ξ(t + dt)∣2⟩ =

1
N

N

∑
ξ=1
∣c0,ξ(t)∣

2
+ (1 − e−Γdt

)
1
N

N

∑
ξ=1
∣c1,ξ(t)∣

2,

(37b)

⟨
1
N

N

∑
ξ=1

c0,ξ(t + dt)c∗1,ξ(t + dt)⟩ = e−Γdt/2 1
N

N

∑
ξ=1

c0,ξ(t)c
∗
1,ξ(t), (37c)

which match Eqs. (28a)–(29d). For states ∣ j⟩ ∉ {∣0⟩, ∣1⟩}, we propose
that

⟨
1
N

N

∑
ξ=1

cj,ξ(t + dt)c∗1,ξ(t + dt)⟩ = e−Γdt/2 1
N

N

∑
ξ=1

cj,ξ(t)c
∗
1,ξ(t), (38a)

⟨
1
N

N

∑
ξ=1

cj,ξ(t + dt)c∗0,ξ(t + dt)⟩ =
1
N

N

∑
ξ=1

cj,ξ(t)c
∗
0,ξ(t), (38b)

which match Eqs. (29a)–(29d). For simplicity, we assume that
the coefficients {cj,ξ} for ∣ j⟩ ∉ {∣0⟩, ∣1⟩} are not changed by the
Lindbladian time evolution such that

cj,ξ(t + dt) = cj,ξ(t), (39)
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and all of the decoherence dynamics in Eqs. (29a)–(29c) will be gov-
erned by the changes in c1,ξ and c0,ξ . Ultimately, Eq. (39) only makes
the choice that no arbitrary global phase is added to all coefficients
since any other modification to the cj,ξ coefficients, besides adding
a global phase, would incorrectly alter some of the reduced density
matrix elements involving the {∣ j⟩} states.

The time evolved coefficients c1,ξ(t + dt) and c0,ξ(t + dt), based
on Eq. (31), can be written as a product of the initial coefficient times
a complex number,

c1,ξ(t + dt) = eiθ1,ξχ1,ξc1,ξ(t), χ1,ξ ≥ 0, (40a)

c0,ξ(t + dt) = eiθ0,ξχ0,ξc0,ξ(t), χ0,ξ ≥ 0, (40b)

where θ1,ξ and θ0,ξ are (potentially random) phases and χ1,ξ and
χ0,ξ are (potentially random) magnitudes. For the special case that
cl,ξ(t) = 0 and cl,ξ(t + dt) ≠ 0, l ∈ {0, 1}, the magnitude χl,ξ can be
written as some finite magnitude divided by cl,ξ(t) such that cl,ξ
(t + dt) is non-zero and well defined.

When Γdt = 0, the density matrices do not change from one
time step to another. Accordingly, when Γdt = 0, the coefficients
of the trajectories c1,ξ and c0,ξ should not change. Thus, we add a
constraint to the coefficient evolution as follows:

lim
Γdt→0

eiθ1,ξχ1,ξ = 1, (41a)

lim
Γdt→0

eiθ0,ξχ0,ξ = 1. (41b)

While there are several possible choices for constructing c1,ξ
(t + dt) and c0,ξ(t + dt) that agree with Eqs. (37a)–(41b), it is impor-
tant to consider how these choices affect the Hamiltonian dynamics
(evolved by eL Ĥ dt) that occur in conjunction with the Lindblad
dynamics. Certain choices of c1,ξ(t + dt) and c0,ξ(t + dt) may cause
the Hamiltonian dynamics to diverge from the results of the exact
Liouvillian dynamics, for example, when they do not conserve the
trace of the density matrix within a trajectory. To avoid this, we add
on an additional constraint to the coefficient evolution that

∣c1,ξ(t + dt)∣2 + ∣c0,ξ(t + dt)∣2 = ∣c1,ξ(t)∣
2
+ ∣c0,ξ(t)∣

2 (42)

such that the trace of the density matrix of each trajectory is
conserved. Equation (42) can be rearranged and combined with
Eq. (40a), resulting in the following equation:

∣c0,ξ(t + dt)∣2 = ∣c0,ξ(t)∣
2
(
∣c0,ξ(t)∣2 + (1 − χ2

1,ξ)∣c1,ξ(t)∣2

∣c0,ξ(t)∣2
), (43)

which can be further expressed as

c0,ξ(t + dt) = eiθ0,ξ c0,ξ(t)

¿
Á
Á
ÁÀ
∣c0,ξ(t)∣2 + (1 − χ2

1,ξ)∣c1,ξ(t)∣2

∣c0,ξ(t)∣2

= eiθ0,ξ c0,ξ(t) ⋅ χ0,ξ. (44)

From Eq. (44), it is now clear that the square root in the first line is
the expression for χ0,ξ ,

χ0,ξ =

¿
Á
Á
ÁÀ
∣c0,ξ(t)∣2 + (1 − χ2

1,ξ)∣c1,ξ(t)∣2

∣c0,ξ(t)∣2
. (45)

To determine the values of the rest of unknown variables in
Eqs. (40a) and (40b), we relate them to the right-hand sides of
Eqs. (37a)–(37c). To begin, the left-hand side of Eq. (37a) can be
rewritten as

⟨
1
N

N

∑
ξ
∣c1,ξ(t + dt)∣2⟩ =

1
N

N

∑
ξ
⟨∣c1,ξ(t + dt)∣2⟩, (46)

due to the linearity of the expectation value [see Eq. (33)]. Taking
the expectation value of Eq. (40a) yields

⟨∣c1,ξ(t + dt)∣2⟩ = ⟨χ2
1,ξ⟩∣c1,ξ(t)∣

2. (47)

Plugging the above expression into the right-hand side of Eq. (46)
and relating this to the right-hand side of Eq. (37a), we have

1
N

N

∑
ξ
⟨χ2

1,ξ⟩∣c1,ξ(t)∣
2
=

1
N

N

∑
ξ

e−Γdt
∣c1,ξ(t)∣

2. (48)

To simplify the analysis, we use the following sufficient
assumption that

⟨χ2
1,ξ⟩ = e−Γdt , (49)

such that Eq. (48) [and thus Eq. (37a)] is satisfied. A similar analysis
of the left-hand side of Eq. (37b) yields

⟨
1
N

N

∑
ξ
∣c0,ξ(t + dt)∣2⟩ =

1
N

N

∑
ξ
⟨∣c0,ξ(t + dt)∣2⟩

=
1
N

N

∑
ξ
(∣c0,ξ(t)∣

2
+ (1 − ⟨χ2

1,ξ⟩)∣c1,ξ(t)∣
2
)

=
1
N

N

∑
ξ
∣c0,ξ(t)∣

2
+ (1 − e−Γdt

)
1
N

N

∑
ξ
∣c1,ξ(t)∣

2,

(50)

where from the first line to the second line of the above equation,
we used Eq. (43), and from the second line to the third line, we used
Eq. (49). Note that the above equation automatically guarantees the
requirement in Eq. (37b).

The left-hand side of Eq. (37c) can similarly be written as

⟨
1
N

N

∑
ξ

c0,ξ(t + dt)c∗1,ξ(t + dt)⟩ =
1
N

N

∑
ξ
⟨c0,ξ(t + dt)c∗1,ξ(t + dt)⟩,

(51)
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where the expectation value can be written as

⟨c0,ξ(t + dt)c∗1,ξ(t + dt)⟩

= c0,ξ(t)c
∗
1,ξ(t)⟨e

iθξχ1,ξ

¿
Á
Á
ÁÀ
∣c0,ξ(t)∣2 + (1 − χ2

1,ξ)∣c1,ξ(t)∣2

∣c0,ξ(t)∣2
⟩,

(52)

where θξ = θ0,ξ − θ1,ξ , and we have used the expression of χ0,ξ
in Eq. (45). The above expectation value can be related to the
right-hand side of Eq. (37c) as

1
N

N

∑
ξ

c0,ξ(t)c
∗
1,ξ(t)⟨e

iθξχ1,ξ

¿
Á
Á
ÁÀ
∣c0,ξ(t)∣2 + (1 − χ2

1,ξ)∣c1,ξ(t)∣2

∣c0,ξ(t)∣2
⟩

=
1
N

N

∑
ξ

c0,ξ(t)c
∗
1,ξ(t)e

−Γdt/2. (53)

We make the assumption that

⟨eiθξχ1,ξ

¿
Á
Á
ÁÀ
∣c0,ξ(t)∣2 + (1 − χ2

1,ξ)∣c1,ξ(t)∣2

∣c0,ξ(t)∣2
⟩ = e−Γdt/2, (54)

such that Eq. (53) [and thus Eq. (37c)] is satisfied.
Although we began with the choice that the coefficients of states

∣1⟩ and ∣0⟩ will each gain random phases [see Eqs. (40a) and (40b)],
the above analysis [up until Eq. (54)] indicates that only the relative
phase θξ = θ0,ξ − θ1,ξ is relevant to correctly describe the decoher-
ence between the two states. Equations (49) and (54) govern how
the (potentially random) variables θξ and χ1,ξ must be selected in
order to obey Eq. (37a) through Eq. (42). To avoid considering joint
probability distributions of dependent random variables, we make
the assumption that

P(θξ , χ1,ξ) = P(θξ) ⋅P(χ1,ξ), (55)

such that θξ and χ1,ξ are independent variables for distribution P(η).
Thus, Eq. (54) can be written as

⟨eiθξ⟩ ⋅ ⟨χ1,ξ

¿
Á
Á
ÁÀ
∣c0,ξ(t)∣2 + (1 − χ2

1,ξ)∣c1,ξ(t)∣2

∣c0,ξ(t)∣2
⟩ = e−Γdt/2. (56)

To further simplify the analysis by reducing the number of random
variables, we make the assumption that

⟨χ1,ξ⟩ = χ1,ξ , (57)

such that χ1,ξ is a constant. Combining the above equation with
Eq. (49) yields ⟨χ2

1,ξ⟩ = χ
2
1,ξ , which means that

χ1,ξ = e−Γdt/2. (58)

This expression of χ1,ξ can be plugged into Eq. (56) to find

⟨eiθξ⟩ =
∣c0,ξ(t)∣

√

∣c0,ξ(t)∣
2
+ (1 − e−Γdt)∣c1,ξ(t)∣

2
. (59)

The right-hand side of Eq. (59) is purely real and is always within
the range 0–1 for Γdt ≥ 0. Thus, there exist distributions of θξ that
satisfy the above equation because the expectation value of eiθξ can
have a magnitude within the range 0–1. To reduce large jumps in
these phase variables, we assume that

P(θξ) =
1

2Δθξ
, −Δθξ ≤ θξ < Δθξ , (60)

such that the probability distribution of the random phase θξ follows
a uniform distribution of width 2Δθξ centered around 0. The expec-
tation value ⟨eiθξ ⟩ can thus be calculated based on the definition in
Eq. (33) and combined with Eq. (59) to find

sin(Δθξ)
Δθξ

=
∣c0,ξ(t)∣

√

∣c0,ξ(t)∣
2
+ (1 − e−Γdt)∣c1,ξ(t)∣

2
. (61)

This means that choosing Δθξ according to Eq. (61) as the bounds
of the uniform probability distribution of θξ will satisfy the expec-
tation value relations in all previous equations. Since Eq. (61) is a
transcendental equation, no general closed form exists for the solu-
tions to Δθξ . To find Δθξ , a numerical interpolation function of the
first positive solution of sin(x) = ax can be pre-computed for the
values 0 ≤ a ≤ 1 and then used during the simulation.

Up to this point, the only unspecified variables are the individ-
ual phases θ0,ξ and θ1,ξ . To determine these variables, Eqs. (38a) and
(38b) can be used. Using the conditions outlined in Eqs. (39) and
(58), the left-hand side of Eq. (38a) can be rewritten as

⟨
1
N

N

∑
ξ

cj,ξ(t + dt)c∗1,ξ(t + dt)⟩ =
1
N

N

∑
ξ

cj,ξ(t)⟨e
−iθ1,ξ⟩e−Γdt/2c∗1,ξ(t),

(62)

which can be related to the right-hand side of Eq. (38a) as

1
N

N

∑
ξ

cj,ξ(t)⟨e
−iθ1,ξ⟩e−Γdt/2c∗1,ξ(t) =

1
N

N

∑
ξ

cj,ξ(t)e
−Γdt/2c∗1,ξ(t). (63)

The sufficient assumption to make the above equation [hence
Eq. (38a)] valid is to require

⟨e−iθ1,ξ⟩ = 1. (64)

Since ⟨e−iθ1,ξ ⟩ can only be equal to 1 if every possible instance of e−iθ1,ξ

is 1, it follows that

θ1,ξ = 0, θξ = θ0,ξ − θ1,ξ = θ0,ξ , (65)

such that only c0,ξ obtains a random phase governed by the dis-
tribution in Eq. (61) and c1,ξ does not. More specifically, Eq. (59)
becomes

⟨e±iθ0,ξ⟩ =
∣c0,ξ(t)∣

√

∣c0,ξ(t)∣
2
+ (1 − e−Γdt)∣c1,ξ(t)∣

2
. (66)

This means that using the information of how state ∣1⟩ decoheres
with other states ∣ j⟩ ∉ {∣0⟩, ∣1⟩} allows us to determine how the
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random phase θξ should be partitioned among θ0,ξ and θ1,ξ . Equa-
tion (64) suggests that there is no need to add additional random
phase to coefficients c1,ξ(t) if one wants to correctly describe the
decoherence dynamics between state ∣1⟩ and ∣ j⟩ (for j ≠ 0, 1) gov-
erned by Lindblad dynamics [Eq. (24)]. The information in Eq. (63)
was omitted when developing the Ehrenfest + R method. Neverthe-
less, the same choice was empirically discovered through the use of
numerical simulations of Ehrenfest + R.10,11

Using a similar analysis of the above procedure for the left-hand
side of Eq. (38b), together with Eqs. (45) and (66), it follows that

⟨
1
N

N

∑
ξ

cj,ξ(t + dt)c∗0,ξ(t + dt)⟩ (67)

=
1
N

N

∑
ξ

cj,ξ(t)c
∗
0,ξ(t)⟨e

−iθ0,ξ⟩⟨χ0,ξ⟩

=
1
N

N

∑
ξ

cj,ξ(t)c
∗
0,ξ(t)

×
∣c0,ξ(t)∣

√

∣c0,ξ(t)∣
2
+ (1 − e−Γdt)∣c1,ξ(t)∣

2

×

√

∣c0,ξ(t)∣
2
+ (1 − e−Γdt)∣c1,ξ(t)∣

2

∣c0,ξ(t)∣

=
1
N

N

∑
ξ

cj,ξ(t)c
∗
0,ξ(t), (68)

which guarantees the right-hand side of Eq. (38b); thus, the choice
of θ1,ξ and θ0,ξ in Eq. (65) satisfies both Eqs. (38a) and (38b).

B. Summary of the L-MFE method
To summarize, we propose to incorporate Lindblad dynamics

by adjusting the quantum expansion coefficients as follows:

T̂ (dt) ⋅ c1,ξ(t) ≡ c1,ξ(t + dt) = e−Γdt/2c1,ξ(t), (69a)

T̂ (dt) ⋅ c0,ξ(t) ≡ c0,ξ(t + dt)

= eiθξ eiφ0
ξ

√

∣c0,ξ(t)∣2 + (1 − e−Γdt)∣c1,ξ(t)∣2, (69b)

T̂ (dt) ⋅ cj,ξ(t) ≡ cj,ξ(t + dt) = cj,ξ(t) (for j ≠ 0, 1), (69c)

where T̂ (dt) is a formal transition operator that propagates the
coefficients as designed, eiφ0

ξ = c0,ξ(t)/∣c0,ξ(t)∣ is the phase factor of
c0,ξ(t), and the random phase θξ is sampled based on a uniform
distribution P(θξ) expressed as

P(θξ) =
1

2Δθξ
, −Δθξ ≤ θξ < Δθξ , (70)

with the width Δθξ determined from the following transcendental
equation:

sin(Δθξ)
Δθξ

=
∣c0,ξ(t)∣

√

∣c0,ξ(t)∣
2
+ (1 − e−Γdt)∣c1,ξ(t)∣

2
. (71)

Thus, we explicitly use the trajectory average to converge to the
expectation value defined in Eq. (33). This is one of the main theoret-
ical results of this paper. Note that when c0,ξ(t) = 0 and c1,ξ(t) ≠ 0,
the random angle θξ added to the ground state is sampled from
−π to π due to Eq. (71), which completely randomizes the phase of
the ground state, which renders the undetermined phase factor eiφ0

ξ

irrelevant.
These effective Lindblad updates of the electronic coefficients

described in Eqs. (69a)–(69c) can be combined with the Ehren-
fest part of the electronic coefficient update described in Eqs. (15)
and (16) to describe the mixed quantum-classical dynamics subject
to a Lindblad type decay. We refer to this approach as the L-MFE
method for the remainder of the paper. The coefficient propagation
of the L-MFE method can be expressed as

c(t + dt) = T̂ (dt/2) ⋅ e−
i
h̵ (Ĥ Q+Ĥ QC)dt

⋅ T̂ (dt/2) ⋅ c(t), (72)

where c(t) is the vector of the quantum coefficients, T̂ describes the
coefficients update due to the jump operator using Eqs. (69a)–(69c),
and e−

i
h̵ (Ĥ Q+Ĥ QC)dt describes the unitary evolution of the coefficients

due the MFE dynamics described in Eq. (15). Note that ĤQC(R)
depends on the nuclear DOFs R, where R(t) evolves based on the
force in Eq. (16). Here, we use a symmetrical Trotter decomposi-
tion in Eq. (72) to reduce error due to a finite time step dt, and we
put the Ehrenfest propagation in the middle because it is computa-
tional expensive (which scales as ∼ K 2) compared to the Lindblad
decay part (denoted by T̂), which only requires the update of two
coefficients c1,ξ(t) and c0,ξ(t).

The L-MFE algorithm outlined in Eq. (72) will, in principle,
generate different results compared to Eq. (21) where the Lindblad
dynamics are propagated deterministically in the Liouville space.
This is because the L-MFE method adds random phases to state ∣0⟩
(for the L̂ = ∣0⟩⟨1∣ jump operator) through T̂ [see Eq. (69b)] for each
individual trajectory. Furthermore, these random phases in c0,ξ(t)
will also influence the magnitude of populations through the cou-
pling term V01(Rξ) + ε01. Thus, L-MFE adds different phases onto
ρ01,ξ (as well as on ρ10,ξ) and generates different populations ρ00,ξ and
ρ11,ξ for each individual trajectory. The LL̂[ρ̂] term in Eq. (21), on
the other hand, causes deterministic changes for the density matrix
elements of all trajectories. Thus, the random phases in L-MFE will
influence the nuclear forces in Eq. (19), and these different nuclear
forces for each trajectory further influence the nuclear motion for
R and eventually back influence the electronic dynamics through
e−

i
h̵ (Ĥ Q+Ĥ QC(R))dt in Eq. (72). Future research will focus on inves-

tigating the difference between Eqs. (21) and (72). Nevertheless,
numerical results obtained for the model systems [Eqs. (76a)–(76h)
and (77)] produce visually identical results using either Eq. (21) or
Eq. (72).

C. Comparison with other stochastic wavefunction
approaches

We want to emphasize the connections and differences between
the current L-MFE method and previous approaches that try to
accomplish Lindblad dynamics through stochastic wavefunction
approaches, such as Monte Carlo wave-function methods35–37,40 and
the Ehrenfest + R approach.10–12,41,42
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The Monte Carlo wavefunction method35,36 expresses
the stochastic time evolution of the system’s wavefunction as
follows:34,58

d∣ψS(t)⟩ = −
i
h̵

Ĥeff∣ψS(t)⟩ ⋅ dt

+ ∑
k
(

√
ΓkL̂k

⟨ψS(t)∣ΓkL̂†
k L̂k∣ψS(t)⟩

− 1)∣ψS(t)⟩ ⋅ dNk, (73)

where Ĥeff = ĤS −
1
2∑kih̵ΓkL̂†

k L̂k is the effective Hamiltonian
that captures the time evolution governed by ĤS and the
−∑kΓk

1
2{L̂

†
k L̂k, ρ̂S} term that describes the population decays

in Eq. (9). Furthermore, the second term on the right-hand side of
Eq. (73) effectively captures the ∑kΓkL̂kρ̂SL̂†

k term in Eq. (9), with
dNk = 0, 1 and ⟨dNk⟩ = Γk⟨ψS(t)∣L̂ †

k L̂ k∣ψS(t)⟩2dt. This term per-
forms a Poisson jump process that captures the projective action of
the environment on the system that randomly collapses the system
wavefunction into a pure system eigenstate. The trajectory average
of Eq. (73) with a large number of realizations (jump trajectories)
generates results identical to ρ̂S(t) described by the Lindblad master
equation in Eq. (9). The equivalence of these two descriptions can
be viewed as the correspondence between the stochastic quantum
state diffusion equation [Eq. (73)] and the deterministic Wigner
Fokker–Planck equation [which can be written in the Lindblad
master equation form of Eq. (9)].59

The L-MFE method, on the other hand, does not col-
lapse trajectories onto a single system state, which avoids large
changes in the magnitudes of the coefficients. Furthermore, the
change in magnitude of the coefficients is deterministic, whereas
the magnitude of the coefficients in the Monte Carlo wavefunc-
tion method is stochastic. Furthermore, the phases of the coeffi-
cients in L-MFE only slightly vary between time steps with no
large jumps. When explicitly considering ĤC + ĤQC, the stochastic
Schrödinger equation approach can encounter numerical instabil-
ities40 due to large changes of the electronic coefficients, whereas
the L-MFE approach provides a stable numerical integration of
the equation of motion due to the small changes of phase in
the coefficients. The L-MFE approach, in addition, can be eas-
ily combined with any mixed quantum-classical or semiclassical
approach.

The Ehrenfest + R method10 was originally developed to sim-
ulate the electronic quantum subsystem coupled to the classical
electromagnetic field in order to accurately describes spontaneous
emission processes. It effectively captures Lindblad dynamics with a
deterministic change of the magnitude of the quantum coefficients
and stochastic changes of the phases. While the L-MFE method
is similar to (and largely inspired by) the Ehrenfest + R method,
there is a key difference between Ehrenfest + R and L-MFE in
the off-diagonal reduced density matrix element decay procedure.
To facilitate the theoretical comparison, we briefly summarize the
Ehrenfest + R method10 in Appendix A.

The Ehrenfest + R approach was derived under the condition
that Γ≪ E, where Γ is the decay rate of the jump operator L̂ and E
is the energy difference between state ∣0⟩ and ∣1⟩ (see Appendix A).
This condition is thus the regime where the Ehrenfest + R approach
can be applied with guaranteed accuracy. The L-MFE method, on

the other hand, does not have any restrictions on the parameter
regimes where it is applicable.

The “+R decay” procedure [see Eq. (A24) through Eq. (A28)]
in Ehrenfest + R was designed to correct the decay of the diagonal
density matrix elements and off-diagonal elements independently,
with the goal that the combined Ehrenfest dynamics and +R decay
dynamics will match the Lindblad decay of the density matrix ele-
ments. However, the procedure to adjust the diagonals of the density
matrix by changing the magnitudes of the corresponding coeffi-
cients also changes the off-diagonal density matrix elements, causing
unintended deviations in the dynamics. The off-diagonal relaxation
decay rate in Ehrenfest + R, which is proposed to be [see Eq. (53) in
Ref. 10]

γR =
Γ
2
(1 − ∣c0,ξ(t)∣

2
+ ∣c1,ξ(t)∣

2
), (74)

does not account for this effect, and thus, the corresponding
dynamics do not fully capture those of Eq. (28a) through Eq. (29d).

To properly account for this effect, the γR rate in Ehrenfest + R
should be modified to be

γ′R =
Γ
2
(1 − ∣c0,ξ(t)∣

2
+ ∣c1,ξ(t)∣

2
) +

1
dt

ln(
∣c0,ξ(t + dt)c1,ξ(t + dt)∣
∣c0,ξ(t)c1,ξ(t)∣

)

(75)

for ∣c0,ξ(t)c1,ξ(t)∣ ≠ 0. The detailed derivation of this expression is
provided in Appendix B. The L-MFE method already accounts for
the effect that modifying the magnitudes of the coefficients has on
the off-diagonals of the density matrix, as shown in Eq. (59). This is
another main theoretical result of the current paper.

Additionally, in the Ehrenfest + R approach, it was numerically
found that adding random phase only to c0,ξ(t + dt) gave the most
accurate results;11 however, these choices lacked a rigorous theoreti-
cal reason for why this should be the case, and it was speculated that
this is because spontaneous emission from states ∣1⟩ to ∣0⟩ should not
affect the coherence of state ∣1⟩ with other states {∣ j⟩}. In contrast,
the analysis in this paper shows that the mathematical reason for
this choice of random phase lies in the fact that the excited state ∣1⟩
decoheres with every other state of the quantum subsystem, while
state ∣0⟩ only decoheres with state ∣1⟩ when L̂ = ∣0⟩⟨1∣. This fact is
derived from applying the Lindbladian LL̂ (with L̂ = ∣0⟩⟨1∣) to the
entire reduced density matrix of K states instead of only the reduced
density matrix of ∣0⟩ and ∣1⟩. While state ∣1⟩ decoheres with every
other state, the decoherence with states {∣ j⟩} is entirely captured by
the reduction of the magnitude of c1,ξ(t + dt) by e−Γdt/2; thus, the
phase of state ∣1⟩ does not need to provide any additional decoher-
ence. In contrast, state ∣0⟩ does not decohere with states {∣ j⟩}, but
the increase in the magnitude of c0,ξ(t + dt) causes an increase in
coherence with states {∣ j⟩}. The role of the random phase applied to
state ∣0⟩, aside from adjusting the coherence with state ∣1⟩, is to add
decoherence to cancel out the increase in coherence with states {∣ j⟩}
due to the increase in the magnitude of c0,ξ(t + dt).

Finally, when ĤQC + ĤC = 0 (no nuclear DOFs present in the
system Hamiltonian), the L-MFE approach in Eq. (72) [or equiva-
lently Eq. (21)] provides identical results as those obtained by solving
Eq. (12), regardless of the choice of dt (as long as it is small enough
to provide a stable integration of − i

h̵ [ĤQ, ρ̂]). This is because in
the L-MFE approach, the decay dynamics are designed to exactly
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match the analytical time evolution of the reduced density matrix
elements. Consequently, if the Hamiltonian is 0 and only jump oper-
ator dynamics are present, the choice of dt for L-MFE could be
arbitrarily large and still give the correct dynamics. On the other
hand, under the same condition when ĤQC + ĤC = 0, the Ehrenfest
+ R approach is only accurate up to first order in dt [see Eqs. (A28)
and (B7)].

To emphasize, Eq. (75) should be used as the expression for γR
when using the Ehrenfest + R method. This will allow for the correct
dissipative dynamics due to the interaction of the electromagnetic
field with matter during spontaneous emission and, consequently,
the correct dynamics of both the quantum matter and classical
electromagnetic subsystems.

IV. MODEL SYSTEMS AND COMPUTATIONAL DETAILS
A. Simple model systems

To assess the accuracy of the L-MFE method, a variety of
models are tested and compared with an exact calculation of the cor-
responding Lindblad dynamics. All of the following simple models
are associated with a single Lindblad jump operator L̂ = ∣0⟩⟨1∣ with
interaction strength Γ = 0.05 a.u. These models are

model 1: ĤQ =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 0

0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, ∣Ψ(0)⟩ = ∣1⟩, (76a)

model 2: ĤQ =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 0

0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, ∣Ψ(0)⟩ =
∣0⟩ + ∣1⟩
√

2
, (76b)

model 3: ĤQ =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 Δ

Δ 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, ∣Ψ(0)⟩ = ∣1⟩, (76c)

model 4: ĤQ =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 Δ

Δ E

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, ∣Ψ(0)⟩ = ∣1⟩, (76d)

model 5: ĤQ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 Δ

0 E 0

Δ 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, ∣Ψ(0)⟩ = ∣1⟩, (76e)

model 6: ĤQ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 Δ Δ

Δ E 0

Δ 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, ∣Ψ(0)⟩ = ∣1⟩, (76f)

model 7: ĤQ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0

0 0 Δ′′

0 Δ′′ 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, ∣Ψ(0)⟩ = ∣2⟩, (76g)

model 8: ĤQ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 Δ′ Δ′

Δ′ E′ 0

Δ′ 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, ∣Ψ(0)⟩ = ∣1⟩, (76h)

where E = 3 eV, Δ = 5 eV, E′ = 1 a.u., Δ′ = 0.2 a.u., and Δ′′ = 3 eV.
The initial conditions ∣Ψ(0)⟩ are also indicated accordingly. For
models 1–8, ĤC + ĤQC = 0, and thus, Eq. (12) is identical to Eq. (21),
and the L-MFE approach in Eq. (72) generates identical results as
Eq. (21).

B. Molecule coupled to a lossy cavity mode
In addition, we consider a photo-isomerization model

(without permanent dipole) coupled to a single optical cavity
mode. The quantum electrodynamics (QED) Hamiltonian for the
molecule–cavity hybrid system is expressed as60

ĤQED = ĤM + h̵ωc(â †â +
1
2
) + h̵gc(â + â †

)(σ̂ †
+ σ̂). (77)

In Eq. (77), ĤM is the molecular Hamiltonian described by a diabatic
model system that undergoes an isomerization reaction,60

ĤM = T̂R + Eg(R)∣g⟩⟨g∣ + Ee(R)∣e⟩⟨e∣. (78)

Here, ∣α⟩ ∈ {∣g⟩, ∣e⟩} represents the electronic ground or excited
state, which are treated as diabatic states in this model, R repre-
sents the reaction coordinate, and T̂R = P̂ 2

/2M is the nuclear kinetic
energy operator associated with R, with nuclear mass M = 550 Da.
The detailed expression of Eα(R) is provided in Appendix C. The
second term in Eq. (77) is the Hamiltonian of the quantized pho-
ton mode inside the cavity with the frequency ωc, and â † and â
are the photon creation and annihilation operators, respectively.
The third term in Eq. (77) describes the molecule–photon coupling
through electric–dipole interactions under the dipole gauge,61 where
σ̂ †
= ∣e⟩⟨g∣ and σ̂ = ∣g⟩⟨e∣ are the molecular excitonic creation and

annihilation operators, respectively, and the light–matter interaction
strength hgc is treated as a parameter in this model.60 The dipole self-

energy g2
c
ωc

, which is a constant in this case due to the constant gc,
does not influence the quantum dynamics and is explicitly dropped
in Eq. (77). This model can be viewed as the molecular version of the
quantum Rabi model.

A simplified version of the model in Eq. (77) can be constructed
by dropping the counter-rotating wave terms proportional to â †σ̂ †

and âσ̂. This approximation gives the Jaynes–Cummings model as

ĤJC = ĤM + h̵ωc(â †â +
1
2
) + h̵gc(âσ̂ †

+ â †σ̂). (79)

We further denote the polariton Hamiltonian Ĥpl as follows:
Ĥpl = Ĥ − T̂R. Representing the radiation field in its Fock state
basis (the photon number state) and the molecule in its electronic
state basis, the polariton Hamiltonian Ĥpl (choosing Ĥ = ĤJC) is
expressed as
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Ĥpl =∑
α,n
(Eα(R) + (n +

1
2
)h̵ωc)∣α, n⟩⟨α, n∣

+
∞

∑
n=1

√
nh̵gc(∣e, n − 1⟩⟨g, n∣ + ∣g, n⟩⟨e, n − 1∣), (80)

where ∣α, n⟩ = ∣α⟩⊗ ∣n⟩ is the electronic–photonic basis (or exciton-
Fock basis, composed of photon-dressed electronic states), with ∣α⟩
∈ {∣g⟩, ∣e⟩}, and ∣n⟩ is the Fock state of the radiation mode, i.e., the
eigenstate of h̵ωc(â †â + 1

2). The polariton states are the eigenstates
of Ĥpl, defined as Ĥpl∣Ψp(R)⟩ = Ep(R)∣Ψp(R)⟩, where Ep(R) is the
polariton potential and ∣Ψp(R)⟩ is the polariton state.

The lifetime of the cavity mode is finite due to the coupling
between the cavity mode and the far-field photon modes outside
the cavity. The detailed discussions for molecular cavity QED with
cavity loss are provided in Appendix D. Here, we use the following
Lindblad jump operator14 to model this process:

L̂S = â⊗ Îe ⊗ ÎR = [
∞

∑
n=1

√
n∣n − 1⟩⟨n∣]⊗ Îe ⊗ ÎR, (81)

where Îe = ∣g⟩⟨g∣ + ∣e⟩⟨e∣ is the identity in the electronic subspace
and ÎR is the identity operator in the nuclear subspace. The decay
rate associated with L̂cl is denoted as Γ. Note that the jump opera-
tor in Eq. (81), in principle, includes all possible transitions between
Fock states ∣n + 1⟩ and ∣n⟩ [see the general form of the Lindblad the-
ory in Eq. (9)]. In a practical simulation, one can choose to include
the physically relevant decay channels. In the model calculation pre-
sented in this paper, we will only consider one decay channel [see
Eq. (83)].

In this paper, we consider this photo-isomerization model
under the Jaynes–Cummings approximation where there is a max-
imum of only one excitation (the single-excited subspace plus the
ground state) because the light–matter coupling strength hgc/ωc
< 0.1; thus, the results do not significantly change when including
states with multiple excitations. In this case, the possible Fock states
are just ∣n⟩ ∈ {∣0⟩, ∣1⟩}. Thus, the system Hamiltonian ĤS can be
written as

ĤS = T̂R + Eg(R)∣g, 0⟩⟨g, 0∣ + Ee(R)∣e, 0⟩⟨e, 0∣
+ (Eg(R) + h̵ωc)∣g, 1⟩⟨g, 1∣
+ h̵gc(∣e, 0⟩⟨g, 1∣ + ∣g, 1⟩⟨e, 0∣), (82)

and the system Lindblad jump operator in this subspace of Fock
states can be written as

L̂S = ∣g, 0⟩⟨g, 1∣⊗ ÎR, (83)

with decay rate Γ, which is varied as a parameter.
When using the L-MFE approach to simulate the

dynamics of this molecule–cavity system, we consider the
electronic and photonic DOFs as the quantum DOFs, where
ĤQ = h̵ωc∣g, 1⟩⟨g, 1∣+ h̵gc(∣e, 0⟩⟨g, 1∣+ ∣g, 1⟩⟨e, 0∣), ĤQC = Eg(R)(∣g, 0⟩
⟨g, 0∣ + ∣g, 1⟩⟨g, 1∣) + Ee(R)∣e, 0⟩⟨e, 0∣, and the nuclear DOF is
treated as a classical DOF, where ĤC = T̂R. The cavity frequency is
ωc = 1.632 684 eV, and the coupling strength is gc = 0.136 eV. Note
that the off-diagonal coupling terms in ĤS do not involve the ground
state ∣g, 0⟩; thus, the L-MFE approach in Eq. (72) generates identical

results as Eq. (21). The initial condition is ∣Ψ(0)⟩ = ∣e, 0⟩⊗ ∣χ0⟩,
where the ∣e, 0⟩ indicates the initial electronic–photonic state, and
the nuclear wavefunction is ⟨R∣χ0⟩ = (

MωR
π )

1/4e−(MωR/2)(R−R0)
2
,

which is a Gaussian wavepacket centered around R0 = −0.7
a.u. with variance 1/2MωR, mass M = 550 Da, and frequency
ωR = 132.4 cm−1. The temperature is set to be T = 0 K. For
the L-MFE simulation, the corresponding initial condition is
ρ̂S(0) = ∣e, 0⟩⟨e, 0∣⊗ [ρ̂R], where the Wigner density of the nuclear
wavefunction [ρ̂R]w = [∣χ0⟩⟨χ0∣]w =

1
π e−MωR(R−R0)

2
−(P−P0)

2
/(MωR) is

used to sample the initial nuclear position and momentum in the
L-MFE simulation.

C. Computational details
The L-MFE method is implemented by using a symmetri-

cal Trotter decomposition in Eq. (72) to reduce the time step
error. The unitary dynamics e−

i
h̵ (Ĥ Q+Ĥ QC)dt are propagated using

the fourth order Runge–Kutta (RK4) algorithm, while the Lindblad
decay dynamics T̂ are propagated using the coefficient modifica-
tions described in Eqs. (69a)–(71). When classical nuclear DOFs
are present, the velocity Verlet algorithm is used to propagate the
nuclear DOFs, with the mean-field force given by Eq. (16), along-
side the quantum subsystem. For all model calculations, the elec-
tronic time step used is dtE = 0.05 a.u. For the photo-isomerization
system that contains nuclear DOF, the nuclear time step was
dtN = 6 a.u. and the time step used in the Lindblad decay T̂was dtN/4
(thus, the unitary propagation was performed 60 times in between
Lindblad decay propagations). A total of 24 000 trajectories were
used to ensure fully converged results, although using only 1000
trajectories already provides a mostly converged result (as shown
in Fig. 3).

The numerical results obtained from L-MFE were bench-
marked against the original Lindblad dynamics in Eq. (21), which
are referred to as “exact” results (of performing Lindblad dynam-
ics) in this paper. These numerical results are obtained by using
the QuTiP library62,63 with the mesolve function, where the model
Hamiltonian, Lindblad jump operator, and initial wavefunction are
entered as arguments to the function. Similar numerical simulations
has been recently performed to investigate molecular cavity QED
processes as well.14–16 For models 1–8, ĤC + ĤQC = 0 (no nuclear
DOF), and the only inputs in the simulation are the matrix elements
of ĤQ and the decay rate Γ. For the photo-isomerization coupled to
the cavity model, ĤS is described by Eq. (82). The matrix elements
of the Hamiltonian in Eq. (82) as well as the jump operator L̂S in
Eq. (83) are evaluated using the basis {∣α, n⟩⊗ ∣χν⟩}, where ∣χν⟩ is
the discrete variable representation (DVR) basis for the nuclear DOF
R. For the DVR basis ∣χν⟩, a total of 175 grid points are used in the
range of R ∈ [−1.25, 1.25 a.u.].

V. RESULTS AND DISCUSSION
Figure 1(a) presents the population dynamics of model 1

[Eq. (76a)], obtained from the L-MFE approach (dots) as well as
exact Lindblad dynamics (solid lines). In this case, the only dynam-
ics present are the Lindblad exponential decay from state ∣1⟩ to
state ∣0⟩. In Fig. 1(a), the diagonal populations of both states ∣1⟩
and ∣0⟩ exhibit the expected exponential decay/growth at a rate
of Γ = 0.05, while the coherence between the two states stays at 0.
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FIG. 1. Dynamics of (a) model 1 and (b) model 2. The solid lines are exact Lindblad
dynamics, while the dotted lines are the L-MFE method. The cyan lines are the
population of state ∣1⟩, the dark blue lines are the population of state ∣0⟩, and the
orange lines represent Re[ρ10]. Panels (c) and (d) present the same calculation
as (a) and (b) but without any random phase [by setting θξ = 0 in Eq. (69b)] in the
L-MFE method, thus generating artificially large coherence.

This is expected because in the absence of any Hamiltonian dynam-
ics, the coherences between states ∣1⟩ and ∣0⟩ should only mono-
tonically decrease to 0 from the initial time coherence ρ01(0).
Figure 1(b) presents the population dynamics of model 2 [Eq. (76b)],
which has an initial condition of a superposition of state ∣1⟩ and
∣0⟩. Similar to model 1, only Lindblad exponential decay/growth is
present. The diagonal populations match the Lindblad dynamics,
and the coherence shows the expected Γ/2 decay rate from Lindblad
dynamics.

We note that because ĤQ = 0 in models 1 and 2, the
L-MFE method in Eq. (72) becomes c(t + dt) = T̂ (dt) ⋅ c(t), where
the dynamics are completely dictated by the Lindblad decay process
governed by LL̂. The dynamics are insensitive to the choice of dt,
which means that one can choose an arbitrarily large dt and obtain
identical results. This is not the case for Ehrenfest + R approach,
where the “+R” dynamics will be sensitive to the choice of dt even
when ĤQ = 0.

Figures 1(c) and 1(d) highlights the importance of the random
phases θξ [in Eq. (69b)] by intentionally ignoring them (through
setting them to be zero). This, of course, will generate dynamics
that deviate from both the L-MFE method and Lindblad dynam-
ics. One can see that the diagonal populations of states ∣1⟩ and ∣0⟩
still show the correct exponential decay/growth, but the coher-
ences take a large departure from the expected coherences because
there is no random phase present to correct the artificial coher-
ence that is produced when the magnitudes of the coefficients are
changed.

Figure 2(a) presents the population dynamics of model 3
[Eq. (76c)]. This model contains Hamiltonian-induced coherences
[through the Δ term in Eq. (76c)], which must be properly

FIG. 2. Dynamics of (a) model 3 and (b) model 4. The solid lines are exact Lindblad
dynamics, while the dotted lines are the L-MFE method. The cyan lines are the
population of state ∣1⟩, the dark blue lines are the population of state ∣0⟩, the darker
orange lines represent Im[ρ10], and the lighter orange lines represent Im[ρ01].
Panels (c) and (d) present the same calculation as (a) and (b) but without any
random phase [by setting θξ = 0 in Eq. (69b)] in the L-MFE method.

incorporated with the Lindblad decay dynamics. In Fig. 2(a), the
diagonal populations match the exact Lindblad dynamics result
with both correct oscillation magnitudes and correct longtime pop-
ulations. The oscillations of the imaginary parts (dark and light
orange lines) of the off-diagonal coherences also exactly agree with
Lindblad dynamics. Figure 2(b) presents the population dynamics of
model 4 [Eq. (76d)], which contains both electronic coupling as well
as an energy level difference between the two states, which will fur-
ther impact the dynamics. Again, both the diagonal populations and
the off-diagonal coherences match the exact Lindblad dynamics.

Figures 2(c) and 2(d) present the results when the random
phases θξ [in Eq. (69b)] are intentionally ignored by setting them
to be zero. In Fig. 2(c), the longtime diagonal populations appear
correct, but the diagonal populations oscillate with a much larger
magnitude than Lindblad dynamics. This is caused by the fact that
the coherences are larger than they should be because there is no
random phase to reduce the size of the coherences. Consequently,
the larger magnitude of coherence causes a larger magnitude of
population oscillations. In Fig. 2(d), not only are the oscillation
magnitudes of the diagonal populations too large, but the diag-
onal populations converge to incorrect longtime populations. In
fact, the L-MFE method with no random phase shows the excited
state ∣1⟩ with a larger longtime population, while Lindblad dynam-
ics show that the ground state ∣0⟩ should have the larger longtime
population. This is again caused by the incorrect coherences with-
out random phase, which cause a longtime shift in the diagonal
populations.

Figure 3 presents the population dynamics of model 4
[Eq. (76d)] with different numbers of trajectories to examine the
convergence of the L-MFE method. The numbers of trajectories
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FIG. 3. Dynamics of model 4 with different numbers of trajectories. The solid lines
are exact Lindblad dynamics, while the dotted lines are the L-MFE method. The
numbers of trajectories used are (a) 10, (b) 100, (c) 1,000, and (d) 10 000.

used in Figs. 3(a)–3(d) are (a) 10, (b) 100, (c) 1 000, and (d) 10 000,
respectively. For the result using ten trajectories, the magnitudes
and phases of the oscillations of the L-MFE dynamics do not match
the exact ones. However, the longtime populations of the states are
approximately correct, in contrast to the no-random-phase case in
Fig. 2(d) where the relative magnitude of the longtime populations
are flipped vs the exact populations. For the result using 100 trajec-
tories, the magnitudes of the oscillations are almost correct, while
there are some deviations at later times. For 1000 trajectories, the
relative error of the L-MFE dynamics vs the exact dynamics is only
a few percent, and there is little visual difference between the L-MFE
dynamics and the exact Lindblad dynamics. For 10 000 trajecto-
ries, the L-MFE dynamics and exact Lindblad dynamics are nearly
indistinguishable. These results give a better sense of how many tra-
jectories are required to achieve a desired level of accuracy using the
L-MFE method.

Figure 4(a) presents the population dynamics of model 5
[Eq. (76e)]. This model contains the third state ∣2⟩, which is cou-
pled to state ∣0⟩. Note that in the L-MFE algorithm, when the jump
operator is L̂ = ∣0⟩⟨1∣, state ∣0⟩ is the state that gains random phases
[see Eq. (65)]. Thus, the preservation of correct dynamics when ran-
dom phases interact with states {∣ j⟩} outside of the reduced density
matrix of ∣0⟩ and ∣1⟩ is tested. In Fig. 4(a), the excited state shows
exponential decay, while states ∣0⟩ and ∣2⟩ oscillate together until
they reach a longtime population of 0.5, which is predicted by Lind-
blad dynamics. In Fig. 4(c), the corresponding imaginary parts of
coherences Im[ρ10] (orange), Im[ρ12] (green), and Im[ρ20] (red) are
presented, and all of these coherences obtained from L-MFE (dot-
ted) match the Lindblad dynamics (solid lines). In particular, the
oscillation in Im[ρ20] is due to the presence of electronic coupling
between state ∣0⟩ and ∣2⟩, without further decoherence from L̂ [see

FIG. 4. Dynamics of model 5 (a) and (c) and model 6 (b) and (d). The solid lines
are exact Lindblad dynamics, while the dotted lines are theL-MFE method. Panels
(a) and (b) present the diagonal populations, with ρ00(t) (dark blue), ρ11(t) (cyan),
and ρ22(t) (magenta). Panels (c) and (d) present the off-diagonal coherences, with
Im[ρ10](t) (orange), Im[ρ12](t) (green), and Im[ρ20](t) (red).

Eq. (24)], suggesting that the L-MFE method can correctly describe
dynamics involving {∣ j⟩} states even in the presence of random
phases in the coefficient of state ∣0⟩.

Figure 4(b) presents the population dynamics of model 6
[Eq. (76f)], which is a more challenging three-state Hamiltonian
that involves multiple electronic couplings to test the validity of the
L-MFE method. The diagonal populations generated from L-MFE
(dotted) again match Lindblad dynamics (solid lines). In Fig. 4(d), all
of the coherences, Im[ρ10] (orange), Im[ρ12] (yellow), and Im[ρ20]

(red) match perfectly with Lindblad dynamics. Note that due to the
electronic couplings between states ∣0⟩ and ∣1⟩, as well as between
states ∣0⟩ and ∣2⟩, all of the coherences, in general, will be non-
zero at a given point in time. Using the random phase [governed
by Eq. (66)] for state ∣0⟩, all of these detailed features are cap-
tured, further demonstrating the exact equivalence between the
L-MFE method and Lindblad dynamics when no nuclear DOFs are
present.

Figure 5 presents the population dynamics of model 7
[Eq. (76g)] to assess the importance of which state the random phase
is applied to. Figures 5(a) and 5(c) present the population and coher-
ence dynamics, respectively, of theL-MFE method vs exact Lindblad
dynamics. The L-MFE method applies the random phase only to
state ∣0⟩, and its dynamics match the exact results. Figures 5(b)
and 5(d) present the population and coherence dynamics, respec-
tively, of a modified L-MFE method when the random phase (θξ)
is only applied to state ∣1⟩ instead of state ∣0⟩ such that c1,ξ(t + dt)
= eiθξ e−Γdt/2c1,ξ(t). The populations dynamics of this modified
L-MFE method show incorrect oscillation magnitudes, most
notably that the oscillations between states ∣1⟩ and ∣2⟩ are con-
siderably smaller than the oscillations of the exact dynamics. This
corresponds to the coherence dynamics of Im[ρ12] that are smaller
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FIG. 5. Dynamics of model 7 using (a) and (c) the L-MFE approach and (b) and
(d) a modified L-MFE approach with the random phase only applied to state ∣1⟩.
The solid lines are exact Lindblad dynamics, while the dotted lines are the original
or modified L-MFE approach. Panels (a) and (b) present the diagonal popula-
tions, with ρ00(t) (dark blue), ρ00(t) (cyan), and ρ22(t) (magenta). Panels (c) and
(d) present the off-diagonal coherences, with Im[ρ10](t) (orange), Im[ρ12](t)
(green), and Im[ρ20](t) (red).

than the corresponding exact coherence dynamics. This coherence
inaccuracy is caused by the over-decoherence of state ∣1⟩ due to
the application of the random phase to state ∣1⟩. This result high-
lights the importance of applying the random phase to the correct
state.

Figure 6 presents the comparison, using model 8 [Eq. (76h)],
between the original Ehrenfest + R approach10,11 and a modified
Ehrenfest + R approach using the modified γ′R from Eq. (75) (which
is equivalent to the L-MFE method for this model). Figures 6(a)
and 6(c) present the population and coherence dynamics, respec-
tively, obtained from Ehrenfest + R (dots) using the same algorithm
as described in Ref. 11, where a concise summary of this approach
can be found in Appendix A. The +R decay dynamics are imple-
mented as suggested in the original paper10 [through Eqs. (A27a)
and (A27b)] using the original γR [Eq. (A22b)]. The parameters of
model 8 were carefully chosen such that the excited state energy
E′ = 1 a.u. is significantly larger than the decay rate Γ = 0.05 a.u. such
that the Ehrenfest + R method should work correctly in the regime
E′ ≫ Γ while still showing interesting dynamics on the timescale
of the population decay (t = 0 ∼ 100 a.u.). In Fig. 6(a), the Ehren-
fest + R dynamics are qualitatively similar to the exact Lindblad
dynamics, but there are some errors in the fluctuations of the state
∣1⟩ decay as well as in the magnitudes of the oscillations of states
∣0⟩ and ∣2⟩. The cause of these deviations can be seen in Fig. 6(c),
where the magnitudes of the coherences obtained from Ehrenfest
+ R are larger than those of Lindblad dynamics, causing incorrect
population transfer between diagonal populations. This is because
the coherence decay rate γR [Eq. (A22b)] in the Ehrenfest + R
algorithm is smaller than the correct decay rate γ′R [Eq. (B11)],

FIG. 6. Dynamics of model 8 using (a) and (c) the original Ehrenfest + R approach
(labeled as Eh + R) and (b) and (d) the Ehrenfest + R approach using the modi-
fied γ′R from Eq. (75) (labeled as Eh + R′). The modified Ehrenfest + R dynamics
(Eh + R′) are identical to those obtained from the L-MFE method for this model.
The solid lines are exact Lindblad dynamics, while the dotted lines are the origi-
nal or modified Ehrenfest + R approach. Panels (a) and (b) present the diagonal
populations, with ρ00(t) (dark blue), ρ11(t) (cyan), and ρ22(t) (magenta). Pan-
els (c) and (d) present the off-diagonal coherences, with Im[ρ10](t) (orange),
Im[ρ12](t) (yellow), and Im[ρ20](t) (red).

causing artificially large coherences and, thus, a larger magnitude of
population oscillation.

Figures 6(b) and 6(d) present the population and coherence
dynamics, respectively, of model 8 [Eq. (76h)] using the modified
Ehrenfest + R approach that uses the modified γ′R. This modi-
fied Ehrenfest + R approach produces results identical to those
obtained from the L-MFE method for this model. Consequently,
in Fig. 6(b), the population dynamics of the modified Ehrenfest
+ R approach are identical to the Lindblad population dynamics.
The corresponding coherence dynamics are provided in Fig. 6(d),
which again match perfectly with the Lindblad coherence dynam-
ics. This demonstrates that it is important to include the effect
that modifying the magnitudes of the coefficients has on the coher-
ences between the states (see analysis in Appendix B). We note
that using the modified γ′R in the Ehrenfest + R method yields
the same expectation values for the populations and coherences
as the L-MFE method as Γdt → 0 but begins to lose accuracy
for larger Γdt due to the use of a Poisson process for deco-
herence [through Eq. (A28)], which is sensitive to the choice
of Γdt [Eq. (B7)].

Figure 7 presents the potential energy surfaces (PESs) and pop-
ulation dynamics of the photo-isomerization model coupled to an
optical cavity, with the system Hamiltonian described in Eq. (82).
Here, we explicitly consider the population decay of the photonic
DOF through the jump operator L̂ in Eq. (83), which describes the
finite lifetime of the cavity mode due to its coupling to the other
non-cavity modes.

J. Chem. Phys. 157, 064101 (2022); doi: 10.1063/5.0099922 157, 064101-15

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 7. Potential energy surfaces (PESs) and population dynamics of the model
isomerization reaction coupled to the cavity. Panel (a) presents the diabatic PESs
where the dark blue line is the ∣g, 0⟩ PES, the cyan line is the ∣e, 0⟩ PES, and
the magenta line is the ∣g, 1⟩ PES. Panel (b) presents the adiabatic PESs where
the dark blue line is the ground state ∣g, 0⟩ PES, the middle line (labeled ∣LP⟩) is
the lower polariton PES, and the upper line (labeled ∣UP⟩) is the upper polariton
PES. The colors along the adiabatic PESs represent the diabatic character at each
nuclear position. Panels (c)–(f) present the population dynamics where (c) uses
a decay rate of Γ = 0, (d) uses Γ = 1 meV, (e) uses Γ = 2 meV, and (f) uses
Γ = 8 meV. The solid lines are exact Lindblad dynamics, while the dotted lines are
the L-MFE method. The dark blue lines are the state ∣g, 0⟩ populations, the cyan
lines are the state ∣e, 0⟩ populations, and the magenta lines are the state ∣g, 1⟩
populations.

Figure 7(a) presents the diabatic PESs for the ∣g, 0⟩ state (dark
blue), the ∣e, 0⟩ state (cyan), and the ∣g, 1⟩ state (magenta). These
states are diabatic because their electronic character does not depend
on the nuclear coordinate R, and thus, there is no derivative cou-
pling between these states (see Appendix C for details). Conversely,
there is a diabatic coupling between the states ∣e, 0⟩ and ∣g, 1⟩, which
causes coherent population transfer between these states. Figure 7(b)
presents the adiabatic PESs for the ground ∣g, 0⟩ state (dark blue),
the lower polariton state (middle line, labeled ∣LP⟩), and the upper
polariton state (upper line, labeled ∣UP⟩). These adiabatic states
are eigenstates of the polaritonic Hamiltonian ĤS − T̂R [where ĤS
is given in Eq. (82)]; thus, there is no additional diabatic cou-
pling between any of the states. Furthermore, since the electronic

character of the upper and lower polariton states changes as a func-
tion of the nuclear coordinate R, there exists derivative coupling
between the upper and lower polariton states, which allows for
coherent population transfer between them.64

Figures 7(c)–7(f) presents the population dynamics of diabatic
states ∣g, 0⟩ (dark blue), ∣e, 0⟩ (cyan), and ∣g, 1⟩ (magenta). The
results of exact Lindblad dynamics (solid lines) are obtained by solv-
ing Eq. (12) using the basis {∣α, n⟩⊗ ∣χν⟩}, where ∣α, n⟩ = ∣α⟩⊗ ∣n⟩,
∣α⟩ ∈ {∣g⟩, ∣e⟩} are the diabatic electronic states, and ∣n⟩ are the
Fock states of the cavity mode. The L-MFE dynamics (dotted) are
obtained by treating the electronic and photonic DOFs as the quan-
tum subsystem, with basis ∣α, n⟩, and the nuclear DOF as a classical
DOF. The details of these numerical simulations are provided in
Sec. IV.

Figure 7(c) presents the population dynamics with Γ = 0, i.e.,
with no Lindblad decay dynamics. Thus, Eq. (12) reduces to the
exact dynamics of a closed system with the Hamiltonian in Eq. (82)
(which is a molecule–cavity hybrid system), and Eq. (21) reduces to
the Ehrenfest dynamics for the same system. The Ehrenfest dynam-
ics provides nearly identical results compared to the exact dynamics
in this case because the nuclei are mostly oscillating on a single adi-
abatic upper polariton surface [see Fig. 7(b)]. Because there are no
interactions between the ∣g, 0⟩ state and the other states in the model,
the ∣g, 0⟩ state is not populated.

In Fig. 7(d), the Lindblad jump operator interaction strength
is set to be Γ = 1 meV, which causes the population of the upper
and lower polariton states to decay to the ground state ∣g, 0⟩ of
the molecule cavity hybrid system. While the L-MFE dynamics
semi-quantitatively match the exact Lindblad dynamics, there are
some noticeable differences in the magnitudes of oscillation of
states ∣e, 0⟩ and ∣g, 1⟩, and the ground state ∣g, 0⟩ does not rise as
quickly as predicted by Lindblad dynamics. Similarly, in Figs. 7(e)
and 7(f), when the interaction strength is set to be Γ = 2 meV
and Γ = 8 meV, respectively, the L-MFE dynamics show simi-
lar errors while still maintaining the semi-quantitatively correct
dynamics.

The discrepancy between the dynamics obtained from the
L-MFE method and the exact Lindblad dynamics is due to the
inadequacy of MFE as a mixed quantum-classical method. This
demonstrates the need to incorporate Lindblad dynamics into more
accurate mixed quantum-classical or semiclassical approaches that
go beyond the approximations present in the mean-field Ehren-
fest approach. Note that in recent investigations of molecular cavity
quantum electrodynamics,28,65 the photonic population decay is
incorporated in a similar fashion, as described in Eqs. (69a)–(69c).
However, in these early investigations, the random phase eiθξ [in
Eq. (69b)] is not incorporated. We have demonstrated the conse-
quence of missing this random phase in Figs. 1 and 2, where artificial
coherences are generated. Future wavefunction based investiga-
tions in molecular cavity QED should carefully describe the decay
dynamics using the approach outlined in L-MFE.

VI. CONCLUSIONS
In this work, we derived the L-MFE method to incor-

porate Lindblad jump operator dynamics into the mean-field
Ehrenfest (MFE) approach. We took the density matrix equa-
tions of motion for Lindblad dynamics and mapped them onto
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an ensemble of pure state coefficients using trajectory averages
and expectation values of random variables. We then derived
the L-MFE method to update the MFE coefficients at each time
step, which rigorously satisfies Lindblad jump operator dynam-
ics. This established a method that exactly reproduces Lindblad
decay dynamics using a wavefunction description, with determinis-
tic changes of the magnitudes of the quantum expansion coefficients,
while only adding on a stochastic phase [on coefficients c0,ξ(t)
in Eq. (69b)].

Compared to the Monte Carlo wavefunction methods35,36 that
randomly collapse the wavefunction onto single states, the L-MFE
approach only adds on random phases to the expansion coeffi-
cients, providing a more stable dynamics that can be incorporated
with any mixed quantum-classical, semiclassical, or wavepacket
based approaches. Compared to the Ehrenfest + R method,10,11 the
L-MFE method uses the same procedure to decay the magnitude of
the quantum expansion coefficients, but a different choice of the ran-
dom phase distribution such that the exact Lindblad dynamics can
be recovered, whereas Ehrenfest + R cannot exactly recover Lind-
blad dynamics. The derivation procedure of L-MFE also does not
assume any relation between the energy gap of the two states vs
the decay rate, whereas Ehrenfest + R assumes a particular para-
meter regime where the energy gap is much larger than the decay
rate. Our theoretical analysis further provides valuable insights and
mathematical justification for the relationship between the dynam-
ics of the reduced density matrix and the dynamics of the ensemble
of pure states. Through these careful analyses, we discovered an easy
fix of the Ehrenfest + R method with the correct “+R” decay rate,
which can be used to fix Ehrenfest+R dynamics to exactly reproduce
Lindblad dynamics.10,11

Throughout the theoretical development in this work, we
demonstrated the importance of including a carefully chosen
random phase on both the coherences as well as the diago-
nal populations of the dynamics. Using numerical simulations,
we demonstrated that the L-MFE method is equivalent to Lind-
blad dynamics for a variety of complicated dynamical scenarios
when nuclear DOFs are not present, including scenarios where
previous approaches (such as Ehrenfest + R10,11) do not match
Lindblad dynamics. We further demonstrated that when includ-
ing nuclei in Ehrenfest dynamics, the L-MFE method gives semi-
quantitatively accurate results, with the accuracy limited by the
accuracy of the approximations present in the semiclassical MFE
approach.

This work provides a general approach for incorporating the
Markovian dynamics of the Lindblad master equation into a scal-
able, wavefunction-type approach, allowing for the description of
the dynamics of a quantum subsystem interacting with an anhar-
monic classical subsystem (nuclei) through a mixed quantum-
classical description, as well as a Markovian environment that
can be accurately described by Lindblad dynamics. The current
approach can readily be used in the context of describing sponta-
neous emission due to light–matter interactions,10,35 incorporating
cavity leaking in polariton chemistry,14–16,28,65 or being combined
with Ehrenfest dynamics18,19,40,66 or a surface hopping approach4 to
incorporate decoherence corrections. We envision that the current
approach provides a general framework for future work to incor-
porate Lindblad dynamics into other mixed quantum-classical or
semiclassical approaches.
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APPENDIX A: THE EHRENFEST + R APPROACH

The Ehrenfest + R method10 was originally developed to
simulate the electronic quantum subsystem during a spontaneous
emission process while accurately describing the feedback of the
quantum dynamics onto the classical electromagnetic field. While
the Lindblad master equation was not used to derive the equations
of motion for the quantum subsystem during spontaneous emis-
sion, the resulting equations of motion for the quantum subsystem
are mathematically identical to those of the Lindblad master equa-
tion for a two-level uncoupled system with a decay from an excited
state to a ground state. Thus, while the Ehrenfest + R method was
not originally intended to broadly describe and simulate Lindblad
dynamics for generic quantum subsystems, the method should be,
in principle, able to do exactly this (at least when the energy gap is
much larger than the decay rate). Additionally, Ehrenfest + R was
a primary source of inspiration for the L-MFE method derived in
this paper, so it is fruitful to examine the quantum subsystem part of
the Ehrenfest + R method in order to understand its relation to the
L-MFE method and to understand any potential issues it has.

The Ehrenfest + R method may generally be applied to the
spontaneous emission between any two quantum states as long as
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the energy gap is much larger than the decay rate. For simplic-
ity, a two-level system will be considered to clearly understand the
method, as was done in the original paper.10 Consider a two-level
system with the following quantum subsystem Hamiltonian ĤQ and
a Lindblad jump-operator L̂ defined as follows:

ĤQ =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 0

0 E

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, L̂ = ∣0⟩⟨1∣, (A1)

where the jump operator has a decay rate Γ≪ E. Throughout the
discussion of the Ehrenfest + R approach, we ignore the presence
of ĤQC(R) + ĤC [see Eq. (5)], although it is possible to general-
ize it to incorporate these terms. The Lindblad decay superoperator
LL̂ [whose effect is given in Eq. (25)] corresponding to the decay
dynamics can be written in the Liouville space as follows:

LL̂ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 Γ

0 −Γ/2 0 0

0 0 −Γ/2 0

0 0 0 −Γ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (A2)

where its effect on the reduced density matrix elements
ρab = ⟨ψa∣ρ̂(t)∣ψb⟩ (in the Liouville space) is expressed as

LL̂[ρ̂(t)] = LL̂

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ρ00

ρ01

ρ10

ρ11

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Γρ11

−
Γ
2
ρ01

−
Γ
2
ρ10

−Γρ11

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (A3)

The overall time evolution of ρ̂, governed by Eq. (21), is

dρ̂
dt
= LĤ[ρ̂] +LL̂[ρ̂] ≡ L[ρ̂], (A4)

where the total Lindblad Liouvillian superoperator L = LĤ +LL̂ in
the Liouville space is expressed as

L =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 Γ

0 iE −
Γ
2

0 0

0 0 −iE −
Γ
2

0

0 0 0 −Γ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (A5)

which is LL̂ [Eq. (A2)] plus LĤ in the Liouville space.
The effect of this Liouvillian on the reduced density matrix

elements, written in the Liouville space, is

L[ρ̂(t)] = L

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ρ00

ρ01

ρ10

ρ11

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Γρ11

(iE −
Γ
2
)ρ01

(−iE −
Γ
2
)ρ10

−Γρ11

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (A6)

The Liouvillian in Eq. (A5) can be matrix-exponentiated to deter-
mine the propagator of the density matrix during a time step dt
as

eL dt
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 1 − e−Γdt

0 eiEdt−Γdt/2 0 0

0 0 e−iEdt−Γdt/2 0

0 0 0 e−Γdt

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (A7)

where the above propagator eL dt evolves the reduced density
operator as

eL dt
[ρ̂(t)] =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ρ00 + ρ11(1 − e−Γdt
)

ρ01eiEdt−Γdt/2

ρ10e−iEdt−Γdt/2

ρ11e−Γdt

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (A8)

While the dynamics described by the Lindblad Liouvillian in
Eq. (A5) are identical to the quantum subsystem dynamics that the
Ehrenfest + R method aims to simulate, the particular implemen-
tation of the method was developed by additionally considering the
role the electromagnetic field should have in spontaneous emission.
Chen et al. derived a Hamiltonian interaction term [not present
in Eq. (A1)] that represents the electric dipole coupling between
the excited and ground states of the system. This time-dependent
interaction term Ĥint is defined as follows:

Ĥint = Ω ⋅ (∣0⟩⟨1∣ + ∣1⟩⟨0∣) = −h̵Γ ⋅ Im[ρ01](∣0⟩⟨1∣ + ∣1⟩⟨0∣). (A9)

This extra interaction term is added to the original ĤQ, which
defines the effective Ehrenfest Hamiltonian ĤEh as follows:

ĤEh = ĤQ + Ĥint =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 Ω

Ω E

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (A10)

with Ω = −hΓ ⋅ Im[ρ01]. The Hamiltonian in Eq. (A10) is the
Hamiltonian that is used to propagate the dynamics during the first
stage of the Ehrenfest + R method (the “Ehrenfest” stage). The time
evolution of ρ̂ governed by ĤEh is, thus,

dρ̂
dt
= −

i
h̵
[ĤEh, ρ̂] = LEh[ρ̂], (A11)

where the Liouvillian LEh is expressed as

LEh =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 iΩ −iΩ 0

iΩ iE 0 −iΩ

−iΩ 0 −iE iΩ

0 −iΩ iΩ 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (A12)
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and the time evolution rate of ρ̂ governed by LEh in the Liouville
space is expressed as

LEh[ρ̂(t)] =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2Γ ⋅ Im[ρ01]
2

iEρ01 + iΓ ⋅ Im[ρ01](ρ11 − ρ00)

−iEρ10 − iΓIm[ρ01](ρ11 − ρ00)

−2Γ ⋅ Im[ρ01]
2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (A13)

Under the condition that Γ≪ E, the oscillations of the phase of
the off-diagonal density matrix elements due to E are much faster
than the decay dynamics. This condition is thus the regime where
the Ehrenfest + R approach can be applied with guaranteed accu-
racy. Under this condition, one can approximate the coherence as
ρ01 ≈ ∣ρ01∣e

iEt , thus Im[ρ01]
2
≈ ∣ρ01∣

2 sin2
(Et), which can be used to

get an approximate expression of Eq. (A13).
For the purposes of analysis, it is convenient to average out

the insignificant effects that the E-dependent phase oscillations have
on the decay rates present in Eq. (A13). Note that in the actual
Ehrenfest + R simulation, LEh [Eq. (A13)] is explicitly used. Thus,
following Chen et al.,10 we define a moving average,

A =
1
τ∫

t+τ

t
dt′ A(t′), (A14)

for a timescale τ such that 2π/E≪ τ ≪ 1/Γ. The result of per-
forming this moving average will subsequently be called the “time
average” of the quantity, although it is important to understand
that only the effects that the E-dependent rapid oscillations have on
the decay rates have been averaged out, while any remaining time
dependence is still present in the “time averaged” quantity.

By using Im[ρ01]
2
≈ ∣ρ01∣

2 sin2
(Et) and sin2(Et) = 1

2 , the time
average of Eq. (A13) is expressed as

LEh[ρ̂(t)] =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Γ ⋅ ∣ρ01∣
2

iEρ01 − Γ ⋅ ρ01(ρ00 − ρ11)/2

−iEρ10 − Γ ⋅ ρ10(ρ00 − ρ11)/2

−Γ ⋅ ∣ρ01∣
2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (A15)

To more clearly understand the dynamics of Eq. (A15), it is
helpful to determine the effective time averaged Liouvillian LEh that,
when applied to the reduced density matrix, yields the same results
as Eq. (A15) such that

LEh[ρ̂(t)] = LEh[ρ̂(t)]. (A16)

Using the above definition in Eq. (A16), one can obtain the
effective Liouvillian LEh as follows:

LEh =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 kEh

0 iE − γEh 0 0

0 0 −iE − γEh 0

0 0 0 −kEh

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (A17)

where the time averaged diagonal decay rate kEh and the time
averaged off-diagonal decay rate γEh are expressed as

kEh = Γ ⋅ ∣ρ01∣
2
/ρ11, (A18)

γEh = Γ ⋅ (ρ00 − ρ11)/2. (A19)

The time averaged dynamics in Eq. (A15) can thus be
expressed as

LEh[ρ̂(t)] =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

kEhρ11

(iE − γEh)ρ01

(−iE − γEh)ρ10

−kEhρ11

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (A20)

The dynamics governed by LEh [Eq. (A17)] do not match the
Lindblad dynamics governed by L [Eq. (A5)] since the decay rates
kEh and γEh from Eqs. (A18) and (A19) are not constant and depend
on the density matrix elements, among other reasons. This is not
surprising because it is impossible to recover open system Lind-
blad dynamics through the deterministic dynamics of a Hamiltonian
[Eq. (A10)]. Thus, an additional relaxation propagation (the “+R”
stage of the dynamics) is introduced,10 which is designed to correct
both the diagonals and off-diagonals of the reduced density matrix
elements in the {∣0⟩, ∣1⟩} subspace. This additional decay process
(the +R dynamics) is governed by LR through

LR[ρ̂(t)] =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

kRρ11

−γRρ01

−γRρ10

−kRρ11

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (A21)

where the diagonal decay rate kR and off-diagonal decay rate γR are
expressed as

kR = 2Γ(1 − ∣ρ01∣
2
/ρ11)Im[eiϕρ01/∣ρ01∣]

2
, (A22a)

γR =
Γ
2
(1 − ρ00 + ρ11). (A22b)

The random phase ϕ ∈ [−π,π] is sampled at the beginning of each
trajectory and is keet constant throughout the evolution of that tra-
jectory. The purpose of this phase, in the original context of the
Ehrenfest + R development, is to add randomness to the energy
of the classical electromagnetic field that couples to the molecules
since the Ehrenfest + R method increases the energy of the classi-
cal electromagnetic field proportional to kR at each time step due
to energy conservation. While this is a necessary feature to accu-
rately describe the classical electromagnetic field, it only affects
the quantum dynamics by increasing the variance between the
trajectories.

This decay rate kR can be time averaged to yield kR as

kR = Γ(1 − ∣ρ01∣
2
/ρ11). (A23)
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The effect of the effective time averaged Liouvillian LR can thus
be expressed as

LR[ρ̂(t)] =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

kRρ11

−γRρ01

−γRρ10

−kRρ11

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (A24)

The purpose of constructing the decay rates kR and γR as they are in
Eqs. (A22b) and (A23) is to satisfy

Γ = kEh + kR, (A25a)

Γ
2
= γEh + γR, (A25b)

which consequently means that the propagation through both stages
of dynamics (Ehrenfest and +R) matches Lindblad dynamics such
that

L[ρ̂(t)] = LEh[ρ̂(t)] +LR[ρ̂(t)], (A26)

where L[ρ̂(t)], LEh[ρ̂(t)], and LR[ρ̂(t)] are defined in Eqs. (A6),
(A20), and (A24), respectively.

The dynamics associated with the relaxation component
LR[ρ̂(t)] in Eq. (A24) cannot be captured through deter-
ministic dynamics. This is because the off-diagonals must be
decohered independent of the diagonals, which requires the
use of a random phase that cannot appear in a determin-
istic method governed solely by a Hamiltonian. Instead of
using a modified Hamiltonian in the relaxation stage of the
Ehrenfest + R method, the electronic expansion coefficients {ci,ξ}

of state i and trajectory ξ at each time step are directly modified to
attempt to achieve the correct Lindblad dynamics. These coefficient
modifications for states ∣0⟩ and ∣1⟩ can be summarized as

c1(t + dt) = c1(t)e−kRdt/2, (A27a)

c0(t + dt) = eiΦc0(t)

¿
Á
ÁÀ∣c0(t)∣2 + ∣c1(t)∣2(1 − e−kRdt)

∣c0(t)∣2
, (A27b)

with kR expressed in Eq. (A22a). Here, the coefficients c1(t + dt)
and c0(t + dt) are for a particular trajectory ξ [same as we defined
in Eq. (30)], and to make our following notation concise, we drop

the label ξ in these coefficients. Furthermore, eiΦ is a random phase
factor that enforces dephasing with the rate of γR [Eq. (A22b)]. The
random phaseΦ ∈ [−π,π] is governed by the following distribution:

P(Φ) =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1
2π

, RN < γRdt,

δ(Φ), RN ≥ γRdt,
(A28)

where P(Φ) is the probability distribution of the random phase Φ,
δ(Φ) is the Dirac delta distribution, and RN is a random number in
the range of RN ∈ [0, 1]. The “+R” relaxation stage of the Ehrenfest
+ R approach is summarized in Eqs. (A27a), (A27b), and (A28). This
provides an effective Poisson process for incorporating decoherence.
Generalizing this approach to multiple state has been proposed and
tested as well,11 where the coefficients {cj,ξ} for ∣ j⟩ ∉ {∣0⟩, ∣1⟩} are
not changed by the Lindbladian time evolution such that

cj,ξ(t + dt) = cj,ξ(t). (A29)

What has not yet been determined from this analysis, however,
is whether the proposed relaxation method in Eqs. (A27a), (A27b),
and (A28) corresponds to the effective time averaged Liouvillian in
Eq. (A24) or not. As will be shown in Appendix B, the proposed
relaxation stage does not correspond to this Liouvillian, and the γR
decay rate must be modified in order to satisfy Eq. (A26).

APPENDIX B: FIXING THE EHRENFEST + R APPROACH

To understand how these coefficient modifications in
Eqs. (A27a) and (A27b) affect the overall dynamics, it is best to work
backward to determine the effective Liouvillian LR that generated
these relaxation dynamics and figure out whether Eq. (A26) is
satisfied. The modified coefficients can be written in the density
matrix form using the outer product as

⎡
⎢
⎢
⎢
⎢
⎢
⎣

c0(t + dt)

c1(t + dt)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

[c∗0 (t + dt), c∗1 (t + dt)] =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∣c0(t + dt)∣2

c0(t + dt)c∗1 (t + dt)

c1(t + dt)c∗0 (t + dt)

c1(t + dt)∣2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(B1)
Due to the presence of a random phase, the expectation value of
Eq. (B1) is what the trajectory-averaged density matrix will converge
toward and will be treated as the result of operating the effective
Liouvillian LR onto the density matrix, which can be written as

eL Rdt
[ρ̂(t)] =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⟨∣c0(t + dt)∣2⟩

⟨c0(t + dt)c∗1 (t + dt)⟩

⟨c1(t + dt)c∗0 (t + dt)⟩

⟨∣c1(t + dt)∣2⟩

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∣c0(t)∣2 + ∣c1(t)∣2(1 − e−kRdt
)

c0(t)c∗1 (t)⟨e
iΦ
⟩e−kRdt/2

¿
Á
ÁÀ∣c0(t)∣2 + ∣c1(t)∣2(1 − e−kRdt)

∣c0(t)∣2

c1(t)c∗0 (t)⟨e
−iΦ
⟩e−kRdt/2

¿
Á
ÁÀ∣c0(t)∣2 + ∣c1(t)∣2(1 − e−kRdt)

∣c0(t)∣2

∣c1(t)∣2e−kRdt

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (B2)
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where we have explicitly used the expressions in Eqs. (A27a)
and (A27b) to write down these coefficients. The superoperator eL Rdt

can be determined from Eq. (B2) by identifying the coefficients
∣c0(t)∣2, c0(t)c∗1 (t), c1(t)c∗0 (t), and ∣c1(t)∣2 on the left-hand side as
the density matrix elements ρ00, ρ01, ρ10, and ρ11, respectively, and
considering the terms that these density matrix elements multiply
with as the rates that come from eL Rdt . This superoperator can thus
be identified as

eL Rdt
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 1 − e−kRdt

0 β 0 0

0 0 β∗ 0

0 0 0 e−kRdt

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (B3)

with β = ⟨eiΦ
⟩e−kRdt/2

√
∣c0(t)∣2+∣c1(t)∣2(1−e−kRdt)

∣c0(t)∣2
. Taking the matrix

logarithm of eL Rdt yields the Liouvillian LR as

LR =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 kR

0
ln β
dt

0 0

0 0
lnβ∗

dt
0

0 0 0 −kR

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (B4)

The kR rate in the right-hand side column of Eq. (B4) can be approx-
imated by the time averaged kR to express the effective time averaged
Liouvillian LR as

LR =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 kR

0
ln β
dt

0 0

0 0
lnβ∗

dt
0

0 0 0 −kR

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (B5)

Equation (B5) is the effective Liouvillian that describes the dynamics
due to the coefficient modifications in Eqs. (A27a) and (A27b). The
total Ehrenfest + R dynamics can thus be described by the sum of
the Liouvillians LEh and LR, which is

LEh +LR =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 kEh + kR

0 iE − γEh +
ln β
dt

0 0

0 0 −iE − γEh +
lnβ∗

dt
0

0 0 0 −kEh − kR

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(B6)
If the Ehrenfest + R method has been successful, this sum in Eq. (B6)
should be equivalent to the Lindblad Liouvillian in Eq. (A5). The
kEh + kR and −kEh − kR elements in the right-hand side column
of Eq. (B6) match the elements inside the Lindblad Liouvillian L
[Eq. (A5)], Γ and −Γ, respectively, due to Eq. (A22a). The elements

in the middle two columns of Eq. (B6) require closer inspection. The
expectation value inside of β can be evaluated as

⟨e±iΦ
⟩ = 1 − γRdt ≈ e−γRdt , (B7)

such that the expectation value will be treated as an approxima-
tion of the exponential function in order to extract γR outside of
the logarithm. This approximation is present due to the choice of
a Poisson rate process in determining the distribution of the ran-
dom phase in Eq. (A28), which results in the decoherence being a
first order approximation of an exponential decay. Thus, the chosen
distribution for the random phaseΦ requires γRdt ≪ 1 for accuracy.
Treating the expectation value as the exponential decay in Eq. (B7),
the leftmost non-zero element of Eq. (B6) can be evaluated as

iE − γEh +
ln β
dt
≈ iE − γEh − γR

+
1
dt

ln
⎛
⎜
⎝

e−kRdt/2

¿
Á
ÁÀ∣c0(t)∣2 + ∣c1(t)∣2(1 − e−kRdt)

∣c0(t)∣2
⎞
⎟
⎠

= iE −
Γ
2
+

1
dt

ln
⎛
⎜
⎝

e−kRdt/2

¿
Á
ÁÀ∣c0(t)∣2 + ∣c1(t)∣2(1 − e−kRdt)

∣c0(t)∣2
⎞
⎟
⎠

,

(B8)

where Eq. (A22b) has be used to substitute Γ/2 in γEh + γR. Com-
paring the effective Liouvillian in Eq. (B6) and the actual Lindblad
Liouvillian in Eq. (A5), the terms kEh + kR = Γ match. However,
the term iE − γEh +

ln β
dt in Eq. (B6) fails to match the term iE − Γ

2
in Eq. (A5) by the difference of the extra last term in Eq. (B8).
The presence of this extraneous term is due to the modification of
the magnitudes of the coefficients in Eqs. (A27a) and (A27b). The
expression inside of the logarithm in Eq. (B8) is the ratio of the mod-
ified coefficient magnitudes to the original coefficient magnitudes.
These magnitude modifications change the coherence between the
ground and excited states (as well as all other states in larger dimen-
sional systems); thus, their impact must be taken into consideration
in the off-diagonal decay procedure in order to match Lindblad
dynamics.

To redeem the Ehrenfest + R approach, one can modify the
decay rate γ′R to absorb this additional term [the last term in Eq. (B8)]
such that the following equality is explicitly enforced:

iE − γEh +
ln β
dt
≈ iE −

Γ
2

, (B9)

in addition to Γ = kEh + kR, thus actually enforcing LEh +LR = L.
The modified decay rate γ′R is, thus, defined as

γ′R = γR +
1
dt

ln
⎛
⎜
⎝

e−kRdt/2

¿
Á
ÁÀ∣c0(t)∣2 + ∣c1(t)∣2(1 − e−kRdt)

∣c0(t)∣2
⎞
⎟
⎠

, (B10)

which can be more conveniently expressed purely in terms of
coefficients as

γ′R =
Γ
2
(1 − ∣c0(t)∣2 + ∣c1(t)∣2) +

1
dt

ln(
∣c0(t + dt)c∗1 (t + dt)∣
∣c0(t)c∗1 (t)∣

),

(B11)
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where the expression inside the logarithm in Eq. (B10) has been
replaced by the ratio of the magnitudes of the modified coefficients
to the original coefficients [when explicitly using Eqs. (A27a) and
(A27b)]. Equation (B11) is the correct modification regardless of
whether a linear approximation of the exponential function is used
when modifying the magnitudes of the coefficients (as has been done
in most applications of the Ehrenfest + R method). This is validated
numerically in Fig. 5 where panels (a) and (c) are the results of the

Ehrenfest + R method with the original γR (and a linearization of the
exponential when calculating the modified coefficient magnitudes),
while panels (b) and (d) are the results when replacing γR with γ′R
from Eq. (B11).

As opposed to the Ehrenfest + R method, the L-MFE method
generates the identical Liouvillian LL̂ [Eq. (A2)] associated with
the quantum jump operator L̂. This can be verified by using the
procedure outlined in Eqs. (B1) and (B2),

eL L̂ dt
[ρ̂(t)] =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⟨∣c0(t + dt)∣2⟩

⟨c0(t + dt)c∗1 (t + dt)⟩

⟨c1(t + dt)c∗0 (t + dt)⟩

⟨∣c1(t + dt)∣2⟩

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∣c0(t)∣2 + (1 − e−Γdt
)∣c1(t)∣2

c0(t)c∗1 (t)⟨e
iθ
⟩e−Γdt/2

¿
Á
ÁÀ∣c0(t)∣2 + ∣c1(t)∣2(1 − e−Γdt)

∣c0(t)∣2

c1(t)c∗0 (t)⟨e
−iθ
⟩e−Γdt/2

¿
Á
ÁÀ∣c0(t)∣2 + ∣c1(t)∣2(1 − e−Γdt)

∣c0(t)∣2

∣c1(t)∣2e−Γdt

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (B12)

Using the explicit expression of ⟨e±iθ
⟩ [see Eq. (59)] inside

Eq. (B12), we can express the effective Liouvillian as

eL L̂ dt
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 1 − e−Γdt

0 e−Γdt/2 0 0

0 0 e−Γdt/2 0

0 0 0 e−Γdt

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (B13)

Taking the matrix logarithm of the above eL L̂ dt indeed yields the
Lindblad jump Liouvillian LL̂ in Eq. (A2). One can also generalize
the above argument for the many states situation as described in
Eq. (24).

APPENDIX C: MOLECULAR HAMILTONIAN
OF THE ISOMERIZATION MODEL SYSTEM

In this section, we provide detailed expressions for the model
matter Hamiltonian used in this study. The molecular Hamiltonian
ĤM is described by a model system that undergoes an isomerization
reaction,60,67

ĤM = T̂R + Eg(R)∣g⟩⟨g∣ + Ee(R)∣e⟩⟨e∣. (C1)

Here, ∣α⟩ ∈ {∣g⟩, ∣e⟩} represents the electronic ground or excited
states, R represents the nuclear reaction coordinate, and T̂R is the
nuclear kinetic energy operator. The electronic potentials Eg(R) and
Ee(R) are modeled with the following expressions:

Eg(R) =
v1(R) + v2(R)

2
−

√

D2
1 +
(v1(R) − v2(R))2

4
,

Ee(R) =
v3(R) + v4(R)

2
−

√

D2
2 +
(v3(R) − v4(R))2

4
,

where vi(R) = Ai + Bi(R − Ri)
2, and the rest of the parameters (in

a.u.) are tabulated as follows:

i Ai Bi Ri Di

1 0.049 244 0.183 747 −0.75 0.073 499
2 0.010 657 0.183 747 0.85 0.514 490
3 0.428 129 0.183 747 −1.15 ⋅ ⋅ ⋅

4 0.373 005 0.146 997 1.25 ⋅ ⋅ ⋅

Note that the derivative coupling ⟨g∣∇R∣e⟩ is not included in the
model system. With this assumption, both the ∣g⟩ and ∣e⟩ states effec-
tively become diabatic states. Numerical simulations that do con-
sider these derivative couplings can be found in the supplementary
material of Ref. 60.

APPENDIX D: MOLECULAR CAVITY QED
WITH CAVITY LOSSES

The lifetime of the cavity mode is finite due to the coupling
between the cavity mode and the far-field photon modes outside the
cavity described by the environmental Hamiltonian,

ĤE =∑
k

h̵ωk(b̂†
k b̂k +

1
2
), (D1)
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where b̂†
k and b̂k are the raising and lowering operators, respec-

tively, for far-field mode k. The interactions between the cavity
mode and the far-field modes can be described by the follow-
ing Gardiner–Collett interaction Hamiltonian68–70 [denoted as the
system–environment interactions in Eq. (1)] as

ĤI = (â †
+ â)⊗∑

k
h̵gk(b̂

†
k + b̂k), (D2)

where the coupling strength between the cavity mode and the kth
environmental mode is gk, characterized by a spectral density,13,71

and we have ignored Îe and ÎR in ĤI. This Hamiltonian can be
rigorously derived from QED first principles and has been used to
investigate polariton quantum dynamics in a dissipative cavity.13,71

Using the molecule–cavity hybrid Hamiltonian ĤQED in
Eq. (77) as ĤS and the jump operator14 L̂S in Eq. (81) to describe
cavity losses, one can rewrite Eq. (12) (without explicitly showing Îe
and ÎR) as follows:

dρ̂S

dt
= −

i
h̵
[ĤS, ρ̂S] + Γ(âρ̂Sâ †

−
1
2
{â †â, ρ̂S}), (D3)

where the term− 1
2{â

†â, ρ̂S} causes population decay as well as deco-
herence among states, whereas the âρ̂Sâ † term (refilling term) makes
the population reappear in the new state that the decay leads to. An
equivalent way to write the Lindblad master equation is

dρ̂S

dt
= −

i
h̵
(Ĥeffρ̂S − ρ̂SĤ†

eff) + Γâρ̂Sâ †, (D4)

where the effective Hamiltonian is

Ĥeff = ĤS − i
h̵Γ
2

â †â. (D5)

The same expression has been used in the development of the
stochastic Schrödinger equation35–37 [see Eq. (73)] that is equiv-
alent to Lindblad dynamics. Thus, when completely ignoring the
refiling term Γâρ̂Sâ †, one can approximate Lindblad dynamics as
the time dependent Schrödinger equation (TDSE) with the com-
plex Hamiltonian Ĥeff, which has been used in several recent studies
on molecular cavity QED.15,21–25 In the situations where the refill-
ing term is negligible, the dynamics can equivalently be described by
using the Schrödinger equation of a wave function evolving with the
effective Hamiltonian. However, for the applications considered in
the current work in Fig. 7, one cannot ignore the Γâρ̂Sâ † term as we
do care about the population refilling in the ∣g, 0⟩ state, as well as the
proper decoherence among these states.

Note that despite the common usage of the Lindblad jump
operator L̂S = â⊗ Îe ⊗ ÎR [Eq. (81)] for describing cavity losses,14

this jump operator is actually derived by considering the simpler
system Hamiltonian ĤS = h̵ωc(â †â + 1

2)⊗ Îe ⊗ ÎR without explicit
consideration for the matter Hamiltonian or molecule–cavity inter-
actions in ĤQED. Thus, Eq. (D3) should be viewed as a phenomeno-
logical equation, and the rigorous Lindblad master equation for cav-
ity QED should be derived starting from the total Hamiltonian72,73

ĤT = ĤQED + ĤE + ĤI, where ĤE and ĤI are expressed in Eqs. (D1)
and (D2), respectively. The details of the microscopic derivation of
the Lindblad master equation for the Jaynes–Cumming model with
cavity losses, as well as for comparison with Eq. (D3), can be found
in Ref. 72.
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