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ABSTRACT
We benchmark the accuracy of various trajectory-based non-adiabatic methods in simulating the polariton relaxation dynamics under the
collective coupling regime. The Holstein–Tavis–Cummings Hamiltonian is used to describe the hybrid light–matter system of N molecules
coupled to a single cavity mode. We apply various recently developed trajectory-based methods to simulate the population relaxation
dynamics by initially exciting the upper polariton state and benchmark the results against populations computed from exact quantum dynam-
ical propagation using the hierarchical equations of motion approach. In these benchmarks, we have systematically varied the number of
molecules N, light–matter detunings, and the light–matter coupling strengths. Our results demonstrate that the symmetrical quasi-classical
method with γ correction and spin-mapping linearized semi-classical approaches yield more accurate polariton population dynamics than
traditional mixed quantum-classical methods, such as the Ehrenfest and surface hopping techniques.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0246099

I. INTRODUCTION

Molecular cavity quantum electrodynamics (QED) systems,
which contain strongly interacting molecules with quantized cav-
ity photonic modes, are emerging quantum systems that exhibit
new phenomena in chemistry and physics.1–8 Previous theoretical
studies have shown that these hybrid light–matter states, so-called
polaritons,2–4,9–11 can modify chemical reactions via light–matter
coupling.3,4,10,12–14 In addition, recent experiments have shown that
molecular polaritons have drastically different transport properties
compared to their bare excitonic components, paving the way for
efficient and scalable optoelectronic devices based on polaritons.15–20

The light–matter hybridization also partially reduces the influence of
phonons on the polariton because the photon component does not
couple to the phonon. This leads to the polaron decoupling effect21,22

and the well-known absorption line shape narrowing.23,24

In particular, coupling N molecular exciton states with a quan-
tized cavity mode produces two polariton states, commonly referred
to as the upper polariton (UP) and lower polariton (LP) states, each
containing light and matter excitation characters. There are N − 1
remaining excitonic dark states (DS) that do not mix with photonic
states or have a significant transition dipole from the ground state
and are thus optically dark. Upon photoexcitation to the UP, the sys-
tem will quickly relax to the DS and slowly transition to the LP.25,26

Polariton relaxation dynamics play a crucial role in understand-
ing the polariton photoluminescence spectra,26–29 understanding
the relative lifetime of the polariton and dark states,25,27 interpret
the sub-average behavior of motional narrowing,30 and the tran-
sition rates between the polariton and dark states,25 as well as the
corresponding decoherence process.31

To study polariton relaxation dynamics, one often uses the
Holstein–Tavis–Cummings (HTC) Hamiltonian6–8,21,26,32 to model
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the interplay between the exciton, photon, and phonon degrees of
freedom (DOF). The HTC model couples many molecules, which
are described as two-level systems, to both a cavity photon mode and
phonon modes that are added phenomenologically to the molecules.
In the strong-coupling regime, it has been shown that the HTC
Hamiltonian captures the underlying physics of the cavity-QED
systems,7,8,26,33–37 such as the polariton’s relaxation dynamics7,25,26,36

and the polaron decoupling effect between excitons and their
corresponding phonon modes.23,38

A popular approach to simulate the non-adiabatic dynamics
of systems with coupled electronic–nuclear degree of freedom is
the mixed quantum-classical (MQC) methods,39–42 which has been
widely used to model polariton relaxation dynamics.6–8 Two com-
monly used MQC methods are the mean-field Ehrenfest method
(MFE)43 and the surface hopping method.44,45 These methods treat
the electronic DOF quantum mechanically while propagating the
nuclear DOF classically (while often sampling the initial condition
through quantum Wigner distributions). To simulate the dynamics
of molecular polaritons, one extends the MQC approaches to treat
both the electronic and photonic DOF quantum mechanically while
propagating the nuclear DOF classically.5–8,46–52 However, the mixed
quantum-classical approximations built into these methods have
been known to produce unphysical results, such as the breakdown
of detailed balance (that is, the long-term populations) for the MFE
method53 and the introduction of artificial electronic coherence or
incorrect chemical kinetics for the surface hopping method.54

To address the shortcomings of the MQC approaches above,
other non-adiabatic dynamics methods have been developed in
the diabatic representation, several of which are based on map-
ping formalism.55,56 For example, methods such as the lin-
earized semi-classical initial value representation (LSC-IVR),57,58

partially linearized density matrix (PLDM) method,59,60 symmet-
rical quasi-classical (SQC) method,61,62 and the quantum-classical
Liouville equation (QCLE) method63,64 are developed based on
the Meyer–Miller–Stock–Thoss (MMST) mapping formalism.55,65,66

Furthermore, methods such as the spin-mapped linearized semi-
classical (spin-LSC)67–69 and the spin-mapped partially linearized
density matrix (spin-PLDM) method70,71 are derived from the
recently developed generalized spin-mapping formalism, which uses
the generalized spin-mapping relations to describe the electronic
DOF68 while using a linearized approximation for the nuclear
DOF.72,73 These methods have shown significant improvements in
numerical results over existing MQC approaches, such as in char-
acterizing the population dynamics of spin-boson models,67 exci-
ton dynamics in light-harvesting complexes,68 ab initio on-the-fly
simulations,74–78 exciton–polariton quantum dynamics,51 and vibra-
tional polariton quantum dynamics.42 Generalized quantum master
equation (GQME)79 is also shown to significantly improve the accu-
racy of the semi-classical population dynamics, taking advantage of
the short-lived, more accurate memory kernels computed from these
trajectory-based methods. Recently, these non-adiabatic semiclassi-
cal mapping dynamics methods are also benchmarked against the
tensor-train thermo-field dynamics approach.80,81 From these previ-
ous results, these non-adiabatic dynamical methods based on map-
ping formalism should also outperform MQC methods in simulating
the polariton relaxation dynamics, although there have been lim-
ited investigations into the efficacy of these methods for polaritonic
systems.23,26,27,42,82,83

Despite much recent progress on using MQC methods to
model exciton polariton relaxation dynamics6–8 in ab initio atom-
istic systems, there is no existing work on accessing the accuracy
of these trajectory-based methods on polariton relaxation dynam-
ics under the collective coupling regime, with simple model sys-
tems where the numerically exact results are available. There is,
however, a recent work on using trajectory-based method on sim-
ulating vibrational polariton dynamics under the single molecule
limit.42 In this paper, we use the Ehrenfest method, global flux
surface-hopping (GFSH) method,84 SQC method with corrected
zero-point energy (γ-SQC),85 and spin-LSC method68,69 to simulate
the population dynamics of a system that is initially excited into
the UP state. These methods are benchmarked with the numeri-
cally exact hierarchical equations of motion (HEOM) approach.86–88

Numerical results are presented for HTC models with different
physical parameters, such as the number of molecules that are cou-
pled to the cavity mode, the single-molecule coupling strength,
the light–matter detunings, and various parameters for the phonon
bath. Our results provide valuable information on the accuracy of
the commonly used MQC methods and the recently developed map-
ping approaches for simulating polariton relaxation dynamics in
the HTC model.

II. THEORY AND METHODS
A. The Holstein–Tavis–Cummings QED Hamiltonian

We use the Holstein–Tavis–Cummings (HTC)
Hamiltonian1,22,26,89,90 to model the polariton dynamics in the
collective coupling regime. The total Hamiltonian can be separated
into a component describing the system term ĤS, a component
describing the bath term ĥB, and a system–bath interaction term
ĤSB. This separation of terms is expressed as

ĤHTC = ĤS + ĥB + ĤSB. (1)

In the remainder of this paper, we use units h = 1 for convenience.
The system term ĤS consists of the excitonic DOF of the

molecules and the photonic DOF of the cavity and is further
expressed as31,91

ĤS = ĤM + Ĥcav + ĤLM, (2)

where ĤM describes the matter contribution due to the exci-
tonic DOF, Ĥcav describes the cavity contribution, and ĤLM is the
light–matter interaction term. The matter contribution ĤM to the
Hamiltonian describes N identical and non-interacting molecules.
We label these molecules as n ∈ (0, N − 1). Each molecule is mod-
eled as an effective two-level system that represents the molecule’s
ground and excited states, written as

ĤM = (ω0 + λ)
N−1

∑
n=0

σ̂†
nσ̂n, (3)

where σ̂†
n = ∣en⟩⟨gn∣ and σ̂n = ∣gn⟩⟨en∣ creates and annihilates an exci-

tation on the nth molecule, respectively, with ∣gn⟩ and ∣en⟩ as the
ground and excited states for molecule n, and ω0 is the excita-
tion energy between the molecule’s ground and excited state. The
corresponding reorganization energy λ is due to exciton–phonon

J. Chem. Phys. 162, 124113 (2025); doi: 10.1063/5.0246099 162, 124113-2

Published under an exclusive license by AIP Publishing

 27 M
arch 2025 14:09:10

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

coupling, which is described in the system–bath interaction ĤSB [see
Eq. (7)].

The quantized radiation mode of the cavity is expressed as

Ĥcav = ωc(â †â +
1
2
), (4)

where ωc is the photon frequency of the cavity mode, and â † and â
are the creation and annihilation operators for a photon in the cav-
ity mode, respectively. Here, we consider only a single cavity mode
interacting with the molecules.

For the light–matter interaction term ĤLM, we assume the
long-wavelength approximation, that is, each molecule is coupled
to the quantized radiation field with the same light-matter cou-
pling strength gc. Assuming the rotating wave approximation, ĤLM
is expressed as

ĤLM = gc

N−1

∑
n=0
(â †σ̂n + âσ̂†

n). (5)

The bath Hamiltonian ĥB in Eq. (1) describes the nuclear DOF,
which we assume is a phonon environment that consists of a set of
identical, non-interacting harmonic oscillators,

ĥB =
N−1

∑
n=0
∑

k
ωk(ν̂†

k,nν̂k,n +
1
2
), (6)

where ωk are the phonon frequencies, and ν̂†
k,n and ν̂k,n are the kth

phonon mode’s creation and annihilation operators, respectively, for
the nth molecule that satisfy the bosonic commutation relations. The
last term ĤSB in Eq. (1) characterizes the system–bath interaction,
which we assume takes the linear form

ĤSB =
N−1

∑
n=0

σ̂†
nσ̂n∑

k
ck(ν̂

†
k,n + ν̂k,n), (7)

where ck denotes the coupling strength between the nth molecule
and the kth phonon mode of its associated bath. To describe the
interactions between the system and bath, we use the spectral density
function,92,93

J(ω) = π∑
k

c2
kδ(ω − ωk). (8)

We use a Drude–Lorentz form for the spectral density in our
investigations,

J(ω) =
2λωνω

ω2
ν + ω2 , (9)

where ων is the bath characteristic frequency and the reorganization
energy λ can be reformulated in terms of the coupling strength and
the phonon frequencies as

λ =
1
π∫

+∞

0
dω

J(ω)
ω
=∑

k

c2
k

ωk
. (10)

Cavity loss is not considered in this work because our aim
is to benchmark the influence of phonons on polariton relax-
ation dynamics. The influence of cavity loss can be easily mod-
eled with Lindblad dynamics,52,94 or through stochastic Lindblad
approaches.23,94

B. Polariton states
We analyze ĤS in the single excitation subspace. The dia-

batic states (without considering the phonons) in the single exci-
tation subspace are the photon-dressed ground state ∣G, 1⟩ and the
single-molecule excited state ∣En, 0⟩. ∣G, 1⟩ is defined as the state
where all the molecules are in the ground state and one photon is
in the cavity,

∣G, 1⟩ = ∣g0⟩⊗ ⋅ ⋅ ⋅ ∣gn⟩ . . .⊗ ∣gN−1⟩⊗ ∣1⟩, (11)

and ∣En, 0⟩ is defined as the states where all the molecules are in the
ground state except for the nth molecule,

∣En, 0⟩ = ∣g0⟩⊗ ⋅ ⋅ ⋅ ∣en⟩ . . .⊗ ∣gN−1⟩⊗ ∣0⟩. (12)

In the single excitation manifold, we also have a collective “bright”
excitonic state,

∣B, 0⟩ =
1
√

N

N−1

∑
n=0
∣En, 0⟩, (13)

which couples to the ∣G, 1⟩ state through ĤLM. This coupling leads
to the polariton states ∣±⟩, which are eigenstates of ĤS, expressed as
follows:91

∣+⟩ = cos θ∣B, 0⟩ + sin θ∣G, 1⟩, (14a)

∣−⟩ = − sin θ∣B, 0⟩ + cos θ∣G, 1⟩, (14b)

where the mixing angle is

θ =
1
2

tan−1
[

2
√

Ngc

ωc − ω0 − λ
] ∈ [0,

π
2
), (15)

and the corresponding energies ω± of the ∣±⟩ states are

ω± =
ω0 + λ + ωc

2
±

√

Ng2
c +
(ω0 + λ − ωc)

2

4
. (16)

Furthermore, there exists N − 1 dark states ∣Dα⟩, given by1

∣Dα⟩ =
N−1

∑
n=0

Cn,α∣En, 0⟩, (17)

where the coefficients Cn,α satisfy

1
√

N

N−1

∑
n=0

Cn,α = ⟨B, 0∣Dα, 0⟩ = 0. (18)

We note from Eq. (18) that since the DS have no overlap with the
collective “bright” states, they do not participate in the interaction
with the cavity mode that is mediated by ĤLM. Furthermore, there is
no optical transition from ∣G, 0⟩ to ∣Dα⟩; hence, it is optically dark.
The choice of dark state is not unique. For example, one can express
them as follows:91,95

∣Dα⟩ =
1
√

N

N−1

∑
n=0

exp(−2πi
nα
N
)∣En, 0⟩, (19)
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FIG. 1. Energy level diagrams of polariton states that are derived from the HTC Hamiltonian through hybridization of light and matter states. We show the relative positions
of the DS with respect to the UP and the LP for three cases: (a) ωc = ω0 + λ (zero detuning or resonance), (b) ωc < ω0 + λ (negative detuning), and (c) ωc > ω0 + λ
(positive detuning).

where α ∈ {0, . . . , N − 1}, which is fully delocalized among all N
exciton states. Other choices are possible [see Eq. (8) in Ref. 96 for
the Schur–Weyl basis].

The polariton states for the HTC model are outlined in Fig. 1.
In the absence of exciton–phonon couplings, the N − 1 dark states
are energetically degenerate and have the same energies as the exci-
tation energy of the bare molecule plus the reorganization energy, as
shown in Fig. 1(a). The UP and the LP in resonance are also energet-
ically separated from the DS by an amount

√
Ngc when the system

is in resonance (ωc = ω0 + λ). However, when there is light–matter
detuning (i.e., ωc ≠ ω0 + λ), the DS are no longer separated in energy
from the UP and the LP by the same amount. In particular, with
negative light–matter detuning (ωc < ω0 + λ), the DS are closer in
energy to the UP state, as illustrated in Fig. 1(b). On the other
hand, with positive detuning (ωc > ω0 + λ), the DS are closer in
energy to the LP state, as depicted in Fig. 1(c). Thus, the polari-
ton relaxation dynamics, mediated by exciton–phonon coupling in
ĤSB, will be affected by the energetics of the polariton and dark
states due to different energy alignments caused by the light–matter
detuning.

Note that the polariton state defined in Eq. (14) and the dark
states in Eq. (17) are diabatic in nature because there is no nuclear
configuration dependence. In this case, the exciton–phonon cou-
plings ĤSB will couple these polariton states and make transitions
among them.25,31 On the other hand, one can also choose to define
ĤS + ĤSB as the polariton Hamiltonian, whose eigenvector will be
adiabatic polariton and dark states and both of their characters
will parametrically depend on the nuclear configuration.26 In this
case, the phonon fluctuation caused by ĤSB on polariton and dark
states will be counted as the adiabatic polariton energy fluctua-
tions, and the transitions among these adiabatic polariton and dark
states are caused by the nuclear kinetic energy operators (as the
derivative couplings). This is the picture used in the theoretical
simulations in Ref. 26 (see Fig. 4 in that reference). Nevertheless,
rigorous quantum mechanical descriptions of the dynamics (for
all DOF) will generate identical results in both pictures. Ehren-
fest dynamics, as well as the mean-field-like approach (such as the
mapping-based methods used in this work), are representation-

independent and thus generate identical results for both repre-
sentations. The trajectory surface hopping approach, on the other
hand, is not representation-independent and often performs the best
in the adiabatic representation, so the adiabatic polariton Hamil-
tonian Ĥpl = ĤS + ĤSB should be used in these surface hopping
simulations.

In the following, we briefly introduce the trajectory-based
quantum dynamics approaches used in this work, which we treat

R̂k,n =

√
h̵

2ωk
(ν̂†

k,n + ν̂k,n),

P̂k,n = i

√
h̵ωk

2
(ν̂†

k,n − ν̂k,n),

inside the ĥB + ĤSB as the classical DOF, and we describe the polari-
ton quantum subsystem in the diabatic basis of {∣G, 1⟩, ∣En, 0⟩} for
Ehrenfest dynamics, γ-SQC, spin-LSC, and spin-PLDM approaches.
For the surface hopping method, the adiabatic polariton and dark
states (see Ref. 26) are required, which are defined as the eigenstates
of Ĥpl = ĤS + ĤSB as follows:

Ĥpl(R)∣Ψ(R)⟩ = E(R)∣Ψ(R)⟩.

A schematic illustration of the adiabatic polariton energy (and dark
energy) can be found in Fig. 4 in Ref. 26. Note that for a large N in
the single excitation subspace, diagonalizing the above-mentioned
equation is the computational bottleneck.

C. Non-adiabatic mapping dynamics methods
In this section, we briefly discuss the mapping-based quan-

tum dynamics approaches used in this work. The details of the
standard Ehrenfest dynamics and surface hopping approaches are
provided in the supplementary material. The common starting
point of these mapping dynamics is the Meyer–Miller–Stock–Thoss
(MMST) formalism,55,65,66 which maps the discrete quantum DOF
(described as discrete states) onto continuous phase space variables.
A Hamiltonian that contains a total of N quantum states in the
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diabatic representation {∣a⟩} is expressed as

Ĥ =
1

2M
P̂ 2
+U0(R̂), (20)

+∑
a

Vaa(R̂)∣a⟩⟨a∣ +
1
2∑b≠a

Vab(R̂)∣a⟩⟨b∣, (21)

where R̂ and P̂ are the position and momenta for the nuclear
DOF, respectively, U0(R̂) is the state-independent part of the
Hamiltonian, and Vab(R̂) = ⟨a∣V̂ ∣b⟩. For the HTC model, we have

ĥB =
1

2M
P̂ 2
+U0(R̂), (22a)

ĤS + ĤSB = V̂. (22b)

The MMST formalism maps the quantum Hamiltonian in Eq. (20)
onto the following classical MMST Hamiltonian:

Hm =
1

2M
P2
+

1
2∑ab

Vab(R)(papb + qaqb − 2γbδab) +U0(R), (23)

where 2γb is viewed as a parameter56 that specifies the zero-point
energy (ZPE) of the mapping oscillators.56,67,68,97 In principle, 2γb is
state-specific and trajectory-specific.85 The MMST mapping Hamil-
tonian has been historically justified by Stock and Thoss using
the raising and lowering operators of a harmonic oscillator as the
mapping operator.65,66 Recently, a more natural mapping has been
derived using the SU(N) Lie group theory or the so-called gener-
alized spin mapping approach,69 which is connected to the MMST
mapping approach.68,69 In this work, we will focus on two recently
developed mapping-based approaches: γ-SQC85 and Spin-LSC.68,69

Both the approaches have been shown to significantly improve
the accuracy of the population dynamics compared to the original
MMST-based LSC-IVR approach,57,58 for nearly all model systems
commonly tested in non-adiabatic simulations.56 In addition, for
many level system–bath-type models, LSC-IVR often generates neg-
ative population dynamics and gives less accurate results.98 For this
reason, we left the LSC-IVR approach in our comparison in this
work and instead focus on the recently developed γ-SQC85 and
Spin-LSC.68,69 Note that there is recent progress in improving the
accuracy of LSC-IVR, such as using the GQME approach79 and the
identity trick.99 These approaches have been shown to provide a
significant improvement in the accuracy dynamics of LSC-IVR for
two-level systems,79,99 but extending them to many level systems is
theoretically less straightforward.100,101

Classical trajectories are generated based on Hamilton’s equa-
tions of motion (EOM) for Hm,

q̇b = ∂Hm/∂pb; ṗa = −∂Hm/∂qa, (24a)

Ṙ = ∂Hm/∂P; Ṗ = −∂Hm/∂R = F, (24b)

with the nuclear force expressed as

F = −
1
2∑ab

∇Uab(R)(papb + qaqb − 2γbδab) −∇U0(R). (25)

The above-mentioned classical EOM for both mapping vari-
ables (for the quantum subsystem) and the classical DOF are
propagated using the velocity Verlet algorithm.

1. The γ-SQC approach
The γ-SQC approach samples the initial electronic condition

and estimates the population based on the action-angle variables,
{εb, θb}, expressed as follows:

εb =
1
2
(p2

b + q2
b); θb = −tan−1

(
pb

qb
). (26)

They are inversely related to the mapping variables as follows:

qb =
√

2εb cos (θb); pb = −
√

2εb sin (θb), (27)

where εb is a positive-definite action variable that is directly
proportional to the mapping variables’ radius in action space.85

The SQC approach calculates the population of electronic state
∣b⟩, which will be evaluated as56

ρbb(t) = TrR[ρ̂(0)eiĤ t/h̵
∣b⟩⟨b∣e−iĤ t/h̵

]

≈ ∫ dτρW(P, R)Wa(ε(0))Wb(ε(t)), (28)

where ρ̂(0) = ρ̂R ⊗ ∣a⟩⟨a∣ is the initial density operator, ρW(P, R) is
the Wigner transform of the ρ̂R operator for the nuclear DOF, ε
= {ε1, ε2, . . . , εN} is the positive-definite action variable vector for
N electronic states,85 Wa(ε) = δ[εa − (1 + γa)]∏a≠b δ(εb − γb) is the
Wigner transformed action variables,102 and dτ ≡ dP ⋅ dR ⋅ dε ⋅ dθ.
For practical reasons, the delta functions above in Wa(ε) are
broadened using a distribution function (so-called window func-
tion) that is used to bin the resulting electronic action variables in
action space.56 Here, we used the triangle window,85,102 which is
expressed as

Wb(ε) = w1(εb)
N

∏
b′≠b

w0(εb, εb′), (29)

where the window functions are defined as

w1(ε) =
⎧⎪⎪
⎨
⎪⎪⎩

(2 − ε)2−N , 1 < ε < 2,

0, else,
(30)

where N is the total number of states, and

w0(ε, ε′) =
⎧⎪⎪
⎨
⎪⎪⎩

1, ε′ < 2 − ε,

0, else,
(31)

and trajectories are assigned to state b at time t if εb ≥ 1 and εb′ < 1
for all b′ ≠ b.

The time-dependent population of the state ∣b⟩ is computed
with Eq. (28). Using the window function estimator, the total pop-
ulation is no longer properly normalized due to the fraction of
trajectories that are outside of any window region at any given
time.61 Thus, the total population must be normalized61 with the
following procedure:
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ρbb(t)/
N

∑
a=1

ρaa(t)→ ρbb(t). (32)

In the γ-SQC approach,85 it was proposed that the mapping
ZPE should be chosen in such a way as to constrain the initial force to
be composed purely of the initially occupied state.85 The basic logic
of γ-SQC is to choose a γb value for each state ∣b⟩ in every given indi-
vidual trajectory, such that the initial population is forced to respect
the initial electronic excitation focused onto a single excited state. If
the initial electronic state is ∣a⟩, then

γb = εb − δba, (33)

or equivalently,

δba = εb − γb, (34)

where {εb} are uniformly sampled inside the window function
[Eq. (29)], and following that, the γb are chosen to satisfy Eq. (34).

These γb will be explicitly used in the EOMs in Eqs. (24) and
(25), and in particular, the nuclear forces become

F = −
1
2∑ab

∇Vab(R)(papb + qaqb − 2γbδba), (35)

ensuring the initial forces (at t = 0) are simply F = −∇Vaa(R).
Previously, without any adjustments to γb, the chosen values for
γb were only dependent on the windowing function itself, i.e.,
γb = 0.366 for the square windows and γb = 1/3 for the triangle
windows. With the above-mentioned γ-correction method,85 each
individual trajectory will have its own state-specific γb for state ∣b⟩
that is completely independent of the choice of the window func-
tion. This method has been proven to provide very accurate non-
adiabatic dynamics in model photo-dissociation problems (coupled
Morse potential) and has outperformed fewest-switches surface
hopping (FSSH) with decoherence correction in ab initio on-the-fly
simulations.75,76

2. The spin-LSC method
For the spin-LSC approach,67,68 one chooses a universal ZPE

parameter 2γb = Γ for all states and trajectories. The spin-LSC
population dynamics is calculated as

ρbb(t) = TrR[ρ̂R ⊗ ∣a⟩⟨a∣eiĤ t/h̵
∣b⟩⟨b∣e−iĤ t/h̵

]

≈ ∫ dτρW(P, R)[∣a⟩⟨a∣]s(0) ⋅ [∣b⟩⟨b∣]s̄(t), (36)

where the population estimators are obtained from the
Stratonovich–Weyl transformed electronic projection operators,
with the expressions as follows:68

[∣a⟩⟨a∣]s =
1
2
(q2

a + p2
a − Γ), (37a)

[∣b⟩⟨b∣]s̄ =
N + 1

2(1 + N Γ
2 )

2 ⋅ (q
2
b + p2

b) −
1 − Γ

2
1 + NΓ

2
, (37b)

where N is the total number of states. The parameter Γ is related to
the radius of the generalized Bloch sphere rs through Γ = 2

N (rs − 1),
where s and s̄ are complementary indices in the Stratonovich–Weyl
transform. Among the vast parameter space, one of the best-
performing choices67,68 is when rs = rs̄ =

√
N + 1, which is referred

to as s =W, leading to a ZPE parameter,

Γ =
2
N
(
√
N + 1 − 1) (38)

as well as the identical expression of [∣a⟩⟨a∣]s and [∣b⟩⟨b∣]s̄ in
Eq. (37). We further use the focused initial condition67,68 that
replaces the sampling of the mapping variables in the dτ inte-
gral of Eq. (36) with specific values of the mapping variables,
such that 1

2(q
2
a + p2

a − Γ) = 1 for initially occupied state ∣a⟩ and
1
2(q

2
b + p2

b − Γ) = 0 for the initially unoccupied states ∣b⟩. The angle
variables {θb} [Eq. (26)] are randomly sampled68 in the range of
[0, 2π). More computational details for the γ-SQC and spin-LSC are
provided in Sec. III B.

III. COMPUTATIONAL DETAILS
A. Initial conditions

We describe the details of the HTC models used in our bench-
mark and the corresponding initial condition for the dynamics. The
initial condition for all our simulations is assumed to be separable,
and hence, the density matrix ρ̂ is given by

ρ̂ = ρ̂S ⊗
e−βĥ B

ZB
, (39)

TABLE I. Parameters assigned in different models used in this work. The results from model 1 to model 4 are presented in
the main text, while the results of model 5 and model 6 are presented in the supplementary material.

Model N ωc − ω0 − λ (meV) gc (meV) λ (meV) ων (meV) β (a.u.)

1 5/10/15 0 68.1 30 24.8 1000
2 10 −200/0/200 68.1 30 24.8 1000
3 10 0 40.8/68.1/96.1 30 24.8 1000
4 10 0 68.1 10/30/50 24.8 1000
5 10 0 68.1 30 12.4/24.8/37.2 1000
6 10 0 68.1 30 24.8 250/1000/4000
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where ρ̂S is the system-reduced density operator, β = 1/kBT is the
inverse temperature, and ZB = Tr [e−βĥ B] is the bare-bath partition
function. In Eq. (39), we assume that the bath is in thermal equi-
librium so that the bath-reduced density matrix operator takes the
form of a Boltzmann distribution. In addition, the system is ini-
tially placed in the UP state ∣Ψ(0)⟩ = ∣+⟩ and the associated system
reduced density operator is given by ρ̂S = ∣+⟩⟨+∣. This initial state is
chosen so that we can observe the relaxation from the UP to the DS
and LP state because of exciton–phonon coupling.

B. Model parameters
We construct six HTC benchmark models to investigate the

performance of the trajectory-based non-adiabatic methods to sim-
ulate polariton relaxation dynamics. These models scan a range of
the following physical parameters: (1) number of molecules (N),
(2) light–matter detuning (ωc − ω0 − λ), (3) single-molecule cou-
pling strength (gc), (4) reorganization energy (λ), (5) bath cutoff
frequency (ων), and (6) temperature (β = 1/kBT).

In each model, we vary one parameter and fix the other five
parameters. The values of these parameters for all six models are
provided in Table I. We note that by changing the parameters in

models 1–3, the polariton relaxation dynamics are affected through
the system contribution to the Hamiltonian, while in changing the
parameters in models 4–6, the dynamics are affected through the
system–bath interaction term. Furthermore, the results for models
1–4 are presented in the main text in the following, while models 5
and 6 are provided in Sec. III of the supplementary material.

C. Details on the HEOM simulations
For the model we considered, the molecular phonon bath is

described by the Drude–Lorentz spectral density, so that the bare-
bath time-correlation function (TCF) decomposition is achieved
using the Padé spectral decomposition (PSD) scheme.103–105 Here,
we use the [N − 1/N] scheme105 with 2 low-temperature cor-
rection terms. For HEOM propagation, we use the fourth-order
Runge–Kutta (RK-4) integrator with a time step of 0.005 fs, together
with the on-the-fly filtering algorithm106 with an error tolerance of
1 × 10−6. The number of tiers (i.e., hierarchical expansion of the
EOM) is set as 20. The convergence of the calculation is carefully
checked with the above-mentioned parameters. In addition, a fac-
torizable initial full-density matrix is applied, which is the same as

FIG. 2. Population dynamics of the UP
and the LP states, and sum over all
dark states for the HTC model com-
puted with different MQC dynamics
methods, including Ehrenfest, GFSH, γ-
SQC, and spin-LSC. Different numbers
of molecules (N = 5/10/15) are used in
the dynamics simulations. The cavity fre-
quency is ωc = 2.0 eV, the light–matter
coupling strength is gc = 68.1 meV, the
reorganization energy is λ = 30 meV, the
temperature is β = 1000 a.u., and the
cutoff frequency during the initial sam-
pling process is ων = 24.8 meV. See
model 1 in Table I.
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Eq. (39). The details about the HEOM method are provided in Sec. I
of the supplementary material.

D. Details of the trajectory-based dynamics
To perform the γ-SQC dynamics, we need to sample the initial

condition for the quantum subsystem. In this work, we sample the
action-angle variables {εb, θb} and subsequently transform them to
the mapping variables {pb, qb} using Eq. (27). The action variables
{εb} are sampled according to the window function in Eq. (29), and
the angle variables {θb} are randomly sampled from [0, 2π). The
triangle window is used in this work, although the square window
generates similar results.

For the spin-LSC dynamics, we use the focused initial condi-
tions68 described in Sec. II C, where the action variable εa is set
to be 1 + Γ/2 for the initially occupied state and Γ/2 for the ini-
tially unoccupied state, with Γ expressed in Eq. (38). The angle
variables {θb} are randomly generated between [0, 2π) as in the
γ-SQC method. The canonical mapping variables are obtained
from Eq. (27).

The initial nuclear distribution of all trajectory-based simu-
lations (Ehrenfest, GFSH, γ-SQC, and spin-LSC) are generated by
sampling the Wigner density,

[⟨R∣χ⟩]w =
1

h̵π
e−M(P2+ω2

0(R−R0)2)/ω0 h̵, (40)

which is the Wigner transformation of the nuclear wavefunction
χ(R) = ⟨R∣χ⟩ in the initial state. Here, R and P are the nuclear
coordinate and momentum, respectively. The nuclear time step
used in all the trajectory-based simulations is dt = 3.0 a.u., with 200
equally spaced time steps for the mapping variables’ integration
during each nuclear time step. The equations of motion in Eqs. (24)
and (25) are integrated using a second-order symplectic integrator
for the MMST variables.107,108 The population dynamics using all
trajectory-based methods were averaged over 10 000 trajectories.
Note that the results from SH and γ-SQC are less smooth compared
to the other trajectory-based method due to their active state
estimator and the window estimator, respectively. Furthermore,
when the total number of states N + 1 increases, the number of tra-
jectories in a given population window in the SQC-approach

FIG. 3. Population dynamics of the UP
and the LP states, and sum over all
dark states for the HTC model computed
with different MQC dynamics methods,
including Ehrenfest, GFSH, γ-SQC, and
spin-LSC. Different cavity frequencies
(ωc = 1.8, 2.0, 2.2 eV) are used in the
dynamics simulations. The number of
molecules is N = 10; the light–matter
coupling strength is gc = 68.1 meV; and
the reorganization energy is λ = 30 meV.
See model 2 in Table I for details.
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gradually decrease in time,109 resulting in less smooth
population estimation.

IV. RESULTS
We present the population dynamics of the polariton states and

dark states for models 1–4 in this section. Figure 2 shows the dynam-
ics for model 1, which varies the number of molecules N from five
molecules to 15 molecules; Fig. 3 presents the dynamics for model 2,
where the light–matter detuning ωc − ω0 − λ varies from negative to
positive values; Fig. 4 illustrates the population dynamics for model
3, which varies the single-molecule coupling strength gc from 40.8
to 96.1 meV; and Fig. 5 depicts the population dynamics for model
4, where the reorganization energy λ is varied from 10 to 50 meV.
The trajectory-based methods are depicted using open circles and
are compared to numerically exact results (HEOM) depicted using
solid lines.

We see from Figs. 2–5 that all trajectory-based methods are able
to semi-quantitatively account for the relaxation of the UP state to
the DS and eventually to the LP state. However, both MQC methods
(Ehrenfest and GFSH) predict a slower relaxation rate and a larger
steady-state population [see Figs. 2(a)–2(f), 3(a)–3(f), 4(a)–4(f), and

5(a)–5(f)] for the UP state compared to the HEOM result. Focus-
ing on the transitions into and out of the dark states, we observe
that both MQC methods are only able to capture the increase in
the total dark state populations qualitatively. After the dark state
populations have reached a maximum value, both MQC methods
predict little changes in the dark state population, which is in con-
trast to numerically exact results from HEOM simulation. As a
result, the increase in the LP population calculated from both MQC
methods, which comes from the transitions from the dark states,
is smaller than that predicted by using the HEOM method. One
exception to these observations about the dark states is given in
Fig. 3(d), where the GFSH method predicts comparable dark state
populations compared to the HEOM method for negative detuning
(ωc − ω0 − λ = −200 meV).

In contrast, the mapping-based methods (γ-SQC and spin-
LSC) show more accurate relaxation dynamics from the UP state,
compared to the HEOM results, and the steady-state population
for the UP is also similar to the exact HEOM dynamics [see
Figs. 2(g)–2(l), 3(g)–3(l), 4(g)–4(l), and 5(g)–5(l)]. We also observe
that the transitions to the dark states are better captured with these
mapping-based methods, although the γ-SQC method outperforms
the spin-LSC method in predicting the longer time transitions from

FIG. 4. Population dynamics of the UP
and the LP states, and sum over all
dark states for the HTC model computed
with different MQC dynamics methods,
including Ehrenfest, GFSH, γ-SQC, and
spin-LSC. Different light–matter coupling
strengths (gc = 40.8/68.1/96.1 meV)
are used in the dynamics simulations.
The number of molecules is N = 10; the
cavity frequency is ωc = 2.0 eV; and the
reorganization energy is λ = 30 meV.
See model 3 in Table I for details.
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FIG. 5. Population dynamics of the UP
and the LP states, and sum over all DS
for the HTC model computed with dif-
ferent MQC dynamics methods, includ-
ing Ehrenfest, GFSH, γ-SQC, and spin-
LSC. Different reorganization energy
(λ = 10/30/50 meV) are used in the
dynamics simulations. The number of
molecules is N = 10, and the cavity fre-
quency is ωc = 2.0 eV. See model 4 in
Table I for details.

the dark states to the LP state. Furthermore, the population of the LP
state computed from the mapping-based method is comparable with
the populations of the LP state predicted from the HEOM method.
In addition, we note that for the population of the LP state, the γ-
SQC method tends to overestimate the population compared to the
HEOM method while the spin-LSC method tends to underestimate
the population compared to the HEOM method [see Figs. 4(h) and
4(k) for an example].

Further benchmark results for model 5 and model 6 are pro-
vided in the supplementary material, with changing bath character-
istic frequency ων (Fig. S1 for model 5) and temperature T (Fig. S2
for model 6). All the methods show qualitatively correct dynamics;
the mapping methods are more accurate than the MQC approaches;
and γ-SQC slightly outperforms spin-LSC.

Finally, in Fig. 6, we present a further comparison of the
polariton relaxation dynamics computed using the spin-PLDM
approach70,71 for model 1. The theoretical details of this approach
can be found in Ref. 70. Similar to the original PLDM approach,59,60

spin-PLDM explicitly accounts for the forward and backward prop-
agators of the quantum subsystem, using the forward and backward
mapping variables. One can see in Fig. 6 that spin-PLDM provides
more accurate results compared to spin-LSC and achieves accuracy
at a similar level of γ-SQC [see Figs. 2(g) and 2(h)]. However, being

FIG. 6. Same as Fig. 2, by comparing results obtained from spin-LSC and spin-
PLDM.

a partially forward and backward method, the computational cost
of spin-PLDM is significantly increased compared to the Ehren-
fest method and all linearized mapping approaches (γ-SQC and
spin-LSC).
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V. CONCLUSIONS
In this paper, we provide several benchmark results for various

trajectory-based non-adiabatic simulations on polariton relaxation
dynamics. The non-adiabatic methods that we use in our bench-
mark are well-known in the literature, such as MQC-based methods
and the recently developed mapping-based methods (both γ-SQC
and spin-mapping representation). In particular, we showed that
the MQC-based methods (MFE and GFSH) are able to qualitatively
capture the initial relaxation dynamics of the polaritonic system
but are unable to accurately describe subsequent relaxation to the
DS and the LP state. In comparison with the other methods, we
find that the γ-SQC method is able to accurately capture all rel-
evant relaxation dynamics of the polariton system, including the
transition from the DS to the LP state at long time scales. The spin-
mapping method that we chose (spin-LSC) also markedly improves
on the MQC-based methods in terms of simulating the relaxation
dynamics of polaritons, although it is less accurate compared to
SQC when describing the correct rates of relaxation from the DS to
the LP state.

Thus, for the models investigated in this work, the γ-SQC
method outperforms the other three methods to describe the rele-
vant polariton physics in the HTC model. Despite this observation,
more work remains to be done to theoretically investigate the limita-
tions of the other trajectory-based methods and address their short-
comings in terms of simulating the relevant dynamics for polariton
chemistry and physics. We further envision that our benchmark
results will provide useful information to the emergent polariton
chemistry and physics community by showcasing the applicability
of various trajectory-based methods to analyze problems of interest,
such as polariton photochemical processes and polariton transport
dynamics.17,20,110,111

We have simulated the polariton relaxation dynamics in six
different model systems by systematically changing the numbers of
molecules N, light–matter detunings, Rabi splitting, phonon reorga-
nization energy, phonon frequency, and temperature. The insights
obtained from all simulations are that the relaxation dynamics are
sensitive to the parameters we scanned. From the Hamiltonian, the
phonon coupling is the main source mediating the relaxation of the
UP to DS and eventually to the LP state. In our previous work,25 we
have rigorously derived rate theory based on the equilibrium and
non-equilibrium golden rule, which provides a semi-quantitative
description of the polariton relaxation dynamics. For the simplest
Fermi’s Golden rule (FGR) [see Eq. (30) in Ref. 25], one can indeed
see how these quantities influence the relaxation dynamics. These
simple expressions not only provide reliable population dynamics25

but also helped understand the behavior of line shape as detun-
ing30 and the polariton decoherence dynamics.31 The current work,
through scanning various parameters, confirms these early obser-
vations of relaxation dynamics interpreted from the FGR. On the
other hand, we want to emphasize that the focus of the current
work is to assess the numerical behavior of the trajectory-based
method.

As we approach the large N limit with N ∼ 106, which is con-
sidered to be the experimentally relevant regime,1,2 we note that one
should take advantage of the well-known mean-field solution112,113

or the recently proposed CUT-E approach114,115 (for the zero-
temperature case and with a single high-frequency vibration mode

per molecule) that effectively only treats one or a few molecules. We
can also exploit the sparsity of the HTC Hamiltonian24 to enable
direct simulations of N ∼ 106 molecules coupled to a single cav-
ity mode in the single excitation subspace with trajectory-based
methods. One could also explore the relatively short memory ker-
nel time compared to the density matrix dynamics time to facilitate
the simulations.79,116 These directions remain to be explored in the
future.

SUPPLEMENTARY MATERIAL

See the supplementary material for details about the HEOM
method, the Ehrenfest dynamics, the Global Flux Surface Hopping
non-adiabatic methods used to perform the benchmark simulations,
and polariton relaxation dynamics for models 5 and 6.
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