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ABSTRACT
We perform on-the-fly non-adiabatic molecular dynamics simulations using the recently developed spin-mapping formalism. Two quan-
tum dynamics approaches based on this mapping formalism, (i) the fully linearized Spin-LSC and (ii) the partially linearized Spin-PLDM,
are explored using the quasi-diabatic propagation scheme. We have performed dynamics simulations in four ab initio molecular models for
which benchmark ab initio multiple spawning (AIMS) data have been published. We find that the spin-LSC and the previously reported sym-
metric quasi-classical (SQC) approaches provide nearly equivalent population dynamics. While we expected the more involved spin-PLDM
method to provide superior accuracy compared to the other mapping-based approaches, SQC and spin-LSC, we found that it performed with
equivalent accuracy compared to the AIMS benchmark results. We further explore the underpinnings of the spin-PLDM correlation function
by decomposing its N2 density matrix-focused initial conditions, where N is the number of states in the quantum subsystem. Finally, we found
an approximate form of the spin-PLDM correlation function, which simplifies the simulation and reduces the computational costs from N2

to N.
Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0248950

I. INTRODUCTION

Simulating non-adiabatic dynamics of realistic molecules using
ab initio on-the-fly techniques has been one of the central topics of
theoretical chemistry over the past few decades.1–38 Performing on-
the-fly dynamics requires two major tasks: (i) accurate electronic
structure and (ii) propagation of the correlated electron–nuclear
dynamics.39 Due to the size of the total Hilbert space needed to
perform an exact, full-dimensional quantum simulation, various
approximated quantum dynamics approaches are needed. The most
successful and computationally accessible methods are the mixed
quantum–classical (MQC) approaches such as the fewest switches
surface hopping (FSSH)1 and the mean-field Ehrenfest approach.40

These approaches rely on the output of the electronic structure
methods to evolve the electronic subsystem quantum mechani-
cally while treating the nuclear subsystem classically.32 Unfortu-
nately, the MQC approximation introduces some known drawbacks,
notably the breakdown of detailed balance,41 the artificial creation of
electronic coherence,18 or incorrect chemical kinetics.18

In addressing these known limitations, non-adiabatic dynamics
approaches continue to be developed30,35,36,42–49 in order to system-
atically improve the accuracy of results while retaining a similar level
of computational cost. Most notably, a lot of trajectory-based meth-
ods in the diabatic representation have been developed, including
partial linearized density matrix7,50 (PLDM), state-dependent ring
polymer molecular dynamics,13,15,23,51–54 quantum–classical path
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integral (QCPI) approach,55–58 the quantum classical Liouville equa-
tion (QCLE) dynamics,14,59 and the symmetric quasi-classical (SQC)
approach11,12,60–62 with trajectory-specific zero-point energy.27 Even
more recently, the spin-mapping formalism28,63–66 has been shown
to provide a substantial increase in accuracy in non-adiabatic bench-
mark systems, such as the Fenna–Matthews–Olson (FMO) complex,
the spin-boson models,28,63–65 as well as others.67–69 Another related
approach is the generalized discrete truncated Wigner approxima-
tion (GDTWA).70 A recent connection between the popular FSSH
and mapping approaches has recently been developed and tested in
both model and ab initio settings, which is the mapping approach to
surface hopping (MASH).71–74

The spin-mapping approaches build upon the idea of map-
ping the electronic Hilbert space to one of different types. For
example, the Meyer–Miller–Stock–Thoss (MMST) mapping rela-
tions, employed in the development of the SQC27 and PLDM7

approaches, rely on mapping the N electronic states to that of a set
of N quantum harmonic oscillators, of which each is projected to
include only their ground and first excited states.75–77 One of the
main drawbacks of this mapping is that the Hilbert space of the
quantum harmonic oscillator is larger than that of the original elec-
tronic system and so requires projection or the normalization of
the population to restrict the dynamics to these DOFs. However,
the spin-mapping formalism instead is able to map the operators
in the Hilbert space of N-levels, onto functions of the SU(N) Lie
group that precisely preserve the original symmetry of the N-level
system (i.e., generalized Bloch spheres).28,63,66 By construction,28,63,66

the normalization of the total population is guaranteed to be unity
for all time since the radius of the hyper-sphere of the mapping
variables is fixed. In Ref. 66, it was shown that the spin-linearized
semi-classical (LSC) approach28,63 almost perfectly reproduced the
quantum mechanically exact dynamics of model conical intersec-
tion systems and outperformed both Ehrenfest dynamics and the
surface hopping approach. It is thus natural to apply the diabatic
spin-LSC and related method to perform on-the-fly simulations if
one can easily interface these diabatic trajectory-based approaches
and the adiabatic electronic structure information.

In our recent studies, we have developed and implemented the
quasi-diabatic (QD) propagation scheme78–84 to seamlessly com-
bine adiabatic electronic structure methods with diabatic quantum
dynamics methods. The QD scheme relies on a short-time reference
nuclear geometry (whose electronic states are often called “crude
adiabatic” states), which is a set of locally diabatic states (due to
their fixed characters associated with the reference geometry) and
acts like a “complete basis” during a short time nuclear propagation
time step (when the nuclear DOF is still close to the reference geom-
etry). After this short-time propagation, the QD states are updated
to the new reference geometry. In this propagation scheme, one does
not construct a global diabatic representation but uses a sequence
of local diabatic representations for each short-time segment to
propagate quantum dynamics. Note that the quasi-diabatic prop-
agation scheme78–82 should not be confused with the approximate
diabatic representation, which is also often referred to as the “QD”
representation in the literature.85–87

In this work, we use the QD propagation scheme to seam-
lessly combine the recently formulated spin-mapping quantum
dynamics methods28,63–66 with the adiabatic output of the state-
averaged complete active space self-consistent field (SA-CAS-SCF)

electronic structure method. Here, we perform a direct on-the-fly
non-adiabatic dynamics simulation to investigate the popula-
tion dynamics of various photo-excited species: ethylene, ful-
vene, methyliminium cation (CH2NH+2 ), and 1,2-dithiane, of
which all have been previously investigated using the higher-
level, wavepacket-based ab initio multiple spawning (AIMS)
approach.73,88–90 The AIMS results are interpreted as a benchmark
for the trajectory-based methods in this work. We note that AIMS
itself is not exact73 and sometimes difficult to converge (see the
Appendix) and that it is only used as a measure of overall perfor-
mance for the MQC approaches used in this work. These ab initio
molecular systems provide a set of benchmarks that explore vari-
ous phenomena found in non-adiabatic dynamics, such as electronic
avoided crossings and conical intersections, in a simplified way and
offer a direct connection between the commonly used model systems
of Tully and realistic, ab initio molecules.83,88

While we expected the more involved spin-PLDM method to
provide superior accuracy compared to the other mapping-based
approaches, SQC and spin-LSC, we found that it performed with
equivalent accuracy compared to the AIMS benchmark results. We
further explored the nature of the spin-PLDM correlation function
by examining the various components individually. Here, we found
that an approximate scheme can be constructed to give results of
similar accuracy to the full spin-PLDM correlation function, where
one only needs to calculate a single column of the N2 initial condi-
tions, which includes the initially excited population element. This
reduces the computational expense from N2 trajectory-converged
simulations to N simulations, still amounting to more computa-
tions than the spin-LSC approach, which only ever requires a single
trajectory-converged calculation for the initial conditions used in
this work. These simulations provide valuable tests of the numeri-
cal performance of various non-adiabatic approaches beyond model
systems, which have been used as the main workhorse for bench-
marking new methods in the field of quantum dynamics. It is our
hope that these benchmark studies using realistic, ab initio sys-
tems will help foster the development of new quantum dynamics
approaches.

II. THEORY
A. The molecular Hamiltonian

Simulating quantum dynamics of molecular systems amounts
to solving the coupled electron–nuclear dynamics governed by the
molecular Hamiltonian,

Ĥ = T̂R + T̂r + V̂c(r, R) ≡ T̂R + Ĥel(r, R), (1)

where T̂R = −
̵h2

2M∇
2
R and T̂r = −

̵h2

2me
∇

2
r are the kinetic energy oper-

ators for the nuclear and electronic degrees of freedom (DOF),
respectively, V̂c(r, R) describes the Coulomb interactions between
all DOF (electronic and nuclear), and Ĥel(r, R) = T̂r + V̂c(r, R) is
the electronic part of the molecular Hamiltonian. Directly simulat-
ing quantum dynamics by solving the time-dependent Schrödinger
equation (TDSE) governed by Ĥ remains intractable. Instead,
mixed-quantum classical and semi-classical quantum dynamics
approaches offer an efficient but approximate solution to the TDSE.
These approaches solve the quantum dynamics in the following two
steps.
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For most of the on-the-fly methods, the task of quantum
dynamics propagation is decomposed into two steps. In the first
step, an electronic structure calculation is performed to obtain adi-
abatic potential energies and gradients. That is, one solves the
time-independent Schrödinger equation for the electronic part of
the Hamiltonian,

Ĥel(r, R)∣ϵμ(R)⟩ = ϵμ(R)∣ϵμ(R)⟩, R ∈ {Ra}, (2)

where ∣ϵμ(R)⟩ and ϵμ(R) are referred to as the adiabatic states and
adiabatic potential energy surfaces, respectively.

In the second step, one evolves the electronic and nuclear
degrees of freedom (DOFs), governed by the total Hamiltonian Ĥ,
using the output of the previous step. The total Hamiltonian Ĥ in
the adiabatic representation can be written as

Ĥ =∑
a

(P̂ a − ih̵d̂(Ra))
2

2Ma
+∑

μ
ϵμ(R)∣ϵμ(R)⟩⟨ϵν(R)∣, (3)

where dμν(R) = ⟨ϵμ(R)∣∇a∣ϵν(Ra)⟩ is the nonadiabatic coupling
vector (NACV), which originates from the nuclear kinetic energy
operator T̂R and appears due to the dependence of the adiabatic
states on the nuclear coordinates. The matrix elements [note that
diagonal elements are zero, dμμ(Ra) = 0] of the NACV can also be
expressed as

dμν(Ra) =
⟨ϵμ(R)∣∇aĤel∣ϵν(R)⟩

ϵν(R) − ϵμ(R)
, μ ≠ ν, (4)

where the denominator becomes zero at conical intersections or triv-
ial crossings [i.e., ϵν(R) − ϵμ(R) = 0]. Furthermore, NACV is often
very sharp (in nuclear coordinate space), requiring a small time
step to obtain reasonable dynamics.81 Performing dynamics using
Ĥ given in Eq. (3) thus becomes numerically challenging.

Barring this numerical challenge, importantly the adiabatic
representation also introduces incompatibility challenges for propa-
gating the coupled electronic and nuclear degrees of freedom. This
is because many quantum dynamics approaches, such as the spin-
mapping approaches used in this work,28,66 are instead formulated
in the diabatic representation {∣μ⟩}. Reformulating these methods
from diabatic to adiabatic representations requires additional theo-
retical efforts.60 Within the diabatic representation {∣μ⟩}, however,
the NACVs (and, by extension, the second derivative couplings)
vanish by definition,

⟨ν∣∇a∣μ⟩ = 0, (5)

as the diabatic states ∣μ⟩ are independent of the nuclear configura-
tion {R} and are only defined based on their character. Meanwhile,
diabatic states are not unique and are often not routinely available.
The total molecular Hamiltonian in the diabatic representation has
the following preferable compact form:

ĤD =∑
a

P̂2
a

2Ma
⊗ Î +∑

μν
Vμν(R)∣μ⟩⟨ν∣, (6)

where Î is the identity operator in the electronic subspace
and Vμν(R) = ⟨ν∣Ĥel(r, R)∣μ⟩ has off-diagonal matrix elements

(called diabatic coupling) in contrast to its adiabatic counter-part
∑μ ϵμ(R)∣ϵμ(R)⟩⟨ϵμ(R)∣ in Eq. (3). In this work, we use the quasi-
diabatic (QD) framework82,83 to directly propagate the quantum
dynamics using the outputs obtained in the adiabatic representa-
tion. Below, we briefly describe the spin-mapping approaches28,66

and how to interface them with adiabatic electronic quantities ϵμ(R),
∇Ra ϵμ(R), dμν(Ra), and {∣ϵμ(R)⟩} using the QD framework.

B. The spin-mapping approach
In this work, we closely followed the spin-mapping (SM)

approach of Richardson and co-workers.28,63–65 In particular,
we will use both the spin-linearized semi-classical (spin-LSC)
approximation28,66 and spin partially linearized density matrix
(spin-PLDM) approach64,65 to perform quantum dynamics. A
detailed discussion of the SM representation and the SU(N)
Lie group can be found in Ref. 66. Consider the coupled
electron–nuclear diabatic Hamiltonian with the electronic opera-
tors split into state-independent V0(R̂) and state-dependent V̂(R̂)
terms,

Ĥ = T̂R + V0(R̂) + V̂(R̂), (7)

where the trace over the electronic subsystem Tre[V̂(R̂)] = 0 by
construction. Note that V̂(R̂) is an N ×N matrix, where N is the
number of considered electronic states.

Many dynamical quantities of interest can be written as a two-
time correlation function,

CAB(t) = Tr [ρ̂n(0)Â(0)B̂(t)], (8)

where Â(0) and ρ̂n(0) can be interpreted as the factorized initial
electronic and nuclear configurations for the system at t = 0 and
B̂(t) = eiĤ t/̵hB̂e−iĤ t/̵h. In this work, we take Â and B̂ to be operators
in the N ×N electronic sub-space (population and coherence), ρ̂n is
the nuclear density operator, and the trace is over both nuclear and
electronic degrees of freedom (DOFs).

1. Spin-LSC
In the fully linearized spin-mapping framework, any electronic-

only, two-operator correlation function can be written as

CAB(t) = ⟨Aw(Z(0))Bw(Z(t))⟩, (9)

where Aw and Bw are the Stratonovich–Weyl (SW) transforms of
the operators Â and B̂, respectively, under the w-representation,

[Â]w(Z, 0) ≡ Aw(Z(0)) = Tre[Â ω̂†
w(Z(0))], (10a)

[B̂]w(Z, t) ≡ Bw(Z(t)) = Tre[B̂ ω̂w(Z(t))]. (10b)

In the above-mentioned transform, the SW kernel with the
w-representation28,66 can be written as

ω̂w(Z, t) =
1
2

N

∑
μ,ν
(Zμ(t)Z∗ν (t) − γwδμν)∣μ⟩⟨ν∣, (11)

in the electronic basis {μ, ν} (in the diabatic representation). The
kernel is evaluated as a function of the complex-valued, time-evolved
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mapping variables Z = {Z1, Z2, . . . , ZN} with a fixed zero-point
energy parameter (for the w-representation),28,66

γw =
2
N
(
√

N + 1 − 1), (12)

where N is the total number of states considered in the quantum
subsystem. One can identify that28,66

Zμ = qμ + ipμ, (13)

where qμ and pμ are equivalent to the commonly used MMST map-
ping variables. However, the explicit use of the MMST mapping
variables is not required in the current work and thus not used in
the implementation of this work.

The correlation function in Eq. (9) is evaluated using focused
initial conditions28,66 such that

⟨⋅ ⋅ ⋅⟩ =
N

∑
λ
∫ dRdPdZ ⋅ ρn(R, P)(⋅ ⋅ ⋅ ) ⋅ ρ(λ)w , (14)

where ρn(R, P) is the nuclear Wigner distribution and ρ(λ)w is the
focused initial electronic distribution, which is expressed as follows:

ρ(λ)w =
δ(∣Zλ∣

2
− γw − 2)Πμ≠λδ(∣Zμ∣

2
− γw)

∫dZδ(∣Zλ∣
2
− γw − 2)Πμ≠λδ(∣Zμ∣

2
− γw)

. (15)

This spin-LSC correlation function using the focused initial
conditions [Eq. (14)] is evaluated by averaging over an independent
set of trajectories, one for each λ in the sum in Eq. (14). For each λ,
the mapping variables Z are initialized as

Zλ =
√

2 + γw ⋅ eiϕλ , (16a)

Zμ =
√

γw ⋅ eiϕμ , μ ≠ λ, (16b)

where Zλ is for the initially focused state and {ϕ} is a ran-
dom angle sampled between 0 and 2π, independently from one
another.

In this work, we are only interested in correlation functions
with Â(0) = ∣σ⟩⟨σ∣ (i.e., the initial condition), which indicates that
the initial electronic density matrix is a single electronic state σ.
This is the case for a time-independent Frank–Condon excitation,
often used as the initial condition for non-adiabatic dynamics stud-
ies. In this case, the spin-LSC correlation function, for the focused
sampling in Eq. (14), is greatly simplified to

C∣σ⟩⟨σ∣B(t) = ∫ dRdPdZρb(R, P)ρ(σ)w Bw(Z, t). (17)

This is because the SW transform of Â results in

Aw = [∣σ⟩⟨σ∣]w = δσλ (18)

and thus picks out a single term in Eq. (14). Since there is no sum
over λ in the correlation function, one only needs to converge one
set of trajectories [λ = σ in Eq. (15)], which involves sampling the
mapping variables as Zσ(0) =

√
2 + γweiϕσ and Zμ≠σ(0) =

√γweiϕμ .
Still, one must still ensure that both the random phases {ϕ} of
the mapping variables and the nuclear phase space variables {R, P}

are sufficiently converged/sampled. For computing, for example,
reaction rate constants (with the flux-side correlation function)91

or optical response functions,92,93 which require the initial density
matrix to be off-diagonal (i.e., Â ≠ ∣σ⟩⟨σ∣), one needs to explicitly
perform the sum.

The propagation of the mapping and nuclear variables can be
done in the usual MMST manner as

dZμ

dt
= −i∑

ν
⟨μ∣V̂(R)∣ν⟩Zν, (19a)

dR
dt
=

P
M

, (19b)

dP
dt
= F0(R) + F e(R, Z), (19c)

where F0(R) = −∇V0(R) is the state-independent force, and the
state-dependent forces F(R, Z) are calculated as

F e(R, Z) = −1
2∑μν

⟨μ∣∇V̂(R)∣ν⟩(Zμ(t)Z∗ν (t) − γwδμν)

= −∑
μν

ρμν(t)⟨μ∣∇V̂(R)∣ν⟩. (20)

Finally, the estimator for the reduced density matrix of a single tra-
jectory is simply the μνth element of the time-evolved SW kernel
[Eq. (11)],

ρμν(t) =
1
2
(Zμ(t)Z∗ν (t) − γwδμν), (21)

as shown in the state-dependent force expression [Eq. (20)].
There is a very interesting observation for the spin-LSC

approach: when N is very large, the ZPE correction in Eq. (12) scales
as γw ∝ 1/

√
N → 0. This means that for the system with a very large

N, the ZPE correction becomes zero, and the EOMs for spin-LSC
reduce to those of Ehrenfest dynamics. It is also interesting to note
that 1/

√
N is the relative energy variance for a general system and

goes to zero under the thermodynamic limit.

2. Spin-PLDM
Following a similar line of reasoning as spin-LSC outlined

above, spin-PLDM can be thought of as a natural extension to the
fully linearized case of spin-LSC, now incorporating two sets of map-
ping variables for each electronic state. Furthermore, spin-PLDM
is the extension of the original PLDM approach,7,50,91 which was
based on the MMST mapping formalism. Compared to spin-LSC,
spin-PLDM can be thought of as an extension from a wavefunc-
tion representation to a density matrix representation, where one
set of mapping variables ({Z}) represents the “ket” moving for-
ward in time and the other ({Z′}) represents the “bra” moving
backward in time. In general, the observable can be constructed as
an average of these two non-interacting paths in electronic action,
only connected through simultaneous interactions with nuclear
motion.7,50,64,65,91

The general correlation function can be written as

CAB(t) = ⟨Tre[Âω̂†
w(Z′, t)B̂ω̂w(Z, t)]⟩, (22)
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which has two sets of mapping variables ({Z},{Z′}), representing
the forward and backward evolution operators instead of the oper-
ator Â or B̂,64,65 which has the same strategy as the original PLDM
approach.7 Hence, the spin-LSC and spin-PLDM utilize these SW
kernels to represent two vastly different quantities in the correlation
function.

Here, compared to Eq. (11) for spin-LSC, the time-evolved SW
kernel is modified as64,65

ω̂w(Z, t) =
1
2

N

∑
μ,ν
(Zμ(t)Z∗ν (0) − γwUμν(t))∣μ⟩⟨ν∣, (23)

where the time-evolution [acted upon from the left of the ker-
nel as ω̂w(Z, t + Δt) = e−iV̂ (R)Δtω̂w(Z, t)] now evolves only a single
Z while also “evolving the ZPE parameter,” i.e., the parameter
γw remains unchanged, but the identity matrix is now a time-
evolving matrix Û(t), which can be interpreted as a time-evolving
and density-matrix-element-dependent ZPE. The ZPE matrix Û(t)
is evolved as

Û(t) = e−iV̂ (Rn)Δt
⋅ ⋅ ⋅ e−iV̂ (R2)Δte−iV̂ (R1)Δt𝟙N , (24)

where V̂(Rn) is the state-dependent potential from Eq. (7) evalu-
ated at a nuclear configuration Rn at time tn, after n nuclear time
steps. Note that at t = 0, Û(0) = 𝟙N , which is the identity matrix in
the electronic Hilbert space with N states. For spin-LSC, Û(t) = 𝟙N

for all time t. Furthermore, ω̂†
w is the Hermitian conjugate of ω̂w,

expressed as follows:

ω̂†
w(Z′, t) =

1
2

N

∑
μ,ν
(Z′∗ν (t)Z′μ(0) − γwÛ∗νμ(t))∣μ⟩⟨ν∣. (25)

As before, we evaluate the spin-PLDM correlation function in
Eq. (22) using focused initial conditions, expressed as

⟨⋅ ⋅ ⋅⟩ =
N

∑
λ

N

∑
λ′
∫ dRdPdZρb(R, P) ⋅ ⋅ ⋅ ρ(λ)w ρ(λ

′
)

w . (26)

Note now that the spin-PLDM correlation function has picked up
a second sum, which focuses the backward mapping variables to
electronic state λ′. This additional sampling now impedes the same
simplification that was made before for spin-LSC, even for the case
when only computing initial operators Â = ∣σ⟩⟨σ∣. Now, in principle,
all N2 focused initial conditions for λ and λ′ will play some role in
the correlation function at time t > 0 no matter the choice of Â.

The mapping variables are initially sampled in the same way as
for spin-LSC as follows:64,65

Zλ =
√

2 + γw ⋅ eiϕλ ; Zμ =
√

γw ⋅ eiϕμ , μ ≠ λ,

Z′λ′ =
√

2 + γw ⋅ eiϕ′
λ′ ; Z′μ =

√
γw eiϕ′μ , μ ≠ λ′,

(27)

where now {ϕ} and {ϕ′} are independently and randomly sampled
between 0 and 2π, and the mapping variables for different trajecto-
ries are completely independent. The time-evolution of the mapping
variables is identical to Eq. (19a) for the forward and backward

DOFs, while the state-dependent nuclear force is computed iden-
tically to the standard PLDM prescription7,50,91 as the average over
the forward and backward paths,

F e(R, Z, Z′) = −1
2∑μν

⟨μ∣∇V̂(R)∣ν⟩
1
2
[(Zμ(t)Z∗ν (t) − γwδμν)

+ (Z′μ(t)Z′
∗

ν (t) − γwδμν)]. (28)

Note that in Eq. (28), the time-evolved ZPE matrix Û(t) [cf.
Eq. (23)] does not appear, since the representation of an operator
[∇V̂(R) in this case] is written as [∇V̂]w(Z) = Tre[∇V̂(R)ω̂(Z)],
with the explicit expression [see Eq. (10b)] as follows:

[∇V̂]w(Z) =
1
2∑μν

⟨μ∣∇V̂ ∣ν⟩(Zμ(t)Z∗ν (t) − γwδμν), (29)

for either Z or Z′ mapping variables (just as in spin-LSC).
The estimator for the reduced density matrix ρμν(t) at time

t of a single trajectory and a single initial electronic density matrix
sampling (λ, λ′) [cf. Eq. (26)] can be calculated by identifying the
measuring operator as, for example, B̂ = ∣μ⟩⟨ν∣. Here, we assume an
initial density matrix of the form Â = ∣σ⟩⟨σ∣ (which contains only
a single non-zero element, on its diagonal). However, for exam-
ple, to perform linear and non-linear spectroscopies,92,93 a more
complicated initial condition dependent on coherence elements is
required. In this case, one can write down the reduced density matrix
elements as

ρμν(t) = Tre[Âω̂†
w(Z′, t)∣μ⟩⟨ν∣ω̂w(Z, t)]

= ⟨σ∣ω̂†
w(Z′, t)∣μ⟩⟨ν∣ω̂w(Z, t)∣σ⟩, (30)

where the matrix element of the kernels can be obtained from
Eqs. (23) and (25). Note that this is a simple matrix multiplica-
tion and a trace of four matrices, Tr [Â × ŵ†

w(Z′, t)B̂ × ŵw(Z, t)],
which can be done for any choice of Â and B̂ and accomplished on-
the-fly with any standard linear algebra library alleviating the need
to work out the matrix elements by hand for arbitrarily complicated
initial and final matrices Â and B̂.

Recall that the sum of initially focused conditions [λ and λ′
from Eq. (26)] affects the distribution of the mapping variables (Z,
Z′), and so, the effect of this focusing does not appear in the esti-
mator explicitly. In addition, the meaning of a single trajectory in
spin-PLDM is rather unclear, since the true correlation function
depends not only on simple averaging over a statistical ensemble
but also over a set of sums {λ, λ′} that, in principle, give different
dynamics compared to those focused to a different density matrix
element (i.e., an initial state for both the forward and backward com-
ponents). As such, we will not perform any analysis on individual
trajectories from this method. Finally, we note that if γw is set to
zero, the standard PLDM EOMs are recovered. Instead, if Z = Z′
and Û(t)→ 𝟙̂N , then spin-LSC EOMs are recovered.

C. Quasi-diabatic propagation
We briefly outline the quasi-diabatic (QD) propagation scheme

used in this work to connect the spin-mapping approaches, origi-
nally formulated in the diabatic quantum representation, with the
adiabatic electronic structure calculations. For more details on the
QD scheme in general, we refer the reader to Refs. 78, 80, 82, and 83.
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Upon performing the electronic structure calculation at
the initial nuclear configuration R(0), one obtains the neces-
sary adiabatic quantities: adiabatic energies ϵμ(0) and nuclear
gradients ∇RVμν(0) = ⟨ϵμ(0)∣∇RĤel∣ϵν(0)⟩ = dμν ∗ (ϵν(0) − ϵμ(0)),
where dμν = ⟨ϵμ(0)∣∇RĤel∣ϵν(0)⟩/(ϵν − ϵμ); see Eq. (4). Note that
the adiabatic states ∣ϵν(0)⟩ are adiabatic in nature because
their characters are fixed and are associated with the refer-
ence geometries, R(0). Thus, they can be viewed as a com-
pact set of diabatic states for a short-time propagation t ∈ [0, Δt].
After calculating the initial force F(0) in the mapping repre-
sentation [Eq. (20)] and propagating the nuclear DOFs, a sec-
ond electronic structure calculation is performed at the updated
nuclear coordinated R(Δt) to obtain the necessary adiabatic
quantities: diagonal energies ϵμ(Δt), nuclear gradients ∇RVμν(Δt)
= ⟨ϵμ(Δt)∣∇RĤel∣ϵν(Δt)⟩ = dμν ⋅ (ϵν(Δt) − ϵμ(Δt)), and the Löwdin
-orthogonalized time-overlap matrix Sμν(0, Δt) = ⟨ϵμ(0)∣ϵν(Δt)⟩;
see details in Ref. 82. These adiabatic states ∣ϵμ(Δt)⟩ will be used
as diabatic states for quantum dynamics propagation during time
t ∈ [Δt, 2Δt]. The same process will occur for the entire propagation.

The electronic mapping variables are propagated using a lin-
early interpolated Hamiltonian between the time 0 and Δt on the
basis of adiabatic electronic states at time 0. The unitary rotation
between the time Δt and time 0 bases is exactly the time-overlap
matrix S(0, Δt). Explicitly, the diagonal energies at time Δt, [ϵ(Δt)],
are rotated to the time 0 basis as H(Δt) = S(0, Δt) × [ϵ(Δt)]
× ST
(0, Δt), which forms a potential energy matrix that has non-

zero off-diagonal elements. Here, [ϵ(Δt)] denotes a diagonal matrix
of the adiabatic energies ϵμ(Δt). The linearly interpolated Hamil-
tonian then takes the form H(t) = [ϵ(0)] + t−0

Δt (H(Δt) − [ϵ(0)]),
where t ∈ (0, Δt). The mapping variables are propagated using a
velocity-Verlet scheme (by splitting the real and imaginary com-
ponents of Z), which solves Eq. (19a) for both spin-LSC and
spin-PLDM, noting that the only difference is that the spin-PLDM
contains two sets of mapping variables {Z, Z′} that are propa-
gated independently from one another. Finally, the time-evolved
mapping variables Z(Δt), which are still in the time 0 basis, are
rotated to the time Δt basis via the time-overlap matrix S(0, Δt) as
ST
(0, Δt) × Z(Δt)→ Z(Δt).

Furthermore, in spin-PLDM, the ZPE matrix U(0) = 𝟙̂N (iden-
tity matrix at initial time) needs to be propagated according to
U(Δt) = exp [−iĤΔt]U(0), which is done in the time Δt basis after
the ZPE matrix has been rotated to the Δt basis such that the Hamil-
tonian is diagonal [ϵ(Δt)] and only applies a phase shift in addition
to the time-overlap transformation. The stepwise ZPE matrix basis
rotation and subsequent time-propagation can be compactly written
as U(Δt) = [e−iϵ(Δt)Δt

] × ST
(0, Δt) ×U(0) × S(0, Δt).

The above-mentioned procedure is repeated for the desired
number of nuclear time steps, replacing all time 0 quantities
with time Δt quantities (i.e., the new reference basis) and further
propagating the nuclei to acquire the time 2Δt adiabatic quantities.

D. Computational details for ab initio simulations
The non-adiabatic molecular dynamics simulations use an

in-house-modified version82,83 of the SHARC non-adiabatic molec-
ular dynamics code,94 interfaced to the MOLPRO electronic struc-
ture package.95 On-the-fly electronic structure calculations are
performed at the level of state-averaged complete active space

self-consistent field (SA-CASSCF) approach. Ethylene, fulvene,
methyliminium cation, and 1,2-dithiane were calculated with
3SA-CASSCF(2,2), 2SA-CASSCF(6,6), 2SA-CASSCF(6,5), and 3SA-
CASSCF(6,4), respectively. All simulations were performed with the
6-31G∗ basis set. These SA-CASSCF parameters were taken from
Refs. 88 and 89. In all cases, only the two lowest-energy, singlet adi-
abatic states, S0 and S1, were used in the electronic dynamics with
the initial electronic state always set to the first singlet excited state,
S1. Unless otherwise specified, in all ab initio results, the time step
for the nuclear propagation was 0.1 fs using 200 electronic substeps
per nuclear step. Furthermore, 1000 trajectories were computed
for each molecular model. To be clear, in the spin-PLDM correla-
tion function, each initially focused electronic condition {λ, λ′} was
converged with the 1000 trajectories, in total 2 × 2 × 1000 = 4000
trajectories for each of the two-state chemical models. Furthermore,
to provide as much consistency between the MQC approaches as
possible, the same set of 1000 initial nuclear configurations are used
for each method, and for spin-PLDM, the 1000 nuclear samples were
repeated for each initial electronic focusing condition.

The initial Wigner distribution is sampled from the ground
vibrational state ν = 0 on the ground electronic state ∣S0⟩, where
the normal mode frequencies (in the harmonic approximation) are
calculated based on the approach outlined in Refs. 96 and 97, as
implemented in the SHARC package.94 For all molecules, the nor-
mal mode frequencies are computed at the level of MP2/6-31++G∗∗

with the MOLPRO package, with the optimized structure obtained
at the same level of electronic structure theory for the ground elec-
tronic state. In particular, the nuclear density ρW(R̃, P̃) in terms
of the molecular normal-mode frequencies {ω̃k} and phase space
variables {R̃, P̃} is given as98

ρW(R̃, P̃)∝
N

∏
k=1

exp [− tanh(
βh̵ω̃k

2
)(

mω̃k

h̵
R̃2

k +
1

mkω̃kh̵
P̃2

k)].

(31)
The initial distribution {R, P} is then obtained by transforming
{R̃, P̃} from the normal mode representation to the primitive coor-
dinates using the unitary transformation that diagonalizes the Hes-
sian matrix. The positions and momenta for all molecules were
sampled from the above-mentioned Wigner distribution.

For comparison, we also use the γ-SQC-Δ approach for on-the-
fly simulations. Details of it are provided in our previous work.83

Where noted, we performed decoherence-corrected99 FSSH (dTSH)
as implemented in the SHARC package94 with velocity rescaling in
the direction of the velocity vector (equivalent to the “FSSH-vel”
method of Ref. 73). Otherwise, we take the population trace from
the studies referenced.

III. RESULTS AND DISCUSSION
Figure 1 presents the photodissociation of ethylene through

its S1/S0 conical intersection generated by the rotation of the
H–C–C–H dihedral angle. The nuclear dynamics of ethylene are
analogous to the dynamics of the molecular Tully model 1,1 as
discussed in previous reports (see results for the model systems
in the supplementary material).73,83,88 Figure 1(a) shows the popu-
lar energy-based decoherence-corrected surface hopping approach
(dTSH),100 which is a popular method that captures much of
the decoherence that standard FSSH fails to capture. Figure 1(b)
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FIG. 1. S1 population dynamics of the ethylene molecule for a variety of semi-
classical methods: (a) dTSH, (b) γ-SQC-Δ, (c) spin-LSC, and (d) spin-PLDM. All
methods are compared to the ab initio multiple spawning (AIMS) results, which are
taken to be more exact compared to these semi-classical approaches. The AIMS
results were taken from Ref. 73, while the dTSH results were simulated by us with
the standard SHARC package.94

presents the γ-corrected SQC approach using the triangle win-
dowing (γ-SQC-Δ). In all panels of Fig. 1, we compare the MQC
approaches to the ab initio multiple spawning (AIMS) results taken
from Ref. 73. The dTSH results were simulated by us using the
standard SHARC package.94

Figures 1(c) and 1(d) show the results from spin-LSC and
spin-PLDM, respectively. At short times (less than 30 fs), all meth-
ods capture the correct population dynamics, which exhibits 10 fs
of plateau followed by a short decrease and another short plateau
(i.e., a shoulder). γ-SQC-Δ and spin-LSC agree with the AIMS result
better than dTSH and spin-PLDM. At a longer time (more than 30 fs
and less than 70 fs), dTSH and spin-LSC underestimate the popula-
tion, while spin-PLDM overestimates compared to AIMS. γ-SQC-Δ
shows quantitative agreement with the AIMS results. At longer times
(more than 60 fs), spin-LSC matches the AIMS results, while dTSH
and spin-PLDM continue to underestimate the population. Again,
γ-SQC-Δ successfully matches the AIMS result. We note that while
we compare our MQC simulations to the AIMS results, it is not guar-
anteed that the AIMS results are necessarily superior, as has been
discussed in Ref. 73.

Overall, spin-PLDM seems to overestimate the population at all
times. Furthermore, the initial S1 population (between 0 and 15 fs)
goes above 1.0. It should be noted that if one only considers the pri-
mary contribution to the spin-PLDM correlation function [Eq. (26)],
(λ, λ′) = (σ, σ) = (1, 1) in this case, then the trajectory-converged
population seems to be restricted to lie between 0 and 1 for all sys-
tems (see Fig. 7, discussed in more detail later). Recall that the cost of
spin-PLDM scales unfavorably with the number of states N, since N2

converged population dynamics (for each (λ, λ′) initial condition):
4000 = 1000 × 22 trajectories in this case, 4× more expensive than
spin-LSC, γ-SQC-Δ, and dTSH. However, as we will discuss later
(in Fig. 7), a major simplification of spin-PLDM can be made by

FIG. 2. S1 population dynamics of the CH2NH+2 molecule for a variety of semi-
classical methods: (a) A-FFSH, (b) γ-SQC-Δ, (c) spin-LSC, and (d) spin-PLDM.
All methods are compared to the ab initio multiple spawning (AIMS) results, which
are taken to be more exact compared to these semi-classical approaches. The
AIMS and A-FFSH results were taken from Ref. 89.

excluding some of the N2 initial conditions present in the full spin-
PLDM correlation function. Overall, all four approaches capture the
general physics of ethylene photodissociation dynamics.

Figure 2 provides a slightly more challenging system: the
methyliminium cation (CH2NH2

+
) photodynamics. This model is

similar to ethylene in the sense that a CI is generated by the chang-
ing H–C–N–H dihedral angle. As such, the benchmark AIMS results
suggest that the population dynamics have very similar features
as the ethylene dynamics. However, a recurrence/shoulder in the
population of the S1 state appears around 25–30 fs. For this sys-
tem, all methods, including augmented FSSH (A-FSSH)101 and the
mapping approaches, overestimate the initial population transfer to
the ground state around 10 fs. Following this, all approaches seem
to provide a plateau in the population of the S1 state, but only
A-FSSH, γ-SQC-Δ, and spin-PLDM are able to showcase a visible
recurrence in the S1 population. Throughout the entire dynam-
ics, A-FSSH seems to capture all the features found in the AIMS
result, with spin-PLDM and γ-SQC-Δ close behind, of which both
overestimate the S1 population (or rather underestimate the popu-
lation transfer rate to the ground state) at long times (more than
50 fs). For this model, it is clear that spin-LSC performs worse than
the other models, while A-FSSH performs well compared to the
AIMS result.

Figure 3 represents a more complicated nonadiabatic dynam-
ics scenario in which the fulvene molecule undergoes a periodic
(every ∼10 − 20 fs) and extended encounter with an S0/S1 CI directly
linked to the stretching of the C–CH3 stretching mode. This is simi-
lar to the Tully model No. 3,1,73,83,88 which exhibits a region of strong
and extended coupling followed by branching and recrossing of the
reflected wavepacket. At short times, all methods correctly produce
a population plateau for ∼10 fs, while spin-PLDM again exhibits a
slight increase in S1 population. At longer times, all methods exhibit
vastly different results, but all capture the recurrence of the pop-
ulation due to the CI and subsequent second population plateau
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FIG. 3. S1 population dynamics of the fulvene molecule for a variety of semi-
classical methods: (a) dTSH, (b) γ-SQC-Δ, (c) spin-LSC, and (d) spin-PLDM. All
methods are compared to the ab initio multiple spawning (AIMS) results, which are
taken to be more exact compared to these semi-classical approaches. The AIMS
and dTSH results were taken from Ref. 73.

(at 20 fs). All MQC approaches underestimate the S1 population dur-
ing the CI crossing at ∼10 fs, with spin-PLDM exhibiting a larger
population recurrence than the other methods before the plateau at
20 fs. Measuring the population recurrence between the minimum
near 12 fs and the maximum near 20 fs, dTSH nearly quantitatively
matches the AIMS result (up to a population shift) in the amount of
recovered S1 population. Spin-PLDM overestimates this population
increase, while spin-LSC and γ-SQC-Δ underestimate the popula-
tion increases. While none of the methods are able to reproduce
the fine structure of the AIMS population, the dTSH approach is
able to capture the AIMS results throughout the 40 fs more closely
than the other three methods while only slightly underestimating the
quantitative population.

To further probe the dynamics of fulvene, we examine the
averaged nuclear density of a single nuclear DOF and a few single-
trajectory properties of the spin-LSC approach. It should be noted
that a single trajectory in any trajectory-based quantum dynamics
approach should be understood as a fictitious observable, which is
only physical upon an average over many such trajectories. How-
ever, in our experience, much can be learned about the method as
well as the chemical system by examining the results/trends from a
single trajectory. Such an examination helps build intuition regard-
ing novel quantum dynamics approaches. We would also like to
point out that a single trajectory in spin-PLDM is less representative
than a single trajectory in any other approach since the correla-
tion function depends on a sum of vastly different initial conditions
[see Eq. (26)] for the electronic mapping variables and thus subse-
quent nuclear dynamics. Therefore, we omit any further study of
spin-PLDM beyond the population dynamics and the averaged con-
tributions to the correlation function itself (to be discussed later
in Fig. 7). However, an analysis of trajectory-converged nuclear
quantities from different initial electronic conditions given by
Eq. (26) would be interesting and will be the subject of future work
by us.

FIG. 4. (a) Fulvene C–C (ring carbon–methyl carbon) bond length den-
sity/wavepacket, composed of the same spin-LSC trajectories as provided in the
construction of Fig. 3(c). (b)–(e) Observables of a single representative trajectory,
including time-dependent (b) energies of the S0 (black) and S1 (red) electronic
adiabatic states, (c) population of initially populated S1 state, (d) real (black) and
imaginary (red) S0/S1 electronic coherence, and (e) C–C bond length. The inset of
panel (b) shows the energy difference between S1 and S0 on a log scale.

Figure 4(a) shows the probability density for the C–C bond
stretching coordinate of the 1000-trajectory spin-LSC simulation of
the fulvene molecule. The nuclear density (wavepacket) oscillates,
and the system encounters the CI at each maximal value of stretch-
ing. At long times, the wavepacket broadens slightly but not by
an appreciable amount since the C–C bond is never broken. Dur-
ing the simulation, only two oscillations of this bond are allowed.
Figures 4(b)–4(e) present the result from a single trajectory of the
fulvene dynamics, showing the energies of the S1 (red) and S0 (black)
adiabatic states, the population of the S1 state, the real (black) and
imaginary (red) parts of the coherence, and the single-trajectory
C–C bond stretching coordinate, respectively. The potential energy
landscape through time is indicative of the prolonged nonadiabatic
region analogous to Tully model No. 3 and correlates with the
extended C–C bond length occurring at 10 and 30 fs. The inset of
Fig. 4(b) shows the energy difference of the S1 and S0 states on a
log scale.

J. Chem. Phys. 162, 084105 (2025); doi: 10.1063/5.0248950 162, 084105-8

Published under an exclusive license by AIP Publishing

 
2
5
 
F
e
b
r
u
a
r
y
 
2
0
2
5
 
1
4
:
1
7
:
0
3

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

The population dynamics for this trajectory showcase the com-
plicated nonadiabatic event at 10 fs, which all mapping approaches
fail to capture correctly once averaged over the 1000 trajectories.
While the single trajectory population does not match the AIMS
result in magnitude of population, it shows the qualitative struc-
ture (a short plateau/recurrence in S1 population) of the AIMS result
at 10 fs, which becomes absent upon trajectory-average. Further-
more, the dynamical evolution of S1/S0 coherence is readily available
from the spin-LSC approach and correctly indicates the regions of
the strong coupling by the dynamic oscillation frequency primar-
ily dictated by the inverse of the energy difference of the electronic
states.

Figure 5 shows the population dynamics of the 1,2-dithiane
molecule upon excitation to the S1 state. This model showcases an
extended CI between S1 and S0, which manifests as the S–S bond
breaks. Periodically, roughly every 300 fs, the S–S bond reforms
and thus moves the system away from the CI region. During this
time (starting from ∼ 30 fs), the energies of the S1 and S0 state are
degenerate for about 100 fs [see Fig. 6(b)]. For this case, the AIMS
results are obtained with a limited set of initial configurations (see
the Appendix and Fig. 8 for discussions). Instead of comparing with
AIMS, we present the results obtained from dTSH (orange),
γ-SQC-Δ (red), spin-LSC (blue), and spin-PLDM (black)
approaches. We want to make clear that no single MQC result
provided in Fig. 5 is to be interpreted as more accurate than another.
We provide such a comparison between these MQC approaches
in hopes that future quantum dynamics approaches can use these
results for comparison and benchmark.

At small times (less than 30 fs), during which the S–S bond is
breaking, dTSH, γ-SQC-Δ, and spin-LSC exhibit negligible popu-
lation transfer dynamics from S1 to S0, while spin-PLDM shows a
slight increase (above 1.0) in S1 population. Near ∼30 fs, when the
S–S bond breaks, all MQC approaches exhibit a large decrease in
S1 population. The dTSH approach, however, quickly slows down
its population transfer to the S0 state near ∼41 fs, while the other
three approaches smoothly continue to transfer all but 20% of their

FIG. 5. S1 population dynamics of the 1,2-dithiane molecule for a variety of semi-
classical methods: spin-LSC (blue), spin-PLDM (black), γ-SQC-Δ (red), and dTSH
(orange). The dTSH results were calculated using the standard SHARC code.94

We refer the reader to the Appendix and Fig. 8 for additional discussions regard-
ing the available AIMS result, which prevented a rigorous comparison for this
molecule.

FIG. 6. (a) 1,2-dithiane S–S bond length density/wavepacket, complementary to
the data in Fig. 5(c). (b)–(e) Observables of a single representative trajectory,
including time-dependent (b) energies of the S0 (black) and S1 (red) electronic
adiabatic states, (c) population of initially populated S1 state, (d) real (black) and
imaginary (red) S0/S1 electronic coherence, and (e) S–S bond length. The inset
of panel (b) shows the energy difference between S1 and S0 on a log scale. It is
important to note that only 200 trajectories were used in the construction of panel
(a) and with a larger time step of dt = 0.5 fs due to the computational cost of the
extended time scale of 500 fs compared to 100 fs shown in Fig. 5.

S1 population before rising again. To provide a consistent compar-
ison, dTSH results shown here were simulated using the standard
SHARC package94 with 1000 trajectories and the same nuclear ini-
tial conditions as used in the other mapping-based approaches. The
dTSH results may differ from the other MQC methods since it uses
an adiabatic force rather than a mean-field force on the nuclei. In
this case, non-adiabatic transitions (i.e., hopping) between S0 and S1
may exhibit drastically different forces on the nuclei.

In a similar fashion as for the fulvene molecule, in Fig. 6, we
present a closer look at the nuclear dynamics of 1,2-dithiane for
the spin-LSC approach as well as quantities from a single-trajectory.
Figure 6(a) shows the density of the S–S bond length across 200 tra-
jectories at an extended time scale of 500 fs. Note that Fig. 5 only
shows results up to 100 fs due to the limited AIMS data and the
cost of 1000 trajectories. Analogously to the C–C bond length den-
sity shown in Fig. 4(a), the S–S bond breaks ∼2.5 Å → 7 Å and
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allows the nuclear wavepacket to broaden due to the larger con-
formational space. The potential energies of a single trajectory are
shown in Fig. 6(b) and clearly showcase the extended degeneracy
[see the inset of panel (b)] of the ground and first excited states,
starting from ∼30 fs until ∼300 fs when the S–S bond is reforming
[see the single-trajectory S–S bond length in Fig. 6(e)]. The pop-
ulation of the excited state is shown in Fig. 6(c) along with the
coherences in Fig. 6(d). The population varies rapidly between the
ground and excited states (often going above 1.0 and below 0.0) dur-
ing the regions of degeneracy (30–300 fs) and implies that, unlike
the fulvene molecule, substantial trajectory averaging is required for
the 1,2-dithiane system in order to make any prediction regarding
the populations due to the strong and prolonged coupling between
the states. Similarly, the coherence showcases equally complicated
behavior in and out of the regions of degeneracy.

While the results of the spin-PLDM approach in these ab initio
test cases did not provide superior accuracy compared to SH, SQC,
or spin-LSC methods, it is worthwhile to take a closer look at the
spin-PLDM correlation function to better understand the approach,
especially given that the PLDM approach usually provides more
accurate dynamics in system–bath type of models.7,91 Figure 7
presents the partial contributions Pλλ′ to the total spin-PLDM cor-
relation function CAB = ∑λλ′ Pλλ′ [Eq. (26)] for all four molecular
models explored in this work. The total spin-PLDM correlation
function requires a summation of overall possible initially focused
conditions {λ, λ′} of the electronic mapping variables {Z, Z′}, lead-
ing to N2 initial conditions that need to be converged with respect
to the number of trajectories (1000 ×N2

= 4000 trajectories in this
work).

Figure 7(a) shows the population of the excited state for the
AIMS result (blue) as well as the total spin-PLDM correlation func-
tion (orange). The dotted lines represent the partial contributions

to the spin-PLDM correlation function. The green dotted line is the
case where (λ, λ′) = (1, 1) and hence has an initial value of 1.00 since
this was the intended initial photo-excitation of the system. This
condition appears only in the definition of the operator Â = ∣1⟩⟨1∣,
which is, in principle, not implemented until after all N2 simula-
tions are completed in the post-processing by explicitly perform-
ing the trace Tr [Âω̂ †

(Z′, t)B̂ω̂(Z, t)] once the time-dependent
kernels are known for each (λ, λ′) condition. The other compo-
nents cannot start with any other value than 0.0 at the initial time
but can accumulate population at later times, as pointed out in
Refs. 64 and 65. In this model, only the off-diagonal initial condi-
tions (λ, λ′) = (0, 1), (1, 0) appreciably contribute to the total popu-
lation. At the final time, together they contribute up to 5.0% of the
total population.

For fulvene in Fig. 7(b), a similar trend emerges where the
off-diagonal initial conditions generate the most population contri-
bution, while the diagonal initial condition (i.e., P00) does not. These
trends apply to the final two molecular models as well. However, the
off-diagonal contributions in the latter two molecules, [CH2NH2]+

and 1,2-dithiane, at long times, are negative, thereby diminishing
the population generated by the P11 contribution. In fact, the off-
diagonal contributions present in the [CH2NH2]+ and 1,2-dithiane
dynamics represent up to 20% and 10% at a long time. Furthermore,
the ethylene and fulvene molecules exhibit periodic-like contribu-
tions from the off-diagonal initial conditions, while the other two
showcase non-periodic population dynamics. It was expected that
the ethylene and [CH2NH2]+ partial contributions would look sim-
ilar to one another due to the similarity of the non-adiabatic event
present in each molecule, but this was not observed.

For systems with many electronic states, the number of trajec-
tories required to converge all the partial contributions can become
unmanageable. Thus, one needs to resort to approximations for the

FIG. 7. S1 population dynamics for all atomistic models,
(a) ethylene, (b) CH2NH+2 , (c) fulvene, and (d) 1,2-dithiane,
using the spin-PLDM method. The thick solid lines are the
same data for AIMS (blue) and spin-PLDM (orange) in pre-
vious figures for comparison. The dotted curves showcase
the partial components Pλλ′ of the spin-PLDM correlation
function for the population—a single (λ, λ′) term in the
sum in Eq. (26)—which decomposes each of the N2 = 4
initially focused conditions of the electronic density matrix.
The AIMS (blue, when available) and sum of the spin-PLDM
(orange) are the same data as shown in Figs. 1–3 and 5.
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simulations. We found that the spin-PLDM correlation function can
be adequately represented by two approximations of the total corre-
lation function by ignoring some of the partial contributions. The
first approximation is to simply ignore all contributions except the
initially excited population element (λ, λ′) = (σ, σ) [see discussion
near Eqs. (18) and (30)]. In each of our models in this work, that
amounts to keeping only the Pσσ = P11 contribution. In the ab initio
models explored, the P11 population represents at least 88% of the
total contribution, at worst.

The next best approximation is to add the populations from a
single column of the density matrix that includes this initial exci-
tation, i.e., Pσλ, with twice the weight. In other words, the approx-
imation amounts to PSpin−PLDM ≈ Pσσ +∑λ≠σ 2Pσλ. Here, the factor
2 accounts for the nearly equal contribution from both the Pσλ and
Pλσ terms (as shown in Fig. 7 since P01 ≈ P10). This approximation
amounts to only N converged initial conditions instead of N2 as
prescribed by the total correlation function.

Neglecting the other diagonal initial conditions is corrobo-
rated by the results of the main text, where P00 never contributed
any appreciable amount of population. The other off-diagonal ini-
tial conditions Pλλ′ , where λ ≠ σ and λ′ ≠ σ, require an examination
of a system with more than two electronic states. Figure S1 of the
supplementary material presents the population dynamics for the
FMO 7-state model system,64,65 which has been previously stud-
ied with spin-PLDM and achieves superior accuracy compared to
FSSH, SQC, and spin-LSC, matching the benchmark hierarchical
equations of motion (HEOM) result. Figure S2a presents the partial
contributions to the ground state S0 population as well as the single-
column approximation, which yields the same accuracy as the full
spin-PLDM correlation function result with seven converged sim-
ulations instead of 49, a reduction of 86% in computational cost.
The other diagonal and off-diagonal initial conditions are shown
in Figs. S2(b) and S2(c) and show less than 0.3% contribution at all
times. We hypothesize that drastic reductions in cost can be achieved
for more complicated situations than population dynamics, such as
those in non-linear spectra,102,103 where similar arguments can be
made to neglect certain elements of the initial conditions.

IV. CONCLUSIONS
In this work, we use the quasi-diabatic propagation

scheme78,82,83 to directly interface the diabatic linearized (spin-
LSC)28,63,66 and partially linearized (spin-PLDM) spin-mapping
approaches64,65 and the CASSCF on-the-fly electronic structure
calculations to propagate ab initio non-adiabatic dynamics. We
have performed on-the-fly simulations for four recently investigated
molecules: ethylene, fulvene, methyliminium cation (CH2NH+2 ),
and 1,2-dithiane.73,88–90 These molecular models provide examples
of common non-adiabatic phenomena found ubiquitously in
realistic systems, namely conical interactions and avoided crossings,
and are closely related to the well-known simple curve crossing
models of Tully.1

We have shown that all MQC methods provide qualita-
tively correct population dynamics when comparing to ab initio
multiple spawning (AIMS).73,88–90 In all cases, spin-LSC exhibits a
similar level of accuracy (almost quantitatively) to the recently devel-
oped symmetric quasi-classical (SQC) approach with a trajectory-
adjusted zero-point energy parameter.27 Various flavors of trajectory

surface hopping (TSH) are qualitatively similar to the other MQC
approaches used in this work, showing major differences only in
the more complicated 1,2-dithiane molecular model. Although we
expected the more involved spin-PLDM approach to exhibit supe-
rior accuracy compared to the spin-LSC method, which was previ-
ously shown for system–bath type models (see Figs. S1 and S2 of the
supplementary material), we found that neither method was con-
sistently more accurate than the other when compared to the AIMS
result. However, we note that recent studies have shown73 that AIMS
itself is not always guaranteed to provide quality benchmark results
and are often difficult to converge due to the poor scaling of the
spawning algorithm. So, the minor deviations between the various
MQC approaches pointed out in this work must be carefully weighed
against the proposed quality of the benchmark.

We also note that while we expected spin-PLDM to pro-
vide superior results,64,65,102 recent work has explored the short-
time accuracy (through low-order time-derivatives of the estima-
tors evaluated at the initial time) of the spin-LSC and spin-PLDM
approaches to reveal that for arbitrary two-state scattering systems,
spin-PLDM provides no improvement over spin-LSC.70 However,
for spin-boson type problems, such as the FMO complex (which
contains only a linear force) in Figs. S1 and S2 of the supplementary
material, even for a two-state case, spin-PLDM should provide a
more accurate answer,70 which is also the case for a standard PLDM
approach.7

We further explored the nature of the spin-PLDM correlation
function by examining the various components (initially focused
contributions λ and λ′) individually. Here, we noted that when
calculating an initial population element ∣σ⟩⟨σ∣, the off-diagonal ini-
tially focused conditions Pσλ (where λ ≠ σ) contribute nearly the
same magnitude and sign to the overall correlation function as Pλσ .
Thus, calculating one and doubling its weight provides the same
contribution to the total correlation function. Furthermore, the
other diagonal contributions Pλλ (with λ ≠ σ) have minimal magni-
tude in their contribution to the overall correlation function and can
be ignored. In this sense, an approximate scheme can be constructed,
at least in these few example systems explored in this work. In this
case, one only needs to calculate a single column of initially focused
density matrix elements, which reduces the computational cost from
N2 to N converged simulations. Note that this still amounts to
more computations than the spin-LSC approach, which only ever
requires one converged initial condition given an initial excitation to
∣σ⟩⟨σ∣.

These calculations provide valuable and non-trivial tests to
systematically investigate the numerical performance of various
recently developed quantum dynamics approaches, going beyond
the simple diabatic model systems that have historically been the
major workhorses in the quantum dynamics field. At the same time,
we hope that these results will serve as useful benchmarks in future
studies and will foster the development of new quantum dynamics
approaches.

SUPPLEMENTARY MATERIAL

See the supplementary material for details about the compu-
tational details of the model simulations and additional results of
dynamics in model systems.
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APPENDIX: INITIAL CONDITIONS AND CONVERGENCE
OF POPULATION DYNAMICS

The comparison between the trajectory-based approaches and
AIMS for the 1,2-dithiane molecular species (Fig. 5) was significantly
worse than the other molecular models. While this discrepancy
could be at least partially attributed to the quality of the MQC
approaches and the complexity of the 1,2-dithiane dynamics of an
extended region of degeneracy between the ground and excited
states, we briefly examine the quality and robustness of the initial
conditions of the original AIMS data provided in Ref. 90.

In the original work,90 the authors used 14 unique initial
nuclear geometries and nuclear momentum sampled from the
Wigner distribution for their AIMS and dTSH calculations. Fur-
thermore, the authors repeated these 14 nuclear samples eight times
with different random seeds for a total of 112 trajectories to con-
verge their approach, which is inherently stochastic similar to the
standard TSH approach. A major limitation of these results is the
limited amount of the position/momenta sampled at initial time.
These limited numbers of nuclear samples were chosen due to the
large computational cost of the AIMS dynamics simulations. How-
ever, to understand the large discrepancies between the AIMS results
and MQC populations, we explore the dependence of the spin-LSC
results on the reduced initial nuclear sampling identical to that of the
original AIMS initial conditions.

Using the same 14 nuclear geometries and nuclear momenta
provided in the supplementary material of Ref. 90, we performed
spin-LSC dynamics on the 1,2-dithiane molecular system to com-
pare to the fully converged spin-LSC under various conditions. First,
we used the 14 nuclear samples to perform only 14 trajectories (each
with individually sampled electronic mapping variables), which we
denote as (14n, 1e) to imply 14 unique nuclear samples repeated
1× (which does not converge the electronic sampling per nuclear
sample nor on the average). Second, we used the 14 nuclear samples
repeated 30 times with different electronic samplings for a total of
420 trajectories, which we denote as (14n, 30e). Finally, we replot the
fully converged calculations shown in the main text [see Fig. 5(c)],
which, using the notation introduced here, is (1000n, 1e) for a total
of 1000 trajectories.

Figure 8 shows the S1 population dynamics for each of the cases
outlined above as well as the AIMS result (blue solid line), with
(14n, 1e) shown as an orange thin solid line, (14n, 30e) shown as
an orange dotted line, and (1000n, 1e) shown as an orange thick
transparent line. Notably, the (14n, 1e) results closely match the

FIG. 8. S1 population dynamics of the 1,2-dithiane molecular model for the spin-
LSC (orange curves) and AIMS (blue curve) approaches. To more directly compare
the spin-LSC method to the benchmark AIMS result (data taken from Ref. 90), the
spin-LSC was performed using the same 14 initial geometry/momenta as used in
and provided by Ref. 90 using a single electronic sampling per nuclear configu-
ration (14n, 1e) (orange thin solid line) and 30 electronic samplings per nuclear
configuration (14n, 30e) (orange dotted line). The 1000-sample spin-LSC (1000n,
1e) (orange thick solid line) and the 14-sample AIMS (14n, 8e) (blue line) are
identical to the data provided in Fig. 5(c).

J. Chem. Phys. 162, 084105 (2025); doi: 10.1063/5.0248950 162, 084105-12

Published under an exclusive license by AIP Publishing

 
2
5
 
F
e
b
r
u
a
r
y
 
2
0
2
5
 
1
4
:
1
7
:
0
3

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

trends seen in the AIMS population curve, especially at the popu-
lation recurrence times near 45, 55, and 80 fs, thus showing that the
spin-LSC approach and the AIMS approach are qualitatively simi-
lar given the same/similar initial conditions. The (14n, 30e) results,
which represent convergence only on the electronic DOFs for the
given initial nuclear samples, showcase a very similar trend as the
(14n, 1e) but slightly smoother with less rapid changes in population.
Finally, we note that the fully converged case (1000n, 1e) bears little
resemblance to any of the other curves and is significantly smoother.
This exemplifies the fact that the sharp edges/shoulders shown in
the AIMS result (and the other non-converged spin-LSC results)
are artifacts of the limited nuclear samples provided, thus showing
the strong dependence of the limited nuclear configurations on the
results.

While the AIMS approach is, in principle, a rigorous path
toward the exact dynamics of photo-excited molecular systems, the
computational cost of this approach sometimes forces the user to
relax the parameters necessary for convergence, especially for the
number of initial Gaussian functions. In a similar vein, it has recently
been pointed out that AIMS may not always capture the correct
non-adiabatic physics in certain molecular systems, even for fully
converged initial conditions, and that independent trajectory MQC
simulations may provide a more quantitative result in these cases.73

We suggest caution when using such results for a benchmark against
more approximate methods such as novel MQC approaches. Thus,
care must be taken when comparing the MQC results to these
high-level benchmarks, keeping in mind that the convergence of
the parameters/initial conditions for these wavepacket approaches
is paramount to the quality of the results.
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