Erratum: “Non-adiabatic mapping dynamics in the phase space of the SU(N) Lie group” [J. Chem. Phys. 157, 084105 (2022)]

I. CORRECTION IN THE SURFACE HOPPING RESULTS IN FIG. 4

After publishing the paper (Ref. 1), unfortunately, we noticed an error that was generated when we digitize the fewest switches surface hopping (FSSH) result from Ref. 2. This digitization error leads to an incorrect FSSH result in Fig. 4(c) of the original paper (Ref. 1). Here, we provide the correct version of this figure. The only change made in this figure is the FSSH result, shown in the dashed line (Ref. 1), which is that the spin mapping (SM) approach [panels (b) and (d)] outperforms the FSSH method [in panel (c)] for this particular model system, remains unaffected, as the FSSH result (in Ref. 2) provides significantly less accurate population dynamics for states 1 [the red dashed line in panel (c)] and 2 [the blue dashed line in panel (c)].

II. CLARIFICATION ON THE NUMERICAL ALGORITHM USED TO PROPAGATE DYNAMICS

We want to clarify the numerical algorithm we used to propagate the EOMs and generate all numerical results presented in the paper. As opposed to Eq. (106) in the main text, the numerical algorithm we used to generate all numerical results is actually based on the following integration of \(\{ \theta_n, \varphi_n \} : \)

\[
\theta(t + \frac{\Delta t}{4}) = \theta(t) + \frac{\Delta t}{4} \dot{\theta},
\]

\[
\varphi(t + \frac{\Delta t}{2}) = \varphi(t) + \varphi(t + \Delta t) \frac{\Delta t}{2},
\]

(1b)

To integrate the above equations, we need the expressions of the time-derivatives of \(\theta_n \) and \(\varphi_n \) [Eq. (E9)],

\[
\dot{\theta}_n = \frac{\partial H}{\partial \varphi_n} \sin \theta_n - \frac{\partial H}{\partial \varphi_{n-1}} \tan \frac{\theta_n}{2} \left(r_1 \prod_{j=1}^{n-1} \sin \frac{\theta_j}{2} \right),
\]

(2a)

\[
\dot{\varphi}_n = \frac{\Omega_{n+1,n}}{\Omega^*_{n+1,n}} - \frac{\Omega_{n,n-1}}{\Omega^*_{n,n-1}},
\]

(2b)

where, for \(n = 1 \), the denominator is replaced by \(r_1 \) because there is no \(\theta_0 \) variable and the numerator only has the term that includes \(\frac{\partial H}{\partial \varphi_{n-1}} \) as there is no \(\varphi_{n-1} \). In the above expressions, to compute \(\frac{\partial H}{\partial \varphi_n} \), we use Eq. (C2) of the paper. To compute \(\Omega_{n,n} \) and \(\Omega_{n,n}^* \), we use Eqs. (C5) and (C6) of the paper, respectively. To evaluate terms related to \(\{ \Omega_{n} \} \), we use Eqs. (B2)–(B4) of the paper.

To compute the population dynamics, we use the estimator expressed in terms of \(\{ \theta_n \} \), which is Eq. (62) of the paper,

\[
|n\rangle \langle n| = \frac{1}{N} r_n \left(\frac{1}{N} \cos^2 \frac{\theta_n}{2} \prod_{i=1}^{n-1} \sin^2 \frac{\theta_i}{2} \right).
\]

(3)

As we have already emphasized in the paper, an alternative but numerically simpler way to propagate dynamics is to directly

https://doi.org/10.1063/5.0138797
propagate the EOMs with the MMST variables [see Eq. (95) of the paper]. This is an easier approach to implement into computer code, because these equations [Eq. (95) of the paper] are simpler than the corresponding EOMs for \(\{ \varphi_n, \theta_n \} \). In addition, there are several previously developed symplectic integrators\(^4\),\(^5\) to propagate these EOMs, which one can take advantage of. Our numerical tests confirm that identical results are obtained using this approach. This is an independent test of the validity of the algorithm in Eqs. (1)–(3) of this erratum.

III. CLARIFICATION ON THE NOTE IN REF. 65

In the published paper (Ref. 1), we have put a note (Ref. 65 in the original paper) stating that “To the best of our knowledge, we do not see this expression in the previous literature.” This expression refers to Eq. (27) of the main text in Ref. 1, expressed as follows:

\[
\hat{w}_s(\tilde{\varphi}) = 1 - r_s N \hat{I} + r_s \langle \hat{\Omega} \rangle. \tag{4}
\]

We did not realize until recently that this simple equation was discovered in Ref. 6, which is Eq. (4.7) and is expressed as

\[
F_{N,1}(\theta, \varphi) = \frac{\Omega(\tilde{\varphi})}{\Omega(\tilde{s})} \left[F_{N,1}(\theta, \varphi) - \frac{1}{N^{1/2}} \right] + \frac{1}{N^{1/2}} \hat{I}_N^s (\hat{\Omega}). \tag{5}
\]

where \(F_{N,1}(\theta, \varphi) \) is the generating kernel of Stratonovich–Weyl correspondence that depends on the value of \(s \). Furthermore, \(\Omega(s) \) in Eq. (5) [cf. Eq. (3.16) of Ref. 6] is expressed as follows:

\[
\Omega(s) = \begin{cases}
\sqrt{N + 1}, & s = 0, \\
1, & s = +1, \\
N + 1, & s = -1.
\end{cases} \tag{6}
\]

The above \(\Omega(s) \) expression, which defines finite-dimensional Wigner, Q-, and P-functions of the \(SU(N) \)-symmetric quasi-probability distribution, plays the same role as our Bloch sphere radius \(r_s \) in our work Ref. 1.

If one takes the following substitutions:

\[
r'_{s} \equiv \frac{\Omega(\tilde{\varphi})}{\Omega(\tilde{s})}, \quad \langle \hat{\Omega} \rangle, \quad \Omega(s) \equiv F_{N,1}(\theta, \varphi), \quad s = +1, \tag{7}
\]

then Eq. (5) is identical to Eq. (4). We apologize for our limited knowledge at the time when we wrote this particular note. We want to clarify that Ref. 6 was the first work that discovered this expression.

ACKNOWLEDGMENTS

This work was supported by the National Science Foundation CAREER Award under Grant No. CHE-1845747. We also want to thank an anonymous reader who helped us to identify the errors we discussed in this erratum.

REFERENCES

