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Powerful approximate methods for propagating the density matrix of complex systems that are con-
veniently described in terms of electronic subsystem states and nuclear degrees of freedom have
recently been developed that involve linearizing the density matrix propagator in the difference be-
tween the forward and backward paths of the nuclear degrees of freedom while keeping the interfer-
ence effects between the different forward and backward paths of the electronic subsystem described
in terms of the mapping Hamiltonian formalism and semi-classical mechanics. Here we demonstrate
that different approaches to developing the linearized approximation to the density matrix propagator
can yield a mean-field like approximate propagator in which the nuclear variables evolve classically
subject to Ehrenfest-like forces that involve an average over quantum subsystem states, and by adopt-
ing an alternative approach to linearizing we obtain an algorithm that involves classical like nuclear
dynamics influenced by a quantum subsystem state dependent force reminiscent of trajectory sur-
face hopping methods. We show how these different short time approximations can be implemented
iteratively to achieve accurate, stable long time propagation and explore their implementation in
different representations. The merits of the different approximate quantum dynamics methods that
are thus consistently derived from the density matrix propagator starting point and different partial
linearization approximations are explored in various model system studies of multi-state scattering
problems and dissipative non-adiabatic relaxation in condensed phase environments that demonstrate
the capabilities of these different types of approximations for treating non-adiabatic electronic relax-
ation, bifurcation of nuclear distributions, and the passage from nonequilibrium coherent dynamics
at short times to long time thermal equilibration in the presence of a model dissipative environment.
© 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4748316]

I. INTRODUCTION

The mixed quantum-classical strategy for modeling sys-
tems in which quantum coherent dynamics and electroni-
cally non-adiabatic transitions play important roles describes
the nuclear degrees of freedom (DOF) classically or semi-
classically, while treating the electronic DOF quantum me-
chanically with an evolution operator parameterized by tra-
jectories of the nuclear DOF.1–3

The two most widely used approaches to mixed quantum-
classical dynamics are mean-field based Ehrenfest dynamics
schemes,1, 2, 4 and the trajectory surface hopping methods.1, 5–8

Ehrenfest dynamics methods propagate the nuclear DOF us-
ing a mean-field that employs a time dependent average of
different potentials arising from the mixing quantum subsys-
tem states. This mean-field is parameterize by the time de-
pendent electronic expansion coefficients. Surface hopping
schemes, on the other hand, evolve the nuclear DOF based
on a single electronic adiabatic potential with hops between
surfaces determined by a stochastic algorithm and additional
impulsive hopping forces arising from the non-adiabatic cou-

a)Electronic addresses: pengfhuo@caltech.edu and coker@bu.edu.

pling vector matrix elements that describe the back reac-
tion between the quantum and classical DOF during quan-
tum transitions.1, 5 These forces operate to conserve energy
during instantaneous surface hopping events along given tra-
jectories. Though quite successful in many applications treat-
ing non-adiabatic dynamics, these two schemes have dif-
ferent disadvantages that result from their different central
approximations.

Ehrenfest dynamics, or related mean-field approaches,
such as the time dependent self consistent field (TDSCF),4

or linearized semi-classical initial value representation (LSC-
IVR)9, 10 schemes, cannot in general, for example, provide an
accurate description of bond breaking process where, once
the wave packet emerges from the coupling region where the
electronic states mix, the force that acts on the nuclear DOF
should be that arising from a single surface potential, rather
than the mean force averaged over multiple potentials. Sur-
face hopping methods that branch trajectories between the
different competing potential surfaces and integrate the elec-
tronic wave function coherently along the classical-like tra-
jectories of the nuclear DOF, partially overcome this prob-
lem but require the use of ad hoc schemes to deal with the
decoherence that arises as nuclear wave packets, born on
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the different surfaces move in different directions and their
overlap modulates the off-diagonal coherence density ma-
trix elements.11 This is due to the fact that trajectory hop-
ping in most surface hopping (SH) methods does not cor-
rectly represent the developing independent nature of the
bifurcating wave packets after they pass through the cou-
pling region. Instead, due to the infinitely long lived co-
herence memory, SH effectively represents the superposition
of two bifurcating wave packets instead of two independent
packets.11

Though quite accurate for the description of adiabatic
populations,12 surface hopping does not generally give ac-
curate diabatic populations, so the results of such approxi-
mate schemes are dependent on the representation employed.
Moreover, surface hopping methods generally suffer from the
“frustrated hop” problem where the classical subsystem ki-
netic energy is insufficient to make a hop between quan-
tum subsystem states. This is actually a tunneling process
that is classically forbidden.6, 13 Many hybrid methods have
been proposed that try to combine the advantages of surface
hopping and Ehrenfest mean-field like approaches, for exam-
ple, the use of a smooth switching between the two types of
forces in different regions,14 Ehrenfest dynamics guided sur-
face hopping15 or the surface hopping dynamics with Ehren-
fest excited state potential16 approaches are two recent ver-
sions of such ideas.

Though many schemes for implementing mixed
quantum-classical dynamics have been developed,1 fun-
damental questions arise about the accuracy of dynamics
methods that treat electronic and nuclear DOF on different
dynamical footing.17 Perhaps the most significant of these
questions concerns if such approximate treatments can
reliably capture the energy transfer processes between the
two subsystems so as to reproduce detailed balance and yield
the correct long time thermal equilibrium energy distribution
between the systems.18 To overcome this difficulty, the map-
ping Hamiltonian idea that exactly maps discrete quantum
states onto continuous coordinates, was proposed by Miller
and co-workers19 here and elsewhere and enables consistent
treatment for all DOF, at the classical, semi-classical, and full
quantum dynamical levels. This idea replaces the evolution of
the electronic subsystem by the dynamics of a system of fic-
titious mapping harmonic oscillators. With this approach, for
example, the quantum amplitude transfer operator transforms
as |β〉〈λ| → â

†
β âλ, where âλ = 1√

2¯
(q̂λ − ip̂λ). For a given

total Hamiltonian, Ĥ = P̂ 2

2M
+ ĥel , the electronic Hamiltonian

in the diabatic representation, ĥel = ∑
β,λ |β〉〈β|ĥel(R̂)|λ〉〈λ|,

can be rewritten as

ĥmap(R̂) = 1

2¯

∑
β

hβ,β(R̂)
(
q̂2

β + p̂2
β − ¯)

+ 1

2¯

∑
λ �=β

hβλ(R̂)(q̂β q̂λ + p̂βp̂λ), (1)

where (P̂ , R̂) and (p̂, q̂) represent the nuclear, and mapping
oscillator phase space DOF, respectively.

In this paper, we show how to recover two different
regimes: the mean-field – Ehrenfest, and state dependent

force – surface hopping approaches, from a consistent
theoretical framework that involves partially linearizing a
path integral description of the full system dynamics with
the mapping representation of the electronic DOF. The
basic approach for linearizing within the mapping Hamil-
tonian formulation in order to derive procedures for mixed
quantum-classical non-adiabatic dynamics that we extend
here was originally developed by Shi and Geva.20 With the
approach outlined here we develop different procedures for
partially linearizing the propagator in the nuclear DOF. By
linearizing different parts of the phase of the integrand of
the path integral density matrix propagator in the difference
between the forward and backward paths of the nuclear DOF,
either for the full phase angle as in Ref. 21 or linearizing the
component of the phase arising from the equations of motion
for the nuclear degrees of freedom,22, 23 we show that the
force acting on the classical DOF can be, respectively, state
dependent21, 24 such as the situation in surface hopping, or a
mean-field like force22, 23 as with Ehrenfest dynamics.

Also, by employing an iterative scheme24 that uses the
linearized propagator as a short time approximation for a
sequence of propagation segments, together with “focused”
quantum subsystem initial condition sampling (a steepest
descent integration approximation),25 and a Monte Carlo
switching algorithm that moves trajectories between repre-
senting coherence and population elements in the density ma-
trix, the propagation can incorporate a version of “hopping”
without ad hoc assumptions. Moreover, the theory can be de-
rived in both a diabatic, and the adiabatic representation,26 the
latter having a more direct connection for comparison with
surface hopping and other methods that use surface hopping
ideas such as schemes based on the mixed quantum-classical
Liouville (MQCL) equation.27

To explore the effectiveness of the different linearized
approximate propagators and their iterative implementation
as short time approximations, in Sec. III we first study how
the different methods perform in reproducing exact results
for nuclear subsystem quantities. In particular, we explore
the ability of these different approaches to recover the bi-
furcation of the momentum distribution as the model sys-
tems studied pass through different arrangements of non-
adiabatic coupling regions. Next, we explore the reliability
of the different methods for reproducing the non-adiabatic
electronic relaxation, focusing on electronic subsystem quan-
tities. In the Appendix we demonstrate how the linearized
short time propagators can be formulated in different repre-
sentations and in the body of the paper we explore the effects
of using approximate propagators on invariance of results to
transformation between representations. The benchmark test
problems we consider include: simple single avoided cross-
ing scattering models and a dual avoided crossing Stueckel-
berg scattering problem,1, 5, 7, 8 as well as multi-state models of
molecular photodissociation.23, 24, 28 The Subsection III D ex-
plores the application of the linearized and iterative schemes
to study relaxation in the spin-boson model of dissipative
condensed phase non-adiabatic dynamics where we study
the effects of temperature and the progression from short
time non-equilibrium coherent dynamics to long time thermal
equilibration.
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II. THEORY AND METHODS

Direct implementation of the original mapping Hamilto-
nian by stationary phase approximation and classical trajec-
tories encounters a fatal problem when q2

β + p2
β < ¯, since,

according to Eq. (1), some of the classical DOF can evolve on
an inverted potential surface, proportional to −hβ, β(R).28–30

Moreover, the population, ρββ = â
†
β âβ = 1

2¯ (q̂2
β + p̂2

β

− ¯), is not guaranteed to have a positive expected value when
the approach is implemented approximately, e.g., with the
LSC-IVR applied to multi-state systems.28, 31 This is due to
the unphysical flow of zero point energy from the mapping
harmonic oscillators in the classical limit2, 32 with the LSC-
IVR approach that linearizes in the difference between for-
ward and backward paths for both the mapping and nuclear
DOF.

To overcome all these problems we use the coherent state
representation of the mapping DOF21, 25 and linearize only in
the nuclear DOF; allowing different mapping variable paths
for the forward and backward propagators, i.e., partial lin-
earization.

The quantity of interest is the evolution of the density
matrix involving forward and backward propagation,

〈Rt, nt |ρ̂|R′
t , n

′
t 〉

=
∑
n0,n

′
0

∫
dR0dR′

0〈Rt, nt |e− i
¯
Ĥ t |R0, n0〉

×〈R0, n0|ρ̂(0)|R′
0, n

′
0〉〈R′

0, n
′
0|e

i
¯
Ĥ t |R′

t , n
′
t 〉, (2)

here the total Hamiltonian is Ĥ = P̂ 2/2M + hmap(R̂, p̂, q̂),
and nt labels the basis states at time t. The propagator matrix
elements in discrete path integral form are

〈RN, nt |e− i
¯
Ĥ t |R0, n0〉 =

∫ N−1∏
k=1

dRk

dPk

2π¯

dPN

2π¯
e

i
¯
S0

×T[nt ,n0][{Rk}], (3)

where the nuclear kinetic action is S0 = ε
∑N

k=1[Pk
(Rk−Rk−1)

ε

− P 2
k

2M
], T[nt ,n0][{Rk}] = 〈nt |e− i

¯
εĥmap(RN−1) . . . e− i

¯
εĥmap(R0)|n0〉,

is the nuclear path dependent quantum transition amplitude
and ε is the time step.

Using the coherent state representation with coherent
state width parameter, γ = 1/2 (the choice of the width pa-
rameter will not influence the final results but may effect the
numerical convergence25) and setting units so that ¯ = 1, the
transition amplitude can be expressed as21, 25

T[nt ,n0] =
∫

dq0dp0
1

4
(qnt

+ ipnt
)(qn0 − ipn0 )cte

iS1(t)

× e− i
2

∑
β (qβtpβt−qβ0pβ0)e

− 1
2

∑
β

(
q2

β0+p2
β0

)
, (4)

where ct = e− i
2¯

∫ t

0 dτ
∑

β ĥββ (R), S1(t) = ∫ t

0 L1(τ )dτ , with L1

= Lcl
1 + 1

2

∑
β hββ(R), Lcl

1 = ∑
β pβq̇β − hcl

map(R) and

hcl
map(R,p, q) = 1

2

∑
β

hββ(R)
(
p2

β + q2
β

)

+ 1

2

∑
λ �=β

hλβ(R)(pλpβ + qλqβ ). (5)

The term ¯
2

∑
β hββ(R) in the action, S1, that gives rise to

the problem of inverting the potential can be eliminated as
this term is cancelled exactly by the pre-factor, ct

21, 25 leav-
ing Scl

1 (t) = ∫ t

0 Lcl
1 (τ )dτ in the phase. The combined for-

ward and backward propagators in Eq. (2) can lead to phase
cancellation that can cause problems for numerical imple-
mentation. Approximate schemes such as forward backward
(FB) SC-IVR10 can alleviate these difficulties. Alternatively,
here we use the idea of partial linearization33 in the nuclear
DOF that involves transforming the forward and backward
nuclear path variables, R and R′, to mean and difference vari-
ables: R̄ = (R + R′)/2 and Z = (R − R′), respectively, (with
similar definitions for the mean and difference nuclear mo-
menta, P̄ and Y, respectively). The nuclear kinetic action dif-
ference becomes: (S0 − S ′

0) = P̄NZN − P̄1Z0 − ∑N−1
k=1 (P̄k+1

− P̄k)Zk − ∑N
k=1[ ε

m
P̄k − (R̄k − R̄k−1)]Yk . The central ap-

proximation with the approaches we derive below involves
truncating the phase difference in the combined transition am-
plitude terms to linear order in Z, based on the assumption
that for short times, forward and backward nuclear paths will
remain close to each other. This may appear to be a restric-
tive approximation that will only be valid for very short times
for high dimensional problems but such linearization approx-
imations have been shown to be reliable even when forward
and backward paths differ significantly in some degrees of
freedom.34

The Subsections II A and II B below, use the common
starting point derived above to obtain two different short time
approximate propagator schemes: an “Ehrenfest”-like dynam-
ics approach with a mean force; and a “surface hopping” like
algorithm, with a quantum subsystem state dependent nuclear
force. In Sec. II C we present a general approach with which
either of these two methods may be implemented iteratively
to accurately extend these short time approximations to longer
times.

The approaches developed in this section are derived us-
ing a diabatic representation of the discrete quantum system.
The Appendix outlines the derivation of the adiabatic repre-
sentation of the approach and in Sec. III we demonstrate that
the results obtained from these types of calculations are inde-
pendent of representation.

A. Mean-field, Ehrenfest-like theory: partial
linearized density matrix (PLDM) propagation
by linearizing the classical mapping Hamiltonian
in the forward-backward path difference

With the linearization approximation, the key term
is the classical mapping Hamiltonian difference 	hcl

map

= [hcl
map(R,p, q) − hcl

map(R′, p′, q ′)] which can be written as

	hcl
map = [

hcl
map(R̄, p, q) − hcl

map(R̄, p′, q ′)
] + O(Z2)

+ 1

2

(∇R̄hcl
map(R̄, p, q) + ∇R̄hcl

map(R̄, p′, q ′)
)
Z.

(6)

Using this to expand the phase difference obtained by
combining the forward and backward propagator terms in
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Eq. (2) in terms of path difference, Z, and implementing
the linearized approximation by propagating p and q with
hcl

map(R̄, p, q) (instead of hcl
map(R,p, q) or hcl

map(R′, p′, q ′)),
we obtain the following relationship connecting the var-
ious mapping variable dynamical quantities:

∑
β pβq̇β

− hcl
map(R̄, p, q) = 1

2
d
dτ

(
∑

β pβqβ), and the transition am-
plitude component of the phase difference becomes, 	Scl

1
= (Scl

1 [R(t), q(t), p(t)] − Scl
1 [R′(t), q ′(t), p′(t)]), which can

be expanded as

	Scl
1 =

∫ t

0

[
1

2

d

dτ

∑
β

(pβτqβτ − p′
βτ q

′
βτ ) + O(Z2

τ )

+1

2
∇R̄

(
hcl

map(R̄τ , pτ , qτ ) + hcl
map(R̄τ , p

′
τ , q

′
τ )

)
Zτ

]
dτ.

(7)

With this result the first term in Eq. (7) cancels the boundary
terms in T[nt ,n0] given in Eq. (4) and similarly for the backward
path transition amplitude, T ′

[n′
0,n

′
t ]

.
Combining forward and backward phase factors

(ei/¯(S0−S ′
0)T[nt ,n0]T

′
[n′

0,n
′
t ]

) and performing the integrals over
Z0. . . ZN − 1, gives our approximation for ρnt ,n

′
t
(R,R′, t)

= 〈R̄N + ZN

2 , nt |ρ̂(t)|R̄N − ZN

2 , n′
t 〉 with this scheme as

ρnt ,n
′
t
(R,R′, t) =

∑
n0,n

′
0

∫
dR̄0dq0dp0dq ′

0dp
′
0G0G

′
0

×1

4
(qn0 − ipn0 )(q ′

n′
0
+ ip′

n′
0
)

×
∫ N−1∏

k=1

dR̄k

dP̄k

2π¯

dP̄N

2π¯
(ρ̂)

n0,n
′
0

W (R̄0, P̄1)

×1

4
(qnt

+ ipnt
)(q ′

n′
t
− ip′

n′
t
)e

i
¯
P̄N ZN

×
N−1∏
k=1

δ

(
P̄k+1 − P̄k

ε
− Fk

)

×
N∏

k=1

δ

(
P̄k

M
− R̄k − R̄k−1

ε

)
. (8)

Here, G0 = e− 1
2

∑
β (q2

β0+p2
β0) and G′

0 = e
− 1

2

∑
β′ (q ′2

β′0+p′2
β′0) are

the initial distributions for the forward and backward map-
ping variables that satisfy q̇nt

= ∂hcl
map(R̄t )/∂pnt

and ṗnt

= −∂hcl
map(R̄t )/∂qnt

, and the nuclear trajectories are deter-
mined by a “mean-field” like force resulting from the different
forward and backward mapping paths,

Fk = −1

2
∇R̄k

[
hcl

map(R̄k, pk, qk) + hcl
map(R̄k, p

′
k, q

′
k)

]
. (9)

The mean nuclear DOF initial distribution is the partial

Wigner transform: (ρ̂)
n0,n

′
0

W (R̄0, P̄1) = ∫
dZ0〈R̄0 + Z0

2 , n0|ρ̂|
R̄0 − Z0

2 , n′
0〉e− i

¯
P̄1Z0 . We use factorized initial conditions,

ρ0 = ρ
eq

bath(R)ρsys , though the non-separable case can be
treated.35

Numerical implementation of Eq. (8) involves sampling

initial nuclear DOF from (ρ̂)
n0,n

′
0

W (R̄0, P̄1), and mapping vari-
ables from the gaussian functions. However, with “focused”
mapping variable initial conditions25, 36 that estimate the map-
ping variable initial condition integrals using a steepest de-
scent approximation, the numerical convergence can be im-
proved and typically only requires a small number (∼104)
of trajectories to achieve convergence for standard model test
problems. The accuracy of the focussed initial condition sam-
pling will be discussed in detail later in Sec. III D. The product
of δ-functions in Eq. (8) gives a time-stepping prescription for
evolving the mean nuclear DOF with the force in Eq. (9). Fi-
nally quantum expectation values are computed using Eq. (8)
and the state projected Wigner distribution,

(ρ̂)
nt ,n

′
t

W =
∫

dZNe− i
¯
P̄tZN

〈
R̄N + ZN

2
, nt

∣∣∣∣ ρ̂
∣∣∣∣R̄N − ZN

2
, n′

t

〉
.

(10)

We refer to the approach presented above as PLDM
propagation.22

The PLDM propagation scheme is a “mean trajectory”
approach, but according to Eq. (9) it is different from
“Ehrenfest” or LSC-IVR dynamics where the classical DOF
force depends only on one set of mapping variables as
FEh = −∇Rhmap = −∑

β
1

2¯ [(q2
β + p2

β − ¯)∇Rhβ,β+ ∑
λ �=β

(qβqλ + pβpλ)∇Rhβ,λ]10, 37 rather than both the forward and
backward propagating mapping variables with the partial
linearized approach as in Eq. (9).

B. A surface hopping-like approach with state
dependent force obtained by linearizing the integrand
phase factor in the density matrix propagation

By following a different sequence of canceling and lin-
earizing in the phase difference, a SH-like version of the the-
ory can be derived known as iterative linearized density ma-
trix (ILDM) propagation. It has been tested on various quan-
tum dynamical problems.24, 38 While ILDM uses a surface
hopping-like linearized expression as a short time approxima-
tion that is iterated to treat longer times, its convergence with
large numbers of iterations can be problematic. The earlier
linearized approach to non-adiabatic dynamics in the map-
ping formulation, or LANDmap21, 25 uses this same linearized
approximation but without iteration. The statistical conver-
gence of the LANDmap approach is superior to the iterated
version but the linearized propagator underlying these meth-
ods is generally only reliable for short times and a balance
between many iterations and statistical convergence must be
considered. The mean trajectory linearized approximation
underlying the PLDM scheme developed above, however, is
generally accurate for much longer times for several classes
of problems as demonstrated in the example applications pre-
sented below. The PLDM approach thus offers a significant
improvement in statistical convergence while preserving high
accuracy, even at long times for these classes of problems.

In this section, we briefly describe LANDmap21 and its
iterative version, ILDM,24, 39 based on a different type of lin-
earization approximation. Up to Eq. (5), the development
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of LANDmap and the PLDM approach are identical. In-
stead of directly applying the linearized approximation to the
classical Hamiltonian as in the development of PLDM prop-
agation, with LANDmap we first use the boundary term can-
cellation relation for the classical mapping Hamiltonian,

Lcl
1 =

∑
β

pβq̇β − hcl
map(R) = 1

2

d

dτ

⎛
⎝∑

β

pβqβ

⎞
⎠ . (11)

Note this relation is exact, and there are different ex-
pressions of this form for the forward and backward nu-
clear paths, R(t) and R′(t). The major difference between
LANDmap and the development of the PLDM propaga-
tion scheme outlined above is that here, we do not make
the assumption that both pβ , qβ and p′

β ′ , q ′
β ′ propagate

according to the classical mapping Hamiltonian evaluated
along the same mean path, i.e., hcl

map(R̄). Rather, for the
formal development of this theory the LANDmap short
time approximation is used in which the forward and back-
ward sets of mapping variables still propagate according to
hcl

map(R) and hcl
map(R′), respectively. Again we use the can-

cellation between the action phase e
i
¯
Scl

1 (R,t) = e
i
¯

∫ t

0 Lcl
1 (τ )dτ

= e
i

2¯

∫ t

0
d
dτ (

∑
β pβqβ)dτ = e

i
2¯

∑
β (pβt qβt−pβ0qβ0) and the boundary

terms in Eq. (4). Note that with the approximation underlying
PLDM the action phase cancels the boundary condition term
only to zero order, while in LANDmap/ILDM the total action
phase cancels the boundary terms exactly. Now the propaga-
tors in Eq. (4) can be expressed as (with ¯=1),

T[nt ,n0] =
∫

dq0dp0
1

4
(qnt

+ ipnt
)(qn0 − ipn0 )

× e
− 1

2

∑
β

(
q2

β0+p2
β0

)
(12)

with a similar result for backward propagator. We proceed
from this point and make the linearization approximation just
as with the development of PLDM. Thus, we linearize the R
and R′ dependence of pβ(R), qβ(R) and pβ ′ (R′), qβ ′ (R′) in the
difference between these forward and backward paths. This
results in a phase factor in the integrand of the form ei×factor×Z,
and performing the integrals over dZ will, as above, make
these phase factors in the path integral into δ-functions. Based
on these considerations, we introduce the polar representation
of the mapping variables in a similar fashion to the action an-
gle variables employed by Meyer and Miller,40

rt,nt
({Rk}) =

√
q2

t,nt
({Rk}) + p2

t,nt
({Rk})

�t,nt
({Rk}) = tan−1

(
pt,nt

({Rk})
qt,nt

({Rk})
)

.

(13)

A more explicit form of Eq. (13) can be obtained if we use
Hamilton’s equation of motion for pτnt

and qτnt
derived from

ĥcl
m(R). The exact result is

�t,nt
({Rk}) = tan−1

(
p0,nt

q0,nt

)
+

∫ t

0
dτθτ,nt

, (14)

where

θτ,nt
= hnt ,nt

(Rτ ) +
∑
λ �=nt

hnt ,λ(Rτ )
(pτnt

pτλ + qτnt
qτλ)

(p2
τnt

+ q2
τnt

)
. (15)

With the LANDmap based approaches we now linearize in
the difference between R and R′ inside the phase factors for
the forward and backward phases �t,nt

({Rk}) and �′
t,n′

t
({R′

k}),
respectively.

There are two additional implicit approximations un-
derlying the implementation of the LANDmap based prop-
agation scheme.21 The first involves assuming that the pre-
exponential magnitude factors rt,nt

({Rk}) and r ′
t,n′

t
({R′

k}) vary
slowly with nuclear path compared to the exponential phase
factor so that these different magnitude factors can be ap-
proximated by the magnitude evaluated along the mean path,
rt,nt

({R̄k}), i.e., keeping terms only to zero order in the path
difference in this slow varying part of the integrand. The expo-
nential factor in the integrand, by contrast varies much more
rapidly with path difference so the phase is kept to linear or-
der in Z giving rise to the δ-functions in the approximate path
integral kernel.

The second implicit approximation at the heart of the im-
plementation of the LANDmap propagation is that, from this
point of the development on, the time evolution of pτnt

, qτnt

and p′
τn′

t
and q ′

τn′
t

are governed by Hamiltonian ĥcl
map(R̄), not

ĥcl
map(R) and ĥcl

map(R′), respectively, as we have now made
the linearization approximation. One should notice that in the
PLDM approach derived earlier, we also make similar ap-
proximations, but before the linearization approximation in
the difference between R and R′ has been made.

Combining the approximate expressions for the integrand
developed so far, and integrating over Z, the final expression
for the density matrix elements is obtained and it has the same
form as Eq. (8), except now the force is state dependent since
we have linearized each state dependent angle variable in Z.
The LANDmap state dependent force thus has the form,

F
nt ,n

′
t

k = −1

2
{∇R̄k

hnt ,nt
(R̄k) + ∇R̄k

hn′
t ,n

′
t
(R̄k)}

− 1

2

∑
λ �=nt

∇R̄k
hnt ,λ(R̄k)

{
(pntkpλk + qnt kqλk)(

p2
nt k

+ q2
nt k

)
}

− 1

2

∑
λ �=n′

t

∇R̄k
hn′

t ,λ(R̄k)

{
(p′

n′
t k
p′

λk+q ′
n′

t k
q ′

λk)(
p′2

n′
t k
+q ′2

n′
t k

)
}

. (16)

We note that this force cannot be generate from the orig-
inal, or classical mapping Hamiltonian, so the mapping vari-
ables and nuclear trajectory are not governed by a single
Hamiltonian21 with in this LANDmap approach. This is quite
different from the PLDM approach developed earlier in this
paper, or other semi-classical approaches where the force is
generated from the mapping Hamiltonian.41–44 This is also
different from the Pechukas semi-classical approach to non-
adiabatic dynamics, where the transition amplitude and tra-
jectory must be determined by self-consistent iteration.4

The algorithm developed in this section is the so called
LANDmap21 approach and it has been used as a short time
segment propagator that can be extend to longer times by iter-
atively including multiple time slices giving the ILDM prop-
agation method.24 Between the short segments, Monte Carlo
sampling is used to choose the specific pair of state labels
that give the most important contribution to the long time path
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integral. These new selected states are then used to initialize
the next propagation segment giving the ILDM algorithm its
surface hopping flavor. Unlike surface hopping approaches,
however, the ILDM approach samples not only population
terms as with regular SH methods, but the ILDM trajectories
also spend time representing nuclear evolution of the coher-
ence density matrix elements. The basic iterative scheme is
outlined below.

C. Iterative implementation for long time propagation

Linearized approximations, such as both those derived
above, are generally only accurate for short times. One way
to overcome this limitation is to apply the linearized approx-
imation iteratively24 for a series of segments or short time
slices obtained by inserting resolutions of the identity into
the exact, full time interval, density matrix propagator. The
result, for example, of concatenating two segments using the
PLDM propagator of the form in Eq. (8) as the short time
approximation, can be evaluated by performing the integra-
tion over intermediate path difference variables by noticing
that the boundary terms of the two segments can be computed
as:

∫
dZNeiP̄N ZN e−iP̄N+1ZN ∼ δ(P̄N − P̄N+1). The final result

for concatenating these two approximate linearized short time
segments giving ρ̂(2t) is thus,24〈
R̄2N + Z2N

2
n2t |ρ̂(2t)|R̄2N − Z2N

2
n′

2t

〉

=
∫ 2N−1∏

k=N+1

dR̄k

dP̄k

2π¯

dP̄2N

2π¯
e

i
¯
P̄2NZ2N

× δ

(
P̄k+1 − P̄k

ε
− Fk

) 2N∏
k=N+1

δ

(
P̄k

M
− R̄k − R̄k−1

ε

)

×
∑
nt ,n

′
t

∫
dR̄N

dP̄N

2π¯
dqNdpNdq ′

Ndp′
NG′

tGtδ(P̄N − P̄N+1)

× 1

4
(qn2t

+ ipn2t
)(qnt

− ipnt
)
1

4
(q ′

n′
2t

− ip′
n′

2t
)(q ′

n′
t
+ ip′

n′
t
)

× δ

(
P̄N

M
− R̄N − R̄N−1

ε

)∫ N−1∏
k=1

dR̄k

dP̄k

2π¯

× δ

(
P̄k+1 − P̄k

ε
− Fk

) N∏
k=1

δ

(
P̄k

M
− R̄k − R̄k−1

ε

)

×
∑
n0,n

′
0

∫
dR̄0dq0dp0dq ′

0dp
′
0G

′
0G0(ρ̂)

n0,n
′
0

W (R̄0, P̄1)

× 1

4
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+ ipnt
)(qn0 − ipn0 )

1

4
(q ′

n′
t
− ip′

n′
t
)(q ′

n′
0
+ ip′

n′
0
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(17)

We refer to the algorithm based on this expression as the
iterative-PLDM (IPLDM) propagation approach. In a simi-
lar fashion, the ILDM approach is obtained by replacing the
mean surface Ehrenfest-like force in this IPLDM expression
by the state dependent LANDmap force in Eq. (16) and sub-

stituting the polar representations for the Cartesian mapping
variable polynomials that weight each sampled path’s contri-
bution to the density matrix. A general approximate imple-
mentation of this type of trajectory based algorithm is detailed
in Ref. 24 and can be summarize as follows: (1) Sum over
forward and backward initial quantum states n0, and n′

0, and
select the final density matrix element of interest, nt, and n′

t ;
(2) Sample mean environment path initial position R̄0, and

momentum P̄1 from the Wigner distribution [ρ̂]
n0,n

′
0

W (R̄0, P̄1)
= ∫

dZ0〈R̄0 + Z0
2 n0|ρ̂|R̄0 − Z0

2 n′
0〉e− i

¯
P̄1Z0 ;21, 35 (3) Propa-

gate the environmental subsystem degrees of freedom using
classical mechanics with the appropriate force for the given
algorithm. At time t, the summation over nt and n′

t for a partic-
ular trajectory is done by Monte Carlo importance sampling
that involves randomly choosing the “occupied” density ma-
trix element that defines the initial condition for the next time
segment of density matrix propagation by re-focussing the ini-
tial state for propagation from t to 2t on one particular initial
density matrix element. The focusing approximation is thus
made to restart each new segment. This importance sampling
approach tames the potential exponential divergence in num-
ber of trajectories with increasing number of time segments.
The details of this algorithm can be found in Ref. 24 for the
ILDM implementation.

Generally we find that the statistical convergence of these
different trajectory based iterative schemes, IPLDM or ILDM,
are similar, and require ensembles of typically 106–107 tra-
jectories for a range of simple scattering to condense phase
model problems.24 In contrast, for the same types of models
we find that the mean-field PLDM approach requires much
smaller ensembles of only 103–104 trajectories to achieve
the same level of statistical convergence, but its accuracy at
longer times is limited.

We should again stress, however, that although the ac-
tual numbers of trajectories required to achieve convergence
with these iterative schemes are similar, the IPLDM scheme
is significantly more efficient since it evolves all the differ-
ent density matrix elements using a single set of trajectories
that are propagated using the same mean-field force that is in-
dependent of state labels. With the ILDM procedure, on the
other hand, trajectories for each different density matrix ele-
ment must be generated with different state dependent forces
so on the order of n2

state more auxiliary trajectories must be
run with the ILDM calculation.

This iterative algorithm is similar to the trotter based
Monte Carlo approach developed to implement the MQCL
equation by Kapral and co-workers.27 However, it should
be noted that the importance sampling procedure with the
MQCL scheme is based on the relative amplitude of the
real part of Liouville operator in the adiabatic representation,
while the iteration scheme used here employs the relative ab-
solute value of density matrix elements in either the diabatic
or adiabatic (see the Appendix) representations as the basis of
the importance sampling approach.

Further, the delta function δ(P̄N − P̄N+1) in Eq. (17),
for the ILDM or IPLDM implementation requires conserva-
tion of nuclear momentum from one time slice to the next.
This means that an individual trajectory does not conserve
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the energy between iterations for these approaches. However,
the ensemble of the trajectories should conserve the energy
on average.24 This is quite a different situation compared to
the MQCL27 or fewest switches surface hopping (FSSH),1, 5, 6

approaches, where, by construction, individual trajectories
conserve energy during the hopping process. In Sec. III we
present results for a new approximate iterative linearized ap-
proach in which we experiment with a “jump” implementa-
tion that is based on similar energy conservation ideas to alle-
viate the problems arising from having to average oscillatory
phase factors. The convergence of this new approximate ap-
proach, and the quality of the results it produces, as outlined
in Sec. III, are extremely promising.

III. RESULTS

In this section, we present the results of model calcula-
tions using the different algorithms outlined in Sec. II with
the goal of testing the reliability of these different approxi-
mate methods for reproducing the results of exact quantum
calculations in various important contexts. We compare the
relative merits of these different linearized approximations
with those of other approximations including different types
mixed quantum-classical and semi-classical methods that are
formulated in terms of either surface hopping or mean-field
like approaches.

First we explore the application of these methods
to situations in which the linearized methods are able to
reproduce the electronic state density matrix properties, but
they fail to give reliable representations of nuclear phase
space dependent properties such as nuclear position and
momentum distributions. These nuclear quantities are often
more sensitive10, 30 and capable of revealing the shortcomings
of the different approximations thus enabling us to explore
various approaches for overcoming these shortcomings.
In particular, we use one-dimensional two state models
and conditions in which, asymptotically, the two electronic
states have significantly different energies so the nuclear
momentum distribution shows two distinct peaks arising from
non-adiabatic dynamics in the different electronic states.10, 30

Mean-field methods, by the single mean surface Ehrenfest
nature of their underlying dynamics, cannot reproduce this
type of bifurcated nuclear motion.10, 30 We show, however,
that the iterative implementation of the linearized short time
approximations outlined above can recover the basic physical
phenomenon of bifurcation of the nuclear distributions in
regions of non-adiabatic transitions, and moreover, these iter-
ative procedures reliably capture the decoherence dynamics
that results as the nuclear packets on the different coupled
electronic surfaces diverge from one another.

Next we employ a simple one-dimensional, two state
model, Tully’s “Stueckleberg scattering” problem,1 to demon-
strate how the algorithms outlined here22 can be implemented
in different representations, for example, we show how adi-
abatic or diabatic implementations may be used equally well
with in the approximations of these methods and different rep-
resentations may gain numerical advantage depending on the
nature of the problem at hand.

As mentioned above, the “focusing” approximation is
an important component of the iterative implementation that
makes the approach tractable. We demonstrate that this ap-
proximation does, however, affect the accuracy of the propa-
gation. If the iteration, and it’s use of the focusing approxima-
tion can be avoided, for example, if the PLDM approach can
be applied at longer times and the full mapping variable initial
condition distribution is sampled, rather than having to make
successive steepest approximations to the mapping variable
initial condition integrals at each iteration, the PLDM proce-
dure is shown to give highly accurate results. If it is necessary
to iterate the focusing approximation many times this can lead
to inaccuracy in both electronic populations and nuclear dis-
tributions, the basic physics of bifurcating distributions, how-
ever, is qualitatively preserved with the iterative approaches
implemented using focused initial conditions.

The iterated linearized short time approximate density
matrix propagation approaches are generally computationally
expensive since, as we demonstrate below, they recover the
physics underlying the non-adiabatic bifurcating nuclear dis-
tributions by accumulating phase factors from different paths,
thus capturing this phenomenon through interference effects.
There is a long history of treating this type of behavior in an
ad hoc fashion using energy conserving jumps between adi-
abatic electronic surfaces with in the surface hopping frame-
work. The resulting algorithms, like Tully’s fewest switches
surface hopping approach, are highly numerically efficient
and generally very accurate, albeit somewhat ad hoc. With the
aim of improving algorithmic efficiency we incorporate a ve-
locity rescaling approach, reminiscent of surface hopping al-
gorithms, with in the iterative linearized scheme and demon-
strate that the new hybrid approach can give very accurate
results with significantly improved numerical efficiency.

In Subsection III B we compare the results of various
approaches for more challenging multi-surface applications
modeling non-adiabatic photodissociation dynamics,24, 25, 28

and in Subsection III D we also study the usefulness of the
different approaches for treating the spin-boson model of con-
densed phase non-adiabatic dynamics, to explore how these
approximate algorithms are expected to perform in applica-
tions to model excited state chemical dynamics in complex
solution phase environments.

A. Nuclear phase space distributions from linearized,
and iterative linearized mapping Hamiltonian
dynamics

To focus our investigation of the detailed performance
of the different linearized density matrix propagation imple-
mentations we have first chosen the simple two state avoided
crossing model of Tully (Tully 1).1 The panels of Fig. 1 com-
pare results obtained using various approximate schemes for
computing the time evolution of diabatic state populations
with exact results for different incident scattering energies or
wave packet momenta. We generally find, both at high and
low incident wave packet momentum, that all approaches con-
sidered here give good results for this electronic state popula-
tion dynamics.
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FIG. 1. Diabatic electronic population dynamics for the Tully 1 two state simple avoided crossing scattering model. Results for various linearized and iterative
propagation algorithms are compared as detailed in the text. Left panel (a) corresponds to lower incident wave packet momentum situation and right panel (b)
gives results for higher incident wave packet momentum.

The FSSH scheme, however, gives ambiguous diabatic
state populations as this approach is formulated in a repre-
sentation dependent, adiabatic fashion.2, 6 With FSSH, the dy-
namics is run in the adiabatic representation, and there are a
variety of ways of computing the diabatic state populations,
for example, counting or “binning” the number of trajectories
in a given adiabatic state and then transforming to the diabatic
representation (bin),2, 6 or transforming the adiabatic expan-
sion coefficients directly to diabatic coefficients and then av-
eraging the resulting diabatic electronic populations (elec).2, 6

The quality of these different FSSH approaches to computing
diabatic state populations is seen to vary with the conditions
studied, e.g., in Fig. 1 we see the different FSSH diabatic pop-
ulation estimators give different quality agreement depending
on incident wave packet momentum.

The panels of Fig. 2 compare the results of various calcu-
lations of the nuclear momentum distribution for this model
obtained using different implementations of the linearized
approximate propagation methods. We see that, while the
mean-field PLDM approach, for example, gives a very accu-
rate description of the evolution of the electronic populations
(Fig. 1), the PLDM momentum distribution results presented
in Fig. 2 show that the approach fails to capture the bimodal
nature of the exact nuclear momentum distribution that re-
sults from the asymptotic populations moving on the different
electronic surfaces. Rather, the mean-field PLDM propaga-

tion scheme, gives a nuclear momentum distribution with a
broad single peak resulting from an ensemble of trajectories
whose nuclear motion occurs over a mean surface after pass-
ing through the non-adiabatic coupling region.

The other curves in the panels of Fig. 2 present the
asymptotic nuclear momentum distributions obtained using
the various linearized expressions outlined in Sec. II as short
time approximations and iterating these to generate longer
time propagation. Thus the curves labeled ILDM( ) and
IPLDM( ) use the LANDmap (state dependent) and PLDM
(mean-field) short time approximations, and the letters in
the brackets refer to nuclear momentum distribution results
obtained with: (P) accumulating the distributions using
the full trajectory phase factor weights, i.e., the product of
mapping variable polynomial factors, e.g., 1

4 (qnt
+ ipnt

)(qn0

− ipn0 ) 1
4 (q ′

n′
t
− ip′

n′
t
)(q ′

n′
0
+ ip′

n′
0
) in Eq. (17), (O) without

trajectory phase weights (i.e., the distribution is accumulated
with all trajectory weights set to unity), and finally (J)
where we employ a new surface hopping-like algorithm that
branches trajectories into different density matrix elements
at the end of each time slice, but conserves energy during
such “jumps” by rescaling the nuclear velocities. With this
branching or “jump” approach the momentum distributions
displayed in the figure are computed without including
trajectory phase weights in the average. We outline the ideas
underlying this new “jump” approach later in this section.
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The results presented in the ILDM(P) and IPLDM(P)
curves demonstrate that these fully iterated algorithms
including all the trajectory weights and phases converge to
reproduce the underlying physics of the bimodal asymptotic
nuclear momentum distributions. These implementations,
however, cannot give the exact results as they make the
focused initial condition sampling approximation at the be-
ginning of each time slice. We see that this approximation can
result in incomplete phase cancellation in the accumulated
average over the phase factor weighted trajectories and give
regions where the calculated asymptotic nuclear momentum
distributions are actually negative. This unphysical behavior
is significantly less pronounced in the distributions calculated
at higher incident wave packet momentum.

Comparing the ILDM(P) or IPLDM(P) results with
those obtained leaving out the trajectory phase weights, i.e.,
ILDM(O) or IPLDM(O) makes it clear that interference ef-
fects play a critical role in generating the bimodal nuclear
momentum distribution with these types of algorithms. For
this model the ILDM(O) or IPLDM(O) momentum distribu-
tions have single broad, undifferentiated peak and the phase
weights included in the ILDM(P) or IPLDM(P) calculations
give destructive interference effects that produce the “dip” in
the distribution giving the bimodal character, while construc-
tive interference between phase weighted trajectories, for ex-
ample, in the incident momentum P0 = 11 example distribu-
tion, result in significant enhancement of the low momentum
part of the distribution giving the final overall bimodal shape.

Here we emphasize that the IPLDM(P) results are ob-
tained with an algorithm that actually uses a mean-field type
of force, which is not a state dependent single surface force
like that used to obtain the ILDM(P) results. These ap-
proaches give accurate momentum distributions purely as a
result of interference and phase averaging effects, which is a
similar mechanism to that underlying the SC-IVR theory, and
its forward-backward implementation FB-IVR.10

The most significant problem facing the iterative imple-
mentation of these linearized short time approximate propaga-
tion schemes is the convergence of the fully phase weighted
averages as described above. Typically ensemble sizes of at
least 107 trajectories are required, for example, to represent
the interference effects that lead to the bimodal momentum
distribution in the results presented here. For comparison, re-
sults for the (O) methods that leave out the phases can be
converged with fewer than 104 trajectories. Generally, despite
similarly large ensemble sizes to achieve convergence of the
phase factor averages, the IPLDM approach is a significantly
more efficient calculation since to evolve for a time step re-
quires only a single propagation where as the number of prop-
agations required to evolve for a single step of the ILDM
method is on the order of the square of the number of states.
Also we generally find that the PLDM propagator is a supe-
rior short time approximation to the LANDmap propagator so
IPLDM propagation requires fewer iterations than the ILDM
approach to achieve similar accuracy.

The ILDM(J) and IPLDM(J) results displayed in the pan-
els of Fig. 2 represent a first attempt at formulating a new
approach that tries to overcome these convergence issues in
averaging phase factors by using additional approximations.

The iterative linearized “jump” methods that were used to
generate the results presented as the ILDM(J) and IPLDM(J)
momentum distributions in Fig. 2 are inspired by the ideas
behind surface hopping-like algorithms and their successes.
Essentially, the notion here is that when trajectories in our en-
semble branch between representing different density matrix
elements they pick up phases that are related to an “energy
gap” such as quantity, and weights that normalize for our use
of the absolute amplitude of the density matrix as a branching
probability distribution between the different density matrix
elements (see iterative scheme algorithmic details presented
in Ref. 24). By choosing the starting nuclear momentum for
the next time slice to be equal to the finishing nuclear mo-
mentum of the previous time slice plus a term proportional to
the square root of the energy gap, such as quantity, the phase
factors at the boundaries of successive time slices can give sta-
tionary phase-like conditions that are equivalent to conserving
the effective energy during the jump. By absorbing the effects
of the phase factors into an energy conserving adjustment to
the nuclear dynamics, these phase factors no longer need to
be included as weights in the average and the momentum dis-
tributions, for example, are determined by simply accumulat-
ing unit weighted histogram entries of the modified trajectory
momenta. Note incorporating the phase factor weights in this
way modifies the momentum conserving δ-function term in
Eq. (17), the additional contributions to the phase shift the ar-
gument of the δ-function so that energy is conserved in pass-
ing from one propagation segment to the next.

To summarize these jump methods: at the end of the first
propagation time slice that runs from 0 to t in N steps with
starting density matrix labels n0, n′

0 and sampled final labels
nt, n′

t the terminal momentum is readjusted to determine the
starting momentum of the new time slice as,

P 2
N+1 = P 2

N + 2M(Hn0,n
′
0
(R̄k) − Hnt ,n

′
t
(R̄k)). (18)

For the ILDM(J) version the following energy term is em-
ployed:

Hnt ,n
′
t
= 1

2
[hnt ,nt

(R̄k) + hn′
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′
t
(R̄k)]

+ 1

2

∑
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{
(pnt
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+ 1

2

∑
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hn′
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{
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n′
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p′

λ + q ′
n′

t
q ′

λ)(
p′2

n′
t
+ q ′2

n′
t

)
}

, (19)

while with the IPLDM(J) implementation the energy term
takes the form,

Hnt ,n
′
t
= 1

2

[
hcl

map(R̄k, pk, qk) + hcl
map(R̄k, p

′
k, q

′
k)

]
. (20)

In multidimensional systems it is critical to make these nu-
clear momentum adjustments that conserve energy during
jumps in the right direction, this can be accomplished with the
different approximate short time propagators using the direc-
tions of the PLDM or LANDmap forces in Eqs. (9) and (16),
respectively. The development of this momentum jump ap-
proach is currently being explored, and the preliminary results
presented here are very promising.
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FIG. 3. Asymptotic nuclear momentum distributions for the Tully 1 two state simple avoided crossing scattering model. Results for various propagation
algorithms are compared as detailed in the text. Left panel (a) corresponds to lower incident wave packet momentum situation and right panel (b) gives results
for higher incident wave packet momentum.

The statistical convergence of this jump implementation
of the iterative linearized propagation scheme is significantly
superior to that of the full phase factor weighted algorithm.
For example, the asymptotic momentum distributions labeled
ILDM(J) and IPLDM(J) in Fig. 2 are converged with ∼104

trajectories and are generally found to be in very good
agreement with the exact results. To summarize, the different
version of our theories presented here have common features
with semi-classical theories such as FB-IVR (our IPLDM(P))
or mixed quantum-classical theories such as FSSH (our
ILDM(J)).

Figure 3 compares the momentum distributions obtained
from this jump implementation of the iterative linearized
propagation schemes for this model with exact results and var-
ious other approximations including: the quantum-classical
Liouville equation approach,30 which can accurately repre-
sent the bifurcating distribution. Tully’s FSSH algorithm that
gives excellent results at high incident momentum but gives
only a qualitative account of the relative magnitudes of the
momentum distribution peaks, and the Poisson bracket mas-
ter equation (PBME) approach,30 which gives the incorrect
physics of a single peaked momentum distribution typical of
a mean-field approximate approach.

To demonstrate just how serious an error can be made
in these sensitive nuclear distribution quantities using mean-
field like approaches for some classes of problems, Miller
and co-workers10 explored a model in which there is a large
mismatch in the asymptotic energy gap between states and
a region of strong coupling on the wall where this large gap
opens up. These model surfaces are presented in the lower
panel of Fig. 4. The upper panel (a) compares exact bench-
mark results for the asymptotic momentum distributions for
this model computed with results from various mean-field
approaches including: Ehrenfest, the LSC-IVR and the fo-
cused and sampled versions of the PLDM propagation ap-
proach. For the selected incident momentum the mean-field
potential surface experienced by LSC-IVR or PLDM trajec-
tories has a barrier that can scatter trajectories in either for-
ward or backward directions. When the full distribution of
initial conditions is sampled we see that the mean-field ap-
proaches give completely unphysical asymptotic momentum
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distributions with a positive momentum forward scattering
peak and a negative momentum backward scattering peak in
marked contrast to the exact results that show two peaks in-
volving only forward scattering of trajectories on either of
the two widely separated surfaces. Fortuitously, the focused
initial condition sampling PLDM gives just forward scatter-
ing but only a single peak in the nuclear momentum distribu-
tion results from the mean-field dynamics. This occurs since
the lower energy component initial conditions that cannot get
over the barrier in the forward direction are removed when
only a single point in the mapping variable initial condition
distribution is sampled with the steepest descent approxima-
tion to the initial condition integrals underlying the focusing
approach. The lower panel (b) of Fig. 4 shows clearly that the
iterative implementation of the various linearized approaches
outlined above gives a qualitatively reliable description of the
dynamics of these challenging model conditions.

As a final note, in this subsection we have confirmed
that for nuclear DOF, the distribution of coordinates45 or
momenta10 produced by methods that employ mean-field
Ehrenfest-like forces such as LSC-IVR can be qualitatively
in error. As we will demonstrate in Subsection III B this can
have profound problems for predicting electronic state re-
laxation dynamics with such approaches, though these prob-
lems are mitigated to a significant extend for some mean-field
like methods such as the PLDM propagation approach. These
well-known disadvantages of mean-field like methods can be
addressed by surface hopping schemes1, 46 but many such ap-
proaches involve ad hoc steps in their implementation. The
forward-backward IVR (FB-IVR) approach10, 45, 47 provides a
relatively inexpensive alternative that is derivable from first
principles and can solve these problems in many situations.
The iterative linearized short time approximate propagation
methods outlined here are also based on well-defined approx-
imations and overcome the problems associated with mean-
field propagation and can be made very competitive in com-
putational cost.

B. Multi-state electronic relaxation dynamics from
linearized propagation methods

As noted earlier, the electronic relaxation dynamics is
generally significantly less sensitive to approximations in the
treatment of the full system quantum propagation than the
nuclear distributions as explored in Subsection III A. How-
ever, there can be appreciable effects on electronic proper-
ties associated with these approximations and to explore these
here, we use a three coupled Morse potential energy sur-
face form that is capable of modeling different scenarios for
multi-state non-adiabatic photodissociation dynamics.23, 24, 28

The diabatic potentials and electronic couplings of the two
different models we explore in this subsection are displayed
in the bottom panels of Fig. 5. In each case the initial zero
momentum gaussian wave packet is placed on diabatic state
1 centered at the position of vertical arrow, thus modeling a
Franck-Condon initial molecular excitation. The parameters
for the potentials and initial wave packets can be found in
Ref. 28.

The upper panels (a) and (b) of Fig. 5 show how the
iterative PLDM scheme (IPLDM results) gives an excellent
description of non-adiabatic electronic relaxation for much
longer times and through multiple avoided crossing regions,
giving results that agree quantitatively with exact quantum,
and ILDM propagation calculations. As outlined in Sec. II C,
these iterative implementation algorithms require the focus-
ing approximation to initiate each new time slice and as we
have seen in the studies reported above this can result in in-
accuracies in nuclear distributions that may also effect the re-
liability of electronic relaxation but for the models and range
of parameters considered here, such effects are relatively in-
significant.

The middle panels (c) and (d) of Fig. 5 compare ex-
act benchmark electronic state populations with approximate
results computed for these models using various linearized
schemes including LSC-IVR and PLDM propagation. The
PLDM results, which are obtained by linearizing in the dif-
ference between the forward and backward paths of only the
nuclear degrees of freedom while keeping interference ef-
fects between the forward and backward mapping variable
paths, give electronic relaxation dynamics that match very
closely with exact results. The LSC-IVR scheme, on the other
hand, which linearizes in the difference between forward and
backward paths of all DOF, fails to capture even the quali-
tative trends in electronic state relaxation, and unfortunately
gives unphysical negative populations.28 The PLDM descrip-
tion of the electronic relaxation does start to degrade at longer
times as the system passes through multiple regions of non-
adiabatic coupling and the nuclear trajectories, with in the
mean-field approximation at the heart of the PLDM approach,
move on an averaged effective potential surface instead of ac-
tually branching onto the different component potential sur-
faces and experiencing different state dependent forces. Since
the PLDM propagation scheme is accurate for much longer
times, incorporating it in an iterative implementation offers
an extremely efficient algorithm for reliably propagating to
longer times as significantly fewer of these more accurate
time slices are required.

C. Linearized mapping Hamiltonian dynamics
in the diabatic and adiabatic representations

In this section we present the first results computed using
the adiabatic representation of our linearized density matrix
propagation scheme26 that is outlined in the Appendix. The
purpose of developing these algorithms in different represen-
tations is that, for physical reasons, some problems may be
more efficiently treated in one representation than in another.
For exact propagation methods, the representation adopted in
which to evolve the system is irrelevant as we can trivially
transform the results between representations. However, when
approximations to the dynamics are employed, as is the case
with our linearization schemes, or even when we iterate a lin-
earized short time approximation and have to use focused ini-
tial conditions to start each time slice, there is no guarantee
that the diabatic and adiabatic algorithms will produce results
that can be identically transformed between one another.
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FIG. 5. Results of calculations exploring the accuracy of different linearized and iterative approaches for treating electronic relaxation for a multiple coupled
Morse potential surface model of molecular photo-dissociation. Details of model parameters can be found in reference 28. Bottom panels show nuclear coor-
dinate dependence of surfaces and couplings used in the model Hamiltonian. Arrows indicate initial positions of nuclear wave packets. Middle panel compares
exact results for population dynamics with results obtained from various linearized approximate propagation methods. Upper panel shows the high quality
results obtained by iterating the different linearized short time approximate propagators. The results presented here use 30 iterations.

As a concrete test problem we again use the two state,
dual avoided crossing, Stueckelberg scattering model, Tully
2.1 In Fig. 6 we compare exact benchmark results for the
time dependence of the electronic state populations and co-
herences with those obtained using the various approximate
algorithms. The left panel presents results in the diabatic rep-
resentation, and the right in the adiabatic representation. The
PLDM and ILDM algorithms are constructed so that the prop-
agation takes place in the diabatic representation, where as
the propagation of the AD-ILDM and FSSH methods is per-
formed with adiabatic basis states. The generally excellent
agreement between the results computed in different repre-
sentations suggests that the approximations underlying these
propagation methods preserve unitarity of the propagation in
the different representations. We note that the diabatic algo-
rithms and our adiabatic linearized approaches include the
non-adiabatic wave function curvature terms (Gλ, μ in the Ap-

pendix). These terms are often small and are typically ignored
in adiabatic versions of FSSH. The FSSH results presented in
Fig. 6 neglect these terms. Comparing results with our lin-
earized schemes that include these terms suggest that they are
indeed small and neglecting them is a good approximation
for this model. More stringent test systems to study repre-
sentation dependence of these different algorithms could be
explored.48

D. Spin-boson model

We conclude Sec. III with a demonstration of the appli-
cation of the various linearized and iterative density matrix
propagation methods to the well studied spin-boson model of
quantum dissipative dynamics in the condensed phase. Here
we compare the performance of various approaches over a
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range of parameters including strength of system-bath cou-
pling (Kondo parameter, solvent friction or reorganization en-
ergy), temperature, and energy bias between states. The re-
sults obtained with different approximate methods including:
the PLDM propagation approach,22 LANDmap,21 ILDM,24

LSC-IVR,44 PEMB,42 and TDSCF4 methods are compared
with exact path integral results.49–51 Results obtained from
LSC-IVR,44 PBME42 for the same type of model can be found
in the cited references.

The spin-boson model involves a two state quantum sub-
system (spin) bi-linearly coupled to a set of harmonic bath
oscillators (bosons) defined by the following Hamiltonian:

Ĥ = Ĥs + Ĥb + Ĥs−b

= εσ̂z − ¯�σ̂x +
∑

j

{[
P 2

j

2Mj

+ 1

2
ω2

jR
2
j

]
1̂ − ¯cjRj σ̂z

}
,

(21)

where the σ̂α are the Pauli spin matrices, � is the strength of
the electronic coupling between the diabatic states, ε is the
relative off-set, or energy bias between the two diabatic spin
states, (Pj, Rj) are the momentum and position of bath oscil-
lator j, with frequency ωj and cj controls the strength of the
bi-linear coupling between this bath oscillator and the quan-
tum subsystem. The system-bath interactions in this model
are specified by the model spectral density, J(ω), which de-
termines the parameters cj according to the following rela-

tionship: J (ω) = π
2

∑
j

c2
j

Mj ωj
δ(ω − ωj ). The spectral density

is related to the thermal equilibrium correlation function of
the diabatic site energy fluctuations driven by the bath accord-
ing to the following expression: 〈∑j cjRj (t)

∑
j cjRj (0)〉

= ¯
ω

∫ t

0 dωJ (ω)[coth(¯βω/2) cos(ωt) − i sin(ωt)]. Here we
choose units so that ¯ = 1 and use an ohmic spectral den-
sity at low frequencies (proportional to ω), with an exponen-
tial truncation at higher frequencies so in this model the spec-
tral density has the form J (ω) = π

2 ζωe−ω/ωc , where ζ is the
Kondo parameter (or friction, which determines the total in-
teraction strength between system and bath) and ωc is the cut-
off, or peak frequency in this spectral density form. Here we
use the exponential frequency sampling approach to gener-
ate bath frequencies and coupling strengths from this spectral

density,51 and the initial condition we use assumes the sys-
tem is initially prepared in state 1 and the bath is in thermal
equilibrium and the initially independent system-bath product
density is employed, ρ̂(0) = ρ̂B |1〉〈1|, where ρ̂B is the Boltz-
mann operator for the independent harmonic oscillator bath.

In Fig. 7 we present typical results obtained with vari-
ous methods for the symmetric spin-boson (ε = 0.0) and the
asymmetric spin-boson (ε �= 0.0) models. For the symmetric
case we generally find that many of the different methods ex-
plored in our studies can reproduce the exact quantum results
across a wide range of parameters. Panels (a)–(c) in Fig. 7
explore how the damped coherent population oscillations at
low temperature, wash out more quickly as the temperature is
increased and that the various approximate methods can cap-
ture these trends almost quantitatively. Similar quality results
are generally found for the symmetric spin-boson if we scan
a range of friction or environmental coupling strength.21, 24

We generally find, however, that many of the approx-
imate methods we have used in studies of this model en-
counter serious problems when we simply add an energy
bias between the two spin states and consider the asymmet-
ric spin boson model with ε �= 0.0. The LANDmap results
presented in panel (d) of Fig. 7 typify the problem. With the
LANDmap approach, where we linearize the density matrix
propagator in the difference between forward and backward
paths for all times, the short time behavior is reliable, but at
long times the approach gives effectively infinite temperature
results for which the two states, whose energies are differ-
ent for the asymmetric spin-boson, have equal populations,
so 〈σ̂z〉 has an unphysical infinite temperature value of zero
at all temperatures. Other approximate methods such as the
self-consistent classical path approach, some surface hopping
techniques, and the Haken-Strobl model, for example, can all
experience related problems when applied to study the long
time approach to thermal equilibrium in this model.4, 52, 53

Results obtained when we iterate the linearized approach,
using it as a short time approximation with the ILDM prop-
agation method presented in Fig. 7(d), however, are seen to
converge to the correct finite temperature limit at long times
as we increase the number of iterations or “hops”.24 Reference
24 presents more detailed comparisons of results from ILDM
propagation and other methods for the asymmetric spin boson
and with exact wave packet calculations performed with the



22A535-14 P. Huo and D. F. Coker J. Chem. Phys. 137, 22A535 (2012)

-1

-0.5

 0

 0.5

 1

 0  5  10  15

 (a)  (b)

 (c)  (d)

 20

PLDM Focus
PLDM Sample

LANDmap
Exact

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2  2.5  3  3.5  4

PLDM
LANDmap

Exact

-1

-0.5

 0

 0.5

 1

 0  1  2  3  4  5  6

PLDM
LANDmap

Exact

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5  6

PLDM Sample
PLDM Focuse

LANDmap
ILDM(10hops)
ILDM(20hops)

FIG. 7. Expectation value of population difference, 〈σ̂z〉, for the spin-boson model as a function of �t. Bottom right panel presents results for a system with
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= 0.25. (c) Bottom left: �/ωc = 0.4, ζ = 0.13, ε = 0, β¯ωc = 1, and (d) Bottom right: has conditions the same as (c) except ε = 0.4 and β¯ωc=1. Under the
conditions used in panel (d) the thermal equilibrium value of 〈σ̂z〉 = −0.379 is reproduced by the PLDM approach with sampled initial mapping variables.

multi-configuration time dependent Hartree (MCTDH) ap-
proach. These comparisons are conducted at very low tem-
peratures (β¯ωc = 12.5) as the MCTDH wave packet prop-
agation corresponds to zero temperature quantum dynamics.
Our methods are easily applied at finite temperatures gener-
ally with little additional computational overhead, for exam-
ple the results presented in Fig. 7(d) correspond to a higher
temperature with β¯ωc = 1.0. In contrast, applying MCTDH
at elevated temperatures requires Boltzmann averaging and
can be prohibitively expensive.

The problem with general implementation of the ILDM
approach is that it becomes extremely costly to perform the
phase space integrations at intermediate iteration points. Also
at longer times the noise in these ILDM calculations that
arises from accumulating phase factors to capture interfer-
ence effects for the off-diagonal density matrix elements be-
comes a serious problem for statistical convergence of the cal-
culations and huge, prohibitive ensemble sizes are required.
The dynamical population data compared in Fig. 7(d), how-
ever, suggest that when we can converge the ILDM propa-
gation method, the results agree remarkably well with those
obtained with the PLDM approach, which is observed to reli-
ably capture the transition from short time coherent behavior
to long time thermal equilibrium. The PLDM propagation ap-
proach typically requires thousands of times smaller ensem-
bles to achieve statistical convergence of these highly accurate
results.

From Fig. 7(d) we also see that the so-called “focusing”
approximation,24 which uses a steepest decent integration of
the initial mapping variable distribution to improve numeri-
cal performance, can be unreliable when applied in concert
with the PLDM propagation approach and that the full initial

distribution must be sampled properly in order to obtain accu-
rate results. The fully sampled PLDM propagation results pre-
sented in Fig. 7(d) also suggest that the approach converges
to the expected classical-like behavior at long times and does
not require exponentially increasing numbers of trajectories
to achieve reliable long time results.

Finally, in Fig. 8 we explore the behavior of the linearized
and iterated algorithms for the asymmetric spin-boson at low
temperature where the quantum characteristics of the bath can
in principle be significant. The left panel (a) shows the pop-
ulation relaxation computed using the mean-field PLDM and
iterated IPLMD version of the approach. The right panel (b)
gives results from a similar study using the state dependent
force LANDmap approach and shows how it converges with
increasing number of iterations. The exact results presented
here are obtained with zero temperature MCTDH calcula-
tions. The temperature used in our studies corresponding to
β¯ωc = 12.5, where β = 1/kBT, is sufficiently low that this
comparison with zero temperature exact results is reliable.

In the right panel (b) we see that the basic LANDmap ap-
proach behaves like an infinite temperature theory, it captures
some aspects of the short time coherent dynamics but fails to
give long time thermal equilibration in that the long time pop-
ulation difference tends, unphysically, to zero for this asym-
metric two state model. As the algorithm is iterated using the
LANDmap propagator as a short time propagator, however,
we see that the population difference begins to converge to the
exact results, which have a negative value for the thermal ex-
pectation, 〈σ z〉, due to the strong asymmetry in this model. We
see that for this problem many short time LANDmap propaga-
tions are requires to achieve convergence on the exact result,
however, with such a large number of iterations required, the
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statistical noise at longer times becomes prohibitive. The dis-
continuous jumps observed in the data mark the boundaries
of successive time slices. With in a time slice we average seg-
ments of smooth functions, but between adjacent slices these
averages have not yet converged at the longer times so the
data shows jumps between segments of poorly statistically
converged averages.

The left panel (a) of Fig. 8 demonstrates the significantly
superior convergence properties of the PLDM propagator for
these types of models. We see that the basic PLDM propaga-
tor with sampled initial conditions captures both the coherent
oscillatory features and the correct long time thermal equilib-
rium behavior of the asymmetric model requiring no iteration.
The coherent oscillation is slightly over damped compared to
the exact results but generally the basic short time propaga-
tor give qualitatively reliable results for the entire duration
of the propagation. When focused initial conditions are used,
not surprisingly, the coherent oscillatory behavior is enhanced
and the system relaxes a little too slowly. On iterating this
short time approximate propagator we see that it rapidly con-
verges to give quantitative agreement with the exact results
with as few as 15 iterations (hops), and the statistical errors
are significantly reduced compared to the results found for
ILDM propagation.

IV. CONCLUDING REMARKS

We have demonstrated that alternative approximate nu-
clear trajectory based non-adiabatic quantum dynamics algo-
rithms can be derived by applying the partial linearization ap-
proach to a full path integral expression for density matrix
propagation in different ways. These different algorithms can
provide reliable short time approximate propagation that can,
in principle, be applied to treat general large scale complex
system quantum dynamics. We have also presented a viable it-
erative implementation of these short time approximate prop-
agators that enables accurate long time quantum propagation.
This iteration procedure, however, requires making additional
approximations to the intermediate integrations over the ini-
tial conditions for each time slice.

The short time approximate propagators that we have
found from these different approaches to linearization pro-
duce forces on the classical-like nuclear degrees of freedom
that either resemble those appearing in the mean-field Ehren-
fest treatments (e.g., our short time PLDM propagator), or in-
stantaneous quantum subsystem “state” dependent forces like
those of trajectory based surface hopping schemes (e.g., our
short time LANDmap propagator).

The important simplifying feature of the partial lineariza-
tion approach is that because we work with density ma-
trix propagation we can approximately combine parts of the
highly oscillatory phase factors of the forward and backward
propagators, in particular, partial linearization combines the
forward and backward nuclear phase factors to approximate
the path integral kernel as a product of δ-functions that iden-
tify classical nuclear trajectory-like equations of motion. The
remaining electronic subsystem phase factors and weights are
carried along by the trajectories that result from this partial
linearization. Coherently combining the weights and phases
of each of these trajectories presents a significant numeri-
cal challenge for our scheme. Our successful calculations of
the non-adiabatic bifurcating nuclear momentum distributions
presented in Sec. III A, however, demonstrate that these ap-
proximate methods can be applied to reliably capture sensi-
tive phase interference effects. Preliminary studies exploring
the use of energy conserving momentum jumps to mimic the
effects of these interference phenomena are very promising
and represent an important next step towards deriving a rigor-
ous, efficient, and reliable way to treat such processes beyond
the adoption of ad hoc rules that plague many surface hopping
implementations.

The studies outlined here suggest that the iterative imple-
mentations of our PLDM and LANDmap short time approx-
imate propagators, the IPLDM and ILDM methods, respec-
tively, have different numerical scaling. With the LANDmap
propagator, for example, in order to evolve all the density ma-
trix elements, n(n + 1)/2 different trajectories each experi-
encing different state dependent forces must be evolved in or-
der to make our decision about which density matrix states
will be initiated in the next time slice using our Monte Carlo
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importance sampling approach. With the mean-field PLDM
based approach, on the other hand, all the density matrix el-
ements are generated with a trajectory integrated using a sin-
gle mean force so the PLDM propagation is in principle of
order O(n2) times more efficient than the LANDmap based
propagation procedure. It also appears that the PLDM short
time propagator may, in some situations, provide more accu-
rate propagation for longer times, thus reducing the number
of iterations needed for long time propagation.

As a final point we note that in the framework of
the MQCL equation, one can also achieve either a sur-
face hopping-like approach27, 30 in the adiabatic representa-
tion using a Trotter-based approximate propagation scheme
and Monte Carlo sampling, or a mean-field like algorithm
in a diabatic representation using the mapping Hamiltonian
formalism.42 Given the fact that MQCL equation propagation
can also be derive from a linearization approximation,54 it is
not surprising that the linearized path integral methods and the
MQCL propagation schemes can yield similar classes of algo-
rithms. The relationship between these formulations is further
explored in the recent publication by Kapral and co-workers
that appears in this issue.55

ACKNOWLEDGMENTS

We gratefully acknowledge support for this research
from the National Science Foundation (NSF) under Grant
No. CHE-0911635 and support from Science Foundation
Ireland under Grant No 10/IN.1/I3033. D.F.C. acknowledges
the support of his Stokes Professorship in Nanobiophysics
from Science Foundation Ireland. We also acknowledge a
grant of supercomputer time from Boston University’s Office
of Information Technology and Scientific Computing and
Visualization. Finally, we would like to thank John Tully for
inspiring our work in this area.

APPENDIX: ADIABATIC REPRESENTATION MAPPING
THEORY

In this appendix we summarize an adiabatic version of
the state dependent force ILDM algorithm, the details of
which can be found in Ref. 26. We begin by representing the
total wave function in a basis chosen as the tensor product of
the nuclear coordinates |R〉 and the adiabatic electronic basis
set, i.e., |�λ(R)〉 such that

ĥel|�λ(R)〉 = Eλ(R)|�λ(R)〉. (A1)

The total Hamiltonian in this representation is obtained as

Ĥ = P̂ 2
χ

2M
+

∑
λ,μ

|�λ(R)〉(Eλ(R)δλ,μ + �̂λ,μ(R))〈�μ(R)|,

(A2)
where

�̂λ,μ(R) = −
[
iDλ,μ(R)

P̂χ

M
+ 1

2M
Gλ,μ(R)

]
, (A3)

with

Dλ,μ(R) = 〈�λ(R)| ∂

∂R
|�μ(R)〉,

Gλ,μ(R) = 〈�λ(R)| ∂2

∂R2
|�μ(R)〉.

(A4)

This Hamiltonian acts on a general vibronic wave function
of the form |�〉 = ∑

μχμ(R)|�μ(R)〉 were χμ(R) is the nu-
clear coefficient function. Note that �̂ is an operator in P̂χ

and a function of the nuclear coordinates. The differential
operator P̂χ = i ∂

∂R
acts on the nuclear coefficient functions,

χμ(R), only, i.e., it does not touch the parametric dependence
on R of the adiabatic wave functions. Dλ, μ(R) is known as
the non-adiabatic coupling vector and together with the other
non Born-Oppenheimer term, Gλ, μ(R), is responsible for the
non-adiabatic transitions.

The ĥel part of the adiabatic representation Hamiltonian
in Eq. (A2) can be written applying the mapping formalism
as follows:

ĥmap = 1

2

∑
λ

Eλ(R)
(
q̂2

λ + p̂2
λ − 1

)

+ 1

2

∑
λμ

Re�̂λμ(R)(q̂λq̂μ + p̂λp̂μ − δλμ)

− 1

2

∑
λμ

Im�̂λμ(R)(q̂λp̂μ − p̂λq̂μ). (A5)

In deriving the equation above, we have used the fact that
�λμ = �∗

μλ.
Following a similar semi-classical argument to that in

Ref. 21, one can cancel26 the analogous pre factor term, ct,
with the −1/2(Eλ − Re�λλ) diagonal terms in Eq. (A5),
which again solves the problem of trajectories moving on the
inverted potential. Proceeding as above we again introduce
the action and angle variables,

�t,β({Rk}) = tan−1

(
p0,β

q0,β

)
+

∫ t

0
dτ

[
θτ,β + P̂χ

M
Wτ,β

]
,

(A6)
where

θτ,β = −[Eβ(Rτ ) − Re�ββ (Rτ )]

−
∑
λ(�=β)

[
Re�β,λ(Rτ )

(pτβpτλ + qτβqτλ)(
p2

τβ + q2
τβ

)
]

, (A7)

and

Wτ,β =
∑
λ(�=β)

[
Dβλ(Rt )

(pτλqτβ − pτβqτλ)(
p2

τβ + q2
τβ

)
]

. (A8)

We incorporate the nuclear momentum containing Wτ,βP̂χ/M

term into the nuclear kinetic action, to obtain26

SP = ε
∑

k

{
Pk

(Rk+1 − Rk)

ε
− 1

2M
[Pk + Wβ]2

}
. (A9)

The partial linearized approximation for the nuclear DOF then
gives the final expression within the state dependent force
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ILDM propagation formulation as

ρnt ,n
′
t
(R̄, t)

=
∑
n0,n

′
0

∫
dR̄0dq0dp0dq ′

0dp′
0

∫ N∏
k=1

dR̄k

dP̄k

2π

× (ρ̂)
n0,n

′
0

W (R̄0, P̄1)e−i�G0G
′
0r0,n0e

iθ0,n0 r̃0,n′
0
e
−iθ ′

0,n′
0

× rt,nt
({R̄k})r ′

t,n′
t
({R̄k})e i

¯
(P̄N−�

nt ,n
′
t

N /M)ZN

×
N−1∏
k=1

δ

(
P̄k+1 − P̄k

ε
− F

nt ,n
′
t

k

)

×
N∏

k=1

δ

(
R̄k − R̄k−1

ε
− �

nt ,n
′
t

k

M

)
, (A10)

where the force F
nt ,n

′
t

k that acts on nuclear coordinate is ob-
tained as

F
nt ,n

′
t

k = − 1

2M
P̄k∇R̄k

(Wnt
(R̄k) + W ′

n′
t
(R̄k))

− 1

2M
(Wnt

∇R̄k
Wnt

+ W ′
n′

t
∇R̄k

W ′
n′

t
)

−1

2
∇R̄k

(θnt
(R̄k) + θ ′

n′
t
(R̄k)), (A11)

and the momentum term �
nt ,n

′
t

k contains a “momentum jump”
contribution due to the non-adiabatic coupling factor so that

�
nt ,n

′
t

k =
[
P̄k +

Wnt
(R̄k−1) + W ′

n′
t
(R̄k−1)

2

]
. (A12)

Also, there is an additional phase factor e−i� in this ex-
pression that comes from the zeroth order term of the par-
tial linearization in difference between forward and back-
ward nuclear paths. Here � = ε{∑k

P̄k

M
[Wnt

(R̄k) − W ′
n′

t
(R̄k)]

+ 1
2M

[W 2
nt

(R̄k) − W ′
n′

t

2(R̄k)] + [θnt
(R̄k) − θ ′

n′
t
(R̄k)]}.

The main difference between the linearized approaches in
the adiabatic and diabatic representations lies in the structure
of the evolution equations for the bath degrees of freedom.
In the adiabatic picture, the force is not simply the gradient
of a function of the nuclear coordinates times a term that de-
pends on the mapping variables. Rather, it contains a multi-
plicative coupling of the “potential” to the momenta, in close
analogy to the classical evolution equations of a charged par-
ticle moving in a magnetic field,56 and Brownian motion.39, 56

The analogy is particularly evident in the form of the action
in Eq. (A9), where W plays the role of a vector potential.57

We should also point out that, Miller and co-workers
have obtained a similar result for the mapping Hamilto-
nian in adiabatic representation,10, 43 however, instead of
the term 〈�λ(R)| ∂2

∂R2 |�μ(R)〉 obtained from the develop-
ment outlined above, their second order term is actually
〈�λ(R)| ∂

∂R
|�μ(R)〉2. This is because they follow a quite dif-

ferent route of the derivation by exploiting the correspon-
dence between the similarity transformation leading from one
basis set to another in quantum mechanics and a classical
canonical transformation, to derive a form for the evolution

equations in the adiabatic basis after taking the semi-classical
limit for the propagator in the diabatic mapping representa-
tion. On the other hand, we start from a exact quantum ex-
pression, then use the mapping formalism.

This adiabatic version of LANDmap can also be ex-
tend to longer times by applying the short time linearized
approximation iteratively as outlined above. Again, com-
bining the boundary terms from two adjacent segments,

e
i
¯

(P̄N−�
nt ,n

′
t

N /M)ZN and e− i
¯

(P̄N+1−�
nt ,n

′
t

N+1 /M)ZN , and integrating
out the path difference we obtain a connection condition

from one segment to the next, δ(P̄N+1 − P̄N + [�
nt ,n

′
t

N /M

− �
nt ,n

′
t

N+1/M]), which provides a momentum jump term. We
can also derive a mean-field version of the adiabatic theory
following a similar procedure to that outlined above for iterat-
ing the PLDM approach. The final result of this development
will be a mean-field force that is the derivative of the classical
adiabatic Hamiltonian.
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