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We investigate photoinduced proton-coupled electron transfer (PI-PCET) reactions through a recently
developed quasi-diabatic (QD) quantum dynamics propagation scheme. This scheme enables inter-
facing accurate diabatic-based quantum dynamics approaches with adiabatic electronic structure
calculations for on-the-fly simulations. Here, we use the QD scheme to directly propagate PI-PCET
quantum dynamics with the diabatic partial linearized density matrix path-integral approach with
the instantaneous adiabatic electron-proton vibronic states. Our numerical results demonstrate the
importance of treating protons quantum mechanically in order to obtain accurate PI-PCET dynamics
as well as the role of solvent fluctuation and vibrational relaxation on proton tunneling in various
reaction regimes that exhibit different kinetic isotope effects. This work opens the possibility to
study the challenging PI-PCET reactions through accurate diabatic quantum dynamics approaches
combined with efficient adiabatic electronic structure calculations. Published by AIP Publishing.
https://doi.org/10.1063/1.5030634

I. INTRODUCTION

Photoinduced proton-coupled electron transfer (PI-
PCET) reactions1–3 involve the coupled transfer of both elec-
trons and protons upon photoexcitation. Thus, PI-PCET is
fundamentally different from the extensively studied photoin-
duced proton transfer (PT) or electron transfer (ET) reac-
tions. Several recent experimental and theoretical studies have
revealed PI-PCET reactions in a wide range of systems,3

such as simple hydrogen-bonded organic complexes,2,4–6

organometallic complexes,7–9 enol-keto tautomerization,10,11

and photocatalytic water oxidation on small nanoparticles.12

Initiated through the photoexcitation process, PI-PCET
reactions play a critical role in solar energy conversion pro-
cesses.3,13 At the same time, they are promising for providing
new and unique reactivities which are not directly accessible
in regular thermally activated PCET reactions.2,3 Thus, under-
standing the fundamental mechanistic principles of PI-PCET
will allow tuning and controlling this reaction and provide
design principles for more efficient solar energy conversion
devices.

Accurately and efficiently simulating PI-PCET reactions,
however, remains a challenging theoretical task as it requires
an explicit quantum mechanical description of both elec-
tronic nonadiabatic transitions and nuclear quantum effects
of protons (such as tunneling and zero-point energy). Further-
more, the charge distribution in the excited state can signif-
icantly deviate from the ground state,2 leading to a highly
non-equilibrium configuration of the solvent upon initial pho-
toexcitation. Relaxation of the solvent initial configuration can
then drastically affect the reaction course of the PI-PCET.14–16

a)Electronic mail: pengfei.huo@rochester.edu

Thus, compared to the well-explored thermal PCET reac-
tions,17–32 the proper description of the non-equilibrium PI-
PCET process is beyond the equilibrium rate constant expres-
sions33 and requires either detailed time-dependent dynam-
ics14–16,34 or non-equilibrium Fermi’s golden rule.35,36

Recent theoretical studies based on fewest-switches
surface-hopping (FSSH)37,38 simulations with electron-proton
vibronic basis have made significant contributions to eluci-
date PI-PCET dynamics.14–16,34 As a mixed quantum-classical
(MQC) method, however, FSSH treats quantum and classi-
cal degrees of freedom (DOF) on different footings. This
can generate artificial coherence that leads to incorrect ET
dynamics39 or the breakdown of the detailed balance.40 Several
modified FSSH methods,39,41–45 especially decoherence cor-
rected FSSH,39,41,42 can resolve these issues and give accurate
charge transfer dynamics upon carefully chosen schemes.46

Other recent simulations of PI-PCET based on numerical
exact methods such as hierarchical equations of motion
(HEOM),35 matching-pursuit/split-operator Fourier transform
(MP/SOFT),11 or ab initio multiple spawning (AIMS)47 can
provide accurate time-dependent reaction dynamics. However,
the numerical costs of these calculations will limit their scope
of application in simulating complex systems with many elec-
tronic states and nuclear DOF. It is thus ideal to use accurate
yet efficient trajectory-based quantum dynamics approaches,
which are essentially different from traditional MQC methods,
to directly simulate PI-PCET reaction dynamics.

In this study, we apply a recently developed quasi-
diabatic (QD)48 scheme to directly propagate PI-PCET quan-
tum dynamics with the diabatic Partial Linearized Density
Matrix (PLDM) path-integral method.49 As an example of
recently developed accurate diabatic trajectory-based quan-
tum dynamics approaches, PLDM uses a consistent dynamical
footing for describing all DOFs. Furthermore, we treat both
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transferring electrons and protons quantum mechanically by
describing them in their adiabatic vibronic states and directly
use these adiabatic states as the quasi-diabatic states during the
QD-PLDM propagation. Our numerical results demonstrate
the importance of treating protons quantum mechanically for
obtaining accurate PI-PCET dynamics, as well as the cru-
cial role of solvent fluctuations and vibrational relaxations
that dictate the reaction pathways. We also demonstrate how
various reaction regimes can exhibit different kinetic isotope
effects (KIE). The QD scheme outlined in this paper does
not require any additional efforts for building strict diabatic
system-bath models30,32 and can be directly generalized to
perform ab initio on-the-fly simulations.16,34 This work opens
the possibility for studying the PI-PCET reaction in realistic
chemical systems through combining accurate diabatic quan-
tum dynamics approaches with efficient adiabatic electronic
structure calculations.

II. THEORY AND METHOD
A. Partial linearized density matrix method

We provide a brief outline of the Partial Linearized Den-
sity Matrix (PLDM) path-integral approach.49,50 We begin
with expressing the total Hamiltonian as follows:

Ĥ = T̂ + V̂el

(
r̂, R̂

)
, (1)

where r̂ and R̂ represent the electronic and nuclear coordinate
operators, T̂ is the nuclear kinetic energy operator, and V̂el

represents the “electronic Hamiltonian.” Under a set of strict
diabatic states {|i〉, |j〉} which do not explicitly depend on the
nuclear configuration, the total Hamiltonian can be expressed
as follows:

Ĥ = T̂ +
N∑
ij

Vij(R̂)|i〉〈j |, (2)

where Vij(R̂) = 〈i|V̂el(r̂, R̂)|j〉 is the state-dependent poten-
tial for the electronic Hamiltonian operator and N is the total
number of electronic states.

Using the Meyer-Miller-Stock-Thoss51–53 (MMST) map-
ping representation to transform the discrete electronic states
into continuous variables, we have |i〉〈j | → â†i âj, where

â†i = (q̂i− ip̂i)/
√

2. With this transformation, the non-adiabatic
transitions between electronic states are exactly mapped onto
the classical motion of fictitious harmonic oscillators.52,53

Thus, MMST mapping Hamiltonian provides a consistent
classical footing for both electronic and nuclear DOFs.

Expressing the full density matrix operator with the real-
time path-integral expression, then applying a partial lin-
earization approximation49 selectively to the nuclear DOF and
keeping the explicit propagation of the electronic mapping
DOF for both forward and backward paths, we arrive at the
PLDM expression for computing the reduced density matrix
(RDM)49,50

ρij(t) = TrR

[
ρ̂(0)eiĤt/~ |i〉〈j |e−iĤt/~

]

≈
∑

kl

∫
dR

dP
2π~

dqdpdq′dp′G0G′0[ ρ̂(0)W
kl ]Tki(t)T

′
jl(t),

(3)

where Tki(t) = 1
2 (qi(t) + ipi(t))(qk(0) − ipk(0)) and T ′jl(t)

= 1
2 (ql(0) + ipl(0))(qj(t) − ipj(t)) are the electronic transi-

tion amplitudes, and [ ρ̂(0)W
kl ] is the partial Wigner transform

(with respect to the nuclear DOF) of the klth matrix element
of the initial total density operators ρ̂(0). The initial distri-
bution of electronic DOF is G0(q, p) = e−

1
2
∑

m(q2
m+p2

m) and
G′0(q′, p′) = e−

1
2
∑

n(q′2n+p′2n).
Classical trajectories are used to evaluate the approximate

time-dependent reduced density matrix in Eq. (3). The forward
mapping variables are evolved based on Hamilton’s equations
of motion49,50

q̇i = ∂h/∂pi, ṗi = −∂h/∂qi, (4)

where h is the classical mapping Hamiltonian49,54 with the
following expression:

h(p, q, R) =
1
2

∑
ij

Vij(R)
(
pipj + qiqj

)
. (5)

The backward mapping variables are propagated with the sim-
ilar equations of motion governed by h(p′, q′, R). The nuclei
are propagated with the PLDM force49 with the following
expression:

FPL = −
1
4

∑
ij

∇Vij(R)
[
pipj + qiqj + p′ip

′
j + q′i q

′
j

]
. (6)

PLDM uses consistent dynamical footing for both elec-
tronic and nuclear DOFs and thus accurately describes their
coupled motion. By contrast, widely used mixed quantum-
classical methods such as Ehrenfest or FSSH37,55 treat quan-
tum and classical DOFs on different footings, which causes
the breakdown of detailed balance40 or creating the artifi-
cial electronic coherence.37,46 In addition, compared to the
closely related methods that fully linearize both mapping and
nuclear DOFs,56–58 PLDM retains full dynamical propagation
along both forward and backward paths for the mapping DOF,
thus achieving a more accurate description of the electronic
dynamics.49,59,60 PLDM has already been successfully applied
to simulate a broad range of non-adiabatic processes, includ-
ing excitation energy transfer dynamics,50,61 electron transfer
reactions,60 singlet fission quantum dynamics,62 and nonlinear
optical spectroscopy calculations.63

It is worth mentioning that the numerical cost of PLDM
scales as N2, where N is the total number of electronic
states. This is similar to recently developed methods, including
symmetrical windowing quasi-classical (SQC)64 and forward-
backward trajectory solution to the quantum-classical Liou-
ville equation (QCLE).59 By contrast, the numerical cost of
Redfield theory65 or generalized quantum master equation
(GQME)66 scales as N4, though more accurate results can be
obtained under several particular parameter regimes.

B. Quasi-diabatic propagation scheme

Most of the routinely available electronic structure meth-
ods are formulated in the adiabatic representation. However,
a large number of recently developed non-adiabatic dynam-
ics methods,59,64,66 including PLDM,49 are formulated in the
diabatic representation. Thus, the typical strategy for applying
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these new methods to “real” molecular systems is to reformu-
late them in the adiabatic representation,67–70 which usually
requires non-trivial theoretical efforts. Moreover, the adiabatic
version of these methods are computationally inconvenient due
to the presence of the first and second order derivative cou-
plings,68 which could potentially lead to numerical instabilities
during dynamical propagations.

To address this discrepancy between the accurate dia-
batic quantum dynamics approaches and routinely available
electronic structure calculations in the adiabatic states, we
have developed a Quasi-Diabatic (QD) propagation scheme,48

a general approach which allows interfacing adiabatic elec-
tronic structure calculations with diabatic trajectory-based
quantum dynamics methods. Here, we provide a brief sum-
mary of this scheme, whereas the details of the algorithm can
be found in Ref. 48.

Consider a short-time propagation of the nuclear DOF
during t ∈ [t1, t2], where the nuclear positions evolve
from R(t1) to R(t2), with the corresponding adiabatic states
{|Φα(R(t1))〉} and {|Φµ(R(t2))〉}. These adiabatic states are
defined as the eigenstates of the electronic part of the Hamil-
tonian

V̂el(r̂, R̂)|Φα(R)〉 = Eα(R)|Φα(R)〉, (7)

where |Φα(R)〉 are the adiabatic states with the corresponding
eigenenergies Eα(R), both of which explicitly depend on the
nuclear coordinates.

The central idea of the QD propagation scheme48 is to
use the nuclear geometry at time t1 as the reference geome-
try, R0 ≡ R(t1), and the adiabatic basis {|Φα(R(t1))〉} as the
quasi-diabatic basis during this short-time quantum dynamics
propagation such that

|Φα(R0)〉 ≡ |Φα(R(t1))〉, for t ∈ [t1, t2]. (8)

With the above QD basis, the derivative couplings van-
ish in a trivial way during this short-time propagation, and
V̂el(r̂; R) has off-diagonal elements. We emphasize that there is
always a non-removable part of the derivative coupling over the
entire configurational space for polyatomic systems.71 This is
a well-known result in the literature.72,73 Here, the QD scheme
circumvents this challenge by requiring locally-defined dia-
batic states such that the derivative couplings vanish in this
configurational subspace during a given short-time propaga-
tion. Furthermore, instead of attempting to construct a globally
well-defined diabatic surface,29,30,32 the proposed QD scheme
simply uses the adiabatic states as the local diabatic states to
propagate quantum dynamics.

Because of the diabatic nature of the QD basis dur-
ing this short-time propagation, one can use any diabatic
based approach to propagate the quantum dynamics. Here,
we use PLDM outlined in Sec. II A as the diabatic dynam-
ics method in the QD propagation scheme and refer this
approach as QD-PLDM.48 This approach provides the same
accuracy for non-adiabatic dynamics as obtained from straight
diabatic PLDM, with the additional capability to use adia-
batic states and nuclear gradients, obtained from electronic
structure calculations, for dynamics propagation. To perform
PLDM propagation, it requires diabatic energies, electronic
couplings, and nuclear gradients, which can be conveniently

computed48 under the QD basis, {|Φα(R0)〉}. For exam-
ple, one can easily evaluate the matrix elements Vαβ(R(t))
= 〈Φα(R0)|V̂el(r̂; R(t))|Φβ(R0)〉 at both R(t1) and R(t2) as
follows:

Vαβ(R(t1)) = 〈Φα(R0)|V̂el(r̂; R(t1))|Φβ(R0)〉,

(9)

Vαβ(R(t2)) =
∑
µν

bαµ〈Φµ(R(t2))|V̂el(r̂; R(t2))|Φν(R(t2))〉b†βν ,

where the first expression is simply equal to Eα(R(t1))δαβ
and the second expression contains the basis transfor-
mation matrix elements bαµ = 〈Φα(R0)|Φµ(R(t2))〉 and
b†βν = 〈Φν(R(t2))|Φβ(R0)〉. The time-dependent matrix ele-
ments Vαβ(R(t)) can then be obtained by a linear interpolation
between Vαβ(R(t1)) and Vαβ(R(t2)) as follows:74

Vαβ(R(t)) = Vαβ(R(t1)) +
(t − t1)
(t2 − t1)

[
Vαβ(R(t2))−Vαβ(R(t1))

]
.

(10)

Similarly, the nuclear gradients on electronic Hamiltonian
matrix elements ∇Vαβ(R(t2)) ≡ ∂Vαβ(R(t2))/∂R are evalu-
ated as48

∇Vαβ(R(t2))=∇〈Φα(R0)|V̂el(r̂; R(t2))|Φβ(R0)〉

=〈Φα(R0)|∇V̂el(r̂; R(t2))|Φβ(R0)〉

=
∑
µν

bαµ〈Φµ(R(t2))|∇V̂el(r̂; R(t2))|Φν(R(t2))〉b†βν.

(11)

Here, we have used the fact that {|Φα(R0)〉} is a diabatic
basis during the [t1, t2] propagation, which allows mov-
ing the gradient operator to bypass 〈Φα(R0)| from the first
line to the second line of the above equation. From the
second line to the third line of Eq. (11), we have inserted
the resolution of identity

∑
µ |Φµ(R(t2))〉〈Φµ(R(t2))| = 1 and∑

ν |Φν(R(t2))〉〈Φν(R(t2))| = 1. Note that {|Φµ(R(t2))〉} is an
adiabatic basis during this propagation step due to the fact
that R(t2) is a changing geometry rather than a fixed ref-
erence geometry during the [t1, t2] propagation. Thus, eval-
uating 〈Φµ(R(t2))|∇V̂el(r̂; R(t2))|Φν(R(t2))〉 requires a simi-
lar procedure for computing derivative couplings, which are
now commonly available with the recent progress in this
area.77,78

We emphasize that Eq. (11) includes derivatives with
respect to all possible sources of the nuclear dependence,
including those from the adiabatic potentials and the adia-
batic orbitals. We demonstrate this by deriving an alternative
but equivalent gradient expression of Eq. (11) in Appendix
A. Furthermore, we emphasize that in the QD propagation
scheme, the derivative couplings dµν(R) = 〈Φµ(R)|∇Φν(R)〉
are not explicitly required. That being said, we do not omit the
derivative coupling; the gradient 〈Φµ(R(t2))|∇V̂el(r̂; R(t2))|Φν
(R(t2))〉 used in the QD scheme [Eq. (11)] is rem-
iniscent of the derivative coupling. One should note
that dµν(R)= 〈Φµ(R)|∇V̂el(r̂; R)|Φν(R)〉/[Eν(R)−Eµ(R)] can
become singular due to the degeneracy of eigenvalues, i.e.,
Eν(R) − Eµ(R) = 0, even when 〈Φk(R)|∇V̂el(r̂; R)|Φl(R)〉 is
finite. Thus, the method that directly requires derivative cou-
plings might suffer from numerical instabilities, whereas the
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method that only requires the gradient (such as the QD scheme)
will likely not.

During the next short-time propagation segment
t ∈ [t2, t3], we adapt a new reference geometry R′0 ≡ R(t2)
and quasi-diabatic basis |Φµ(R′0)〉 ≡ |Φµ(R(t2))〉. With the
nuclear geometry close to the reference geometry at every sin-
gle step, the QD representation remains to be a convenient
and compact basis in each short-time propagation segment.
Between [t1, t2] propagation and [t2, t3] propagation segments,
all of these quantities will be transformed from {|Φα(R0)〉}
to {|Φµ(R′0)〉} basis. In particular, we use the following
expressions to transform the mapping variables from the pre-
vious to the current QD basis between every two consecutive
propagation steps,

qµ ←
∑
α qα〈Φα(R(t1))|Φµ(R(t2))〉,

pµ ←
∑
α pα〈Φα(R(t1))|Φµ(R(t2))〉.

(12)

The above transformation originates from the relation between
two QD bases as |Φµ(R(t2))〉 =

∑
α〈Φα(R(t1))|Φµ(R(t2))〉|Φα

(R(t1))〉. Since the mapping relation between the physical
state and the singly excited oscillator state is |Φµ(R(t2))〉
= a†µ |0〉=

1√
2
(q̂µ + ip̂µ)|0〉, the relations for the mapping

variables associated with two bases are |Φµ(R(t2))〉= 1√
2
(q̂µ

+ ip̂µ)|0〉=
∑
α〈Φα(R(t1))|Φµ(R(t2))〉 1√

2
(q̂α + ip̂α)|0〉. For

molecular systems, one can always find a suitable choice of
the basis set to make 〈Φα(R(t1))|Φµ(R(t2))〉 real. Thus, it is
guaranteed that the mapping variables are transformed with
the same relations as the bases, as expressed in Eq. (12).

We emphasize that the QD scheme ensures a stable propa-
gation of the quantum dynamics compared to directly solving
Time-dependent Schrodinger Equation (TDSE) in the adia-
batic representation.79 This is due to the fact that the latter
requires the non-adiabatic coupling 〈Φµ(R(t))| ∂∂tΦν(R(t))〉 =
dµν(R)Ṙ, which might exhibit highly peaked values and cause
numerical challenges80,81 when using the linear interpolation
scheme79 with a large time step. A recently developed norm-
preserving interpolation scheme80,81 addresses this issue by
providing accurate values of non-adiabatic couplings, result-
ing in a much more stable procedure for integrating TDSE.
Here, instead of using 〈Φµ(R(t))| ∂∂tΦν(R(t))〉 or dµν(R),
the QD scheme uses well-behaved 〈Φµ(R(t1))|Φν(R(t2))〉
and 〈Φµ(R)|∇V̂el(r̂; R)|Φν(R)〉 and thus explicitly alleviates
numerical instabilities. The numerical advantage of the QD
scheme compared to the adiabatic propagation scheme is most
significant when the derivative couplings are highly peaked.
For example, with the model calculations presented in this
paper, we find that the QD propagation scheme allows using
up to 5 times larger time step compared to directly solving
TDSE.79

Because of the way we construct these QD states [Eq. (8)],
the configuration subspace [R(t1), R(t2)] [under which the
QD state |Φα(R0)〉 is defined] will depend on the time step
dt = t2 − t1. Thus, we will not have a set of globally well-defined
QD states that are independent of dt, except when dt→ 0 under
which QD and adiabatic states share exactly the same global
definition. Furthermore, the definition of the QD states can
become sensitive to dt, as the adiabatic states (that we use

to define QD states) can significantly change their characters
at different nuclear configurations R(t) when using different
dt. However, the quantum dynamics of the system obtained
from the QD propagation scheme is not sensitive to dt. Our
numerical investigations suggest that with a broad range of dt
(even with relatively large ones), such that the definition of the
QD states change significantly, the QD propagation scheme
can still accurately recover the same quantum dynamics (at
the single trajectory level) obtained from strict diabatic (or
adiabatic) propagations when well-defined, time-independent
global diabatic (or adiabatic) surfaces are used.48 The reason
for this dt-insensitive QD dynamics is due to the fact that the
QD propagation scheme only requires well-behaved quanti-
ties [Eqs. (9)–(11)] that are computed under adiabatic states.
The adiabatic states are, of course, globally well-defined in
the configuration space R and are irrelevant to the time step.
Similar dt-insensitive behavior and the robustness of the QD
scheme has also been demonstrated in the earlier work of solv-
ing TDSE,74–76 despite the dt-dependent definition of the QD
states.

Previous theoretical work with diabatic quantum dynam-
ics approaches29,30,32 for simulating PCET reactions usually
require parametrizing the original model system into a strict
diabatic system-bath model.30,32 This parametrization process
requires additional efforts and remains a highly non-trivial task
and significant challenge for atomistic simulations.32 Here, the
QD scheme allows directly propagating quantum dynamics
by using the adiabatic vibronic basis with diabatic dynamics
approaches, thus explicitly avoiding any additional efforts for
building strict diabatic models.

Furthermore, for the PI-PCET dynamics investigated in
this study, the QD scheme provides an additional advantage of
reducing the number of electronic states required for dynami-
cal propagation. In the case where the diabatic electron-proton
basis (see Sec. III) is treated with MMST mapping vari-
ables, one can directly use diabatic PLDM for the dynamical
propagation due to the strict diabatic nature of this basis.
However, the computational cost is significantly increased
compared to the QD scheme due to the large number of the
diabatic states (N ∼ 100 in this work). Such technical chal-
lenges can be resolved by using a more “compact” adiabatic
vibronic basis along a given trajectory, i.e., the QD basis,
which only requires the few low-lying adiabatic states (N ∼
10 in this work) which directly participate in the non-adiabatic
transitions.

Thus, the QD scheme provides a convenient propaga-
tion framework and a seamless interface for diabatic quan-
tum dynamics approaches with adiabatic electronic structure
calculations.48

III. DETAILS OF MODEL CALCULATIONS
A. Model system

The PI-PCET model used in this study is expressed as

Ĥ = Ĥep + Ĥsb, (13)

where Ĥep describes the electron-proton free-energy surfaces
and Ĥsb describes the solvent-bath interaction. In this work,
we adapt two commonly used models for Ĥep, with one
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explicitly containing a collective solvent coordinate (ET coor-
dinate)14,15 which we refer to as Model I and the other that
does not contain a special collective solvent coordinate82,83

which we refer to as Model II. Note that these two models are
related to each other through a simple coordinate transforma-
tion84 and are equivalent if the latter has a Brownian spectral
density.84,85

Here, we provide detailed expressions of Model I, with the
parameters for solvent-bath interactions provided in Appendix
B. The Hamiltonian of Model II is provided in Appendix C.
All of the results presented in this work are based on Model I,
except those presented in Fig. 2 for benchmarking purpose.

The electron-proton Hamiltonian Ĥep in Eq. (13) of Model
I is expressed as

Ĥep = T̂p +

[
UD(r̂p) + 1

2 Msω
2
s R2

s VDA

VDA UA(r̂p) + 1
2 Msω

2
s (Rs − R0

s )2 − ∆

]
, (14)

where T̂p represents the kinetic energy operator of the pro-
ton, r̂p is the proton coordinate operator, and Rs represents the
collective solvent coordinate that characterizes electron trans-
fer. In addition, Ms and ωs =

√
f0/Ms are the mass and the

frequency of this solvent coordinate, with f 0 as the force con-
stant, and R0

s =
√

2λ/f0, with λ as the solvent reorganization
energy.

The second term of Eq. (14), i.e., the Ĥep − T̂p opera-
tor, represents the electron-proton interaction potential in the
electronic diabatic donor |D〉 and acceptor |A〉 excited states,
with VDA = 0.03 eV as the coupling between the two elec-
tronic states and ∆ as the driving force (bias) of the reaction.
The excited adiabatic states |S1(Rs, rp)〉 and |S2(Rs, rp)〉 are the
eigenstates of the Ĥep− T̂p operator, i.e., they are linear combi-
nations of |D〉 and |A〉 states and are parametrically dependent
on both the solvent and the proton coordinates. The electronic
ground state |S0(Rs, rp)〉 of the system, on the other hand, is
not explicitly included in this Hamiltonian, but it will dictate
the initial conditions of the system before the Franck-Condon
photoexcitation.

Furthermore, UD(r̂p) and UA(r̂p) represent the proton
free-energy profile associated with |D〉 and |A〉 states with the
following expressions:

UD(r̂p) =
1
2

mpω
2
p(r̂p − rD

p )2; UA(r̂p) =
1
2

mpω
2
p(r̂p − rA

p )2.

(15)

In this work, we use rD
p = 0 and rA

p = 0.5 Å as the minima of the
proton free-energy profile associated with the electronic donor
and acceptor states. mp = 1.0073 amu andωp = 3000 cm−1 are
the mass and vibrational frequency of the proton. In this model,
the proton and the solvent DOF do not explicitly interact with
each other; rather, r̂p directly interacts with various electronic
states, which in turn interact with the solvent. In addition, we
choose three possible driving forces,14 with∆ = 0 (Model IA),
∆ = 1 eV (Model IB), and ∆ = 3.51 eV (Model IC). All the
other parameters are provided in Appendix B.

Figure 1 illustrates the electron-proton potential Ĥep, with
the driving force ∆ = 1 eV (Model IB). Figure 1(a) presents
the electronic adiabatic free energy surface of the first excited
electronic state S1, as a function of proton coordinate r̂p and
solvent coordinate Rs. Two dashed lines perpendicular to the
r̂p coordinate indicate the minima for proton donor (UD(r̂p))

and acceptor (UA(rp)) free energy diabats. One dashed line
perpendicular to Rs indicates the center of the initial solvent
distribution. Figure 1(b) presents the photoexcited electronic
state |D〉 (blue) and |A〉 (red), which correspond to the diag-
onal elements of Ĥep [Eq. (14)] evaluated at R0

s [dashed line
perpendicular to Rs in panel (a)]. The black arrow indicates the
photoexcitation process of the proton from its vibronic ground
state |S0(Rs, rp)〉, with the proton potential U0 = 1

2 mpω
2
p r̂2

p .
Figure 1(c) depicts the adiabatic electron-proton vibronic free
energy surfaces as functions of Rs, which are obtained by diag-
onalizing Ĥep in the vibronic basis (with details described in
Sec. III B). In this panel, the black arrow indicates the pho-
toexcitation that promotes the initial solvent distribution cen-
tered at

√
2λ/f0, whereas gray arrows indicate the subsequent

vibrational relaxation process.

FIG. 1. Schematic illustration of the model PI-PCET systems with the driving
force ∆ = 1 eV. (a) The adiabatic electron-proton free energy surface of the
|S1(Rs, rp)〉 (eigenstate of operator Ĥep − T̂p) as a function of proton (rp)
and solvent (Rs) coordinates. (b) The proton free energy diabatic potentials
that correspond to the electronic ground state |S0〉 prior to photoexcitation
(black), the photoexcited |D〉 state (blue), and the |A〉 state (red) as functions
of rp. (c) Adiabatic electron-proton vibronic free energy surfaces (eigenstates
of operator Ĥep) as functions of Rs.
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The solvent-bath Hamiltonian Ĥsb in Eq. (13) is expressed
as follows:

Ĥsb =
P2

s

2Ms
+

∑
k



P2
k

2Mk
+

1
2

Mkω
2
k

*
,
Rk −

ckRs

Mkω
2
k

+
-

2
. (16)

In the above equation, Rk represents the kth bath mode,
with the corresponding coupling constant ck and frequencyωk

sampled from the following spectral density:

J(ω) =
π

2

∑
k

c2
k

Mkωk
δ(ω − ωk) = f0τLωe−

ω
ωc . (17)

Here, τL is the solvent response time (see Appendix B), Mk

is the mass of the kth bath mode, and ωc is the characteristic
frequency of the bath that is much faster than the motion of
Rs. Here, we choose ωc = 10ωs and Mk = Ms for all k.

One can thus perform the QD-PLDM simulation with
the above total Hamiltonian. Alternatively, we can perform
the following equivalent Langevin dynamics14 that treats the
bath implicitly, with the equation of motion for the collective
solvent coordinate Rs as follows:

MsR̈s = Fep(Rs) − f0τLṘs + Fr(t). (18)

In the above Langevin equation, Fep(Rs) is the PLDM force
[see Eq. (6)] associated with Ĥep, the friction force is −f0τLṘs

with the friction constant f 0τL, and Fr(t) is the random
force bounded by the fluctuation-dissipation theorem through
equation 〈Fr(t)Fr(0)〉 = 2kBTf 0τLδ(t). Here, Fr(t) is mod-
eled as a Gaussian random force with the distribution width86

σ =
√

2kBTf0τL/dt, where kB is the Boltzmann constant and
dt is the nuclear time step. The details for generating τL for a
given solvent is provided in Appendix B.

As a consistency check, we have verified that equivalent
results (for the time-dependent electron-proton reduced den-
sity matrix) are obtained with either the explicit bath (dynamics
with the full Hamiltonian Ĥel + Ĥsb) or implicit bath [Langevin
dynamics in Eq. (18)] approach. The equivalency of both
approaches has also been recently explored in the condensed-
phase ET dynamics39,60,87,88 and PI-PCET dynamics.89 We
should also note that when the bath DOF has high vibrational
frequency such that ~ωs� kBT, linearization approximation90

or classical treatment for the bath can become less accu-
rate.90,91 Thus, performing implicit Langevin dynamics for
the bath can provide more accurate results, especially for those
approximate quantum dynamics approaches.91

B. Adiabatic vibronic surfaces

In this work, we treat both electron and proton quantums
mechanically with the corresponding vibronic states. Thus, the
“electronic part” of the Hamiltonian, i.e., V̂el in Eqs. (1) and
(7), is defined as Ĥep in Eq. (13) such that

V̂el ≡ Ĥep(T̂p, r̂p, r̂e, Rs). (19)

Thus, V̂el includes proton kinetic energy, electronic potential,
electron-proton, and electron-solvent interactions.

In order to obtain the adiabatic vibronic states |Φα(Rs)〉
for the coupled electron-proton Hamiltonian Ĥep, we express
|Φα(Rs)〉 with a set of two-particle basis functions as follows:

|Φα(Rs)〉 =
∑
i,m

cαim(Rs)|φ
i
e〉|φ

m
p 〉, (20)

where |φi
e〉 ∈ {|D〉, |A〉} and |φm

p 〉 is chosen to be the mth
eigenfunction of a quantum harmonic oscillator, with the total
Hamiltonian Ĥ = T̂p + 1

2 mpω
2
p r̂2

p . Thus, by using M harmonic
basis functions for protons and two basis states for electrons,
the total number of vibronic basis is N = 2M, and Ĥep contains

a 2M × 2M Hamiltonian matrix 〈φn
p |〈φ

j
e |Ĥep |φ

i
e〉|φ

m
p 〉 under

this representation. Because both UD(r̂p) and UA(r̂p) are just
simple displaced harmonic oscillator potentials, the matrix ele-
ments of Ĥep can be obtained analytically by recognizing the
basic property of the harmonic oscillator as follows:

〈φn
p |T̂p +

1
2

mpω
2
p r̂2

p |φ
m
p 〉 =

(
n +

1
2

)
~ωpδnm,

〈φn
p |r̂p |φ

m
p 〉 =

√
~

mpωp

1
√

2

(√
m δn,m−1 +

√
m + 1 δn,m+1

)
.

(21)

The eigenvalues and the eigenvectors (adiabatic vibronic
basis) are then obtained through direct diagonalization of the
Ĥep matrix under the above two-particle basis.

C. Quantum dynamics propagation approaches

We perform PLDM quantum dynamics simulations with
three different choices for treating the transferring electron and
proton, which are summarized as follows:

• QD-PLDM: describe the electron-proton adiabatic
vibronic basis |Φα(Rs)〉 as the quasi-diabatic (QD)
states with MMST mapping variables; propagate the
dynamics with the QD-PLDM approach;48

• vib-PLDM: describe the electron-proton diabatic
vibronic (vib) basis |φi

e〉|φ
m
p 〉 with MMST mapping

variables; propagate the dynamics with the straight
diabatic PLDM approach;

• el-PLDM: only describe the electronic (el) state |φi
e〉

with MMST mapping variables, whereas the proton
is treated through linearization approximation (which
gives rise to classical equation of motion and a
Wigner initial distribution); propagate the dynamics
with straight diabatic PLDM approach.

Here, we briefly comment on the numerical cost of each
approach. The number of states required to be explicitly propa-
gated is different in each one of these schemes. Here, el-PLDM
only requires explicit propagation of two states, |D〉 and |A〉;
vib-PLDM requires explicit propagation of 60-120 diabatic
vibronic bases {|φi

e〉|φ
m
p 〉}; QD-PLDM only requires 5-20 adi-

abatic vibronic states {|Φα(Rs)〉} due to the compactness of
these adiabatic states for describing the changing wavefunc-
tion. Recall that the numerical cost of PLDM propagation
scales as N2 (with N as the total number of states). Thus, the
ultimate numerical cost for vib-PLDM is much larger than both
QD-PLDM and el-PLDM. QD-PLDM, on the other hand, still
requires explicitly diagonalizing the Ĥep matrix with a numer-
ical cost of N3, besides the cost for dynamical propagation.
We also want to emphasize that for large-scale all-atom simu-
lations, it is likely that the numerical costs will be dominated
by a large common pre-factor associated with propagating the
nuclear DOF, and the scaling associated with the electronic
DOF becomes less important.
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D. Simulation details

Here, we provide the simulation details for Model I,
whereas the corresponding details for Model II are provided in
Appendix C. The converged results for Model I are obtained
with 2400 trajectories for QD-PLDM or vib-PLDM propaga-
tions, with a time step of dt = 0.024 fs (1 a.u.). The trend of
the population dynamics, on the other hand, can be obtained
with just a few hundred trajectories for this model, similar to
the numerical cost of the widely used FSSH approach.14,34 The
total number of vibrational basis {|φm

p 〉} used in Model IA is 30,
i.e., m = 0, 1, . . .29 for the Harmonic oscillator eigenstates. The
total number of vibrational basis used in Model IB and IC is
40 and 60, respectively. We have carefully checked the conver-
gence of our results with additional 10 vibrational bases, which
generates numerically identical results. For QD-PLDM prop-
agation, we only used the first 5, 10, and 20 time-dependent
low-lying adiabatic vibronic states as the QD states for the
electron-proton description. We have also carefully checked
the convergence of the QD propagation scheme with addi-
tional 10 more QD basis, which also provides the identical
results.

In all calculations with Model I, the system is initially
prepared in the proton vibrational ground state |φ0

p〉 of the elec-
tronic ground state |S0〉 [the black parabola in Fig. 1(b)]. The
system is then excited to the |D〉 state (which is an electronic
excited state) through the Franck-Condon process, which gen-
erates the initial state described by the following total density
operator:

ρ̂(0) = |Φ(0)〉〈Φ(0)| ⊗ ρ̂s. (22)

Here, the initial electron-proton quantum state is expressed as

|Φ(0)〉 = |D〉|φ0
p〉, (23)

and ρ̂s is the density operator of the solvent. PLDM requires
the partial Wigner transform of the total density operator ρ̂(0)
which can be easily obtained (due to the its simple direct
product form) as follows:

[ ρ̂(0)W] = |Φ(0)〉〈Φ(0)| ⊗ ρW
s , (24)

with the following Wigner density for the solvent

ρW
s = ωsΓse

−Γs

[ P2
s

2Ms
+ 1

2 Msω
2
s (Rs−R0

s )2
]
. (25)

Here, Γs = (2/ωs) tanh(ωs/2kBT ) and ωs =
√

f0/Ms. In this
study, we choose R0

s =
√

2λ/f0 that corresponds to the min-
imum of the proton acceptor free energy diabatic surface.
Furthermore, we use the focused initial conditions92 to facili-
tate the convergence of the sampling for the mapping variables,
which obey the distribution governed by G0(p, q) and G′0(p′,
q′) (see Sec. II A for details). In vib-PLDM, the focused ini-
tial condition means that qξ = q′ξ = δξη and pξ = −p′ξ = δξη
where |η〉 = |Φ(0)〉 = |D〉|φ0

p〉 and |ξ〉 = |φi
e〉|φ

m
p 〉. Whereas in

QD-PLDM, the initial values of the corresponding mapping
variables are obtained through the following expressions:

qα =
∑
im

qξcαim; pα =
∑
im

pξcαim, (26)

where cαim is the eigenfunction coefficient obtained from
Eq. (20) and |ξ〉 = |φi

e〉|φ
m
p 〉.

IV. RESULTS AND DISCUSSIONS

Figure 2 presents the diabatic electronic population of
the |D〉 state obtained from el-PLDM (dotted line), vib-PLDM
(open circle), and QD-PLDM (solid line) for Model II. In addi-
tion, in order to assess the accuracy of these approaches, we
present results obtained from reduced density matrix (RDM)
formalism82,83 which provides the exact results (black dashed
line) under the weak system-bath coupling regime for Model
II. It can be clearly seen from Fig. 2(a) that el-PLDM which
propagates the motion of protons classically (from its ini-
tial Wigner distribution) does not provide accurate electronic
dynamics and causes large deviation from the exact result at
a longer time. Similar deviation has also been reported by
using the symmetrical quasi-classical (SQC) method83 with
the same classical treatment for protons. This is a common
problem for all linearized path-integral approaches, including
PLDM itself. This is because the classical equation of motion
cannot preserve the Wigner initial distribution of the proton,
and it causes vibrational energy leakage problem,93–95 espe-
cially when the vibrational frequency is high. On the other
hand, quantizing the proton with the vibronic basis in both
vib-PLDM and QD-PLDM approaches explicitly alleviates
the problems associated with the classical Wigner description
for protons and leads to a more accurate PI-PCET quantum
dynamics.

We would like to mention that treating vibrational dia-
batic states with MMST mapping variables can certainly
improve the accuracy of the dynamics, as has been demon-
strated with other recent theoretical studies. In one example,
vib-PLDM is used to compute 2-dimensional electronic spec-
tra63 in a Frenkel exciton model with a high-frequency vibra-
tional mode. In another example, a new method, so-called the
extended SQC approach,96 is developed based on a similar

FIG. 2. (a) Diabatic population of the photoexcited donor state obtained from
exact calculations (black dashed line), el-PLDM (dotted line), vib-PLDM
(open circles), and QD-PLDM (solid line). (b) Comparison of the donor dia-
batic state population for protons (red) and deuterium (blue) with el-PLDM
(dashed line) and QD-PLDM (solid line).
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strategy of vib-PLDM, which provides accurate non-adiabatic
dynamics when a highly non-harmonic mode is explicitly
quantized with its vibrational eigen basis. In the third example,
the lowest four electron-proton diabatic states are explicitly
used in PCET quantum dynamics studies.32 However, we want
to emphasize that in general, vib-PLDM does require a large
number of strict diabatic states to be explicitly propagated for
investigating the PI-PCET reaction. Furthermore, strict dia-
batic states cannot be easily obtained for real systems, in addi-
tion to the computational disadvantage associated with prop-
agating a large number of states. This feature will ultimately
limit the scope and applicability of vib-PLDM for investigating
PI-PCET. The QD scheme, on the other hand, only requires a
small set of adiabatic vibronic states for time-dependent prop-
agation and thus provides an accurate and efficient theoretical
framework for investigating PI-PCET dynamics.

Figure 2(b) presents the kinetic isotope effect (KIE) for
protons (red) and deuterium (blue) in terms of the donor
population. For clarity, here we only present the results
obtained from el-PLDM (dotted lines) and QD-PLDM (solid
lines), whereas the results from the latter are identical to vib-
PLDM and agree very well with the exact results obtained
from RDM82 (not shown here). Because deuterium is essen-
tially a classical particle, the el-PLDM and QD-PLDM
approaches provide similar results (blue curves) despite some
small deviations. This suggests that treating deuterium clas-
sically provide a reasonably accurate dynamics, whereas
the quantum nature of the proton requires an explicit prop-
agation with electron-proton vibronic states for accurate
results.

Figure 3 presents the adiabatic vibronic population of
the PI-PCET dynamics, with the adiabatic surfaces of mod-
els IA-IC provided in (a)–(c). The initial photoexcitation is

illustrated with black arrows, and the subsequent vibrational
relaxation pathways are indicated with gray arrows. The corre-
sponding color-coded vibronic state populations are presented
in panels (d)–(e), calculated using vib-PLDM (open circles)
and QD-PLDM (solid lines) propagations, which are identical.
Quantitatively similar results for these vibrational relaxation
dynamics have also been obtained from the FSSH14 approach
(results not shown), suggesting that the decoherence correc-
tion might not have a large impact on the short-time vibronic
dynamics (∼1 ps).

In Figs. 3(a)–3(c), the initial photoexcitation leads to pop-
ulating a set of high-lying vibronic excited states, followed by
the vibrational relaxation process that propagates the vibronic
wavepacket into low-lying states through non-adiabatic tran-
sitions. The gray arrows indicate these vibrational relaxation
dynamics during the first 1 ps time scale of the simulations.
Compared to the symmetric case in Model IA (∆ = 0), the
non-zero energy bias in Models IB and IC leads to populating
much higher vibronic states at the beginning of the reaction, as
well as stabilizing the acceptor state over the donor state that
impacts the longer time dynamics. For model IC, the solvent
coordinates Rs directly relaxes to the electronic acceptor side
during the first 1 ps (results not shown), whereas in Model IA
and IB, Rs relaxes back to the electronic donor side, suggesting
much slower ET dynamics associated with IA and IB, as will
be demonstrated in the next figure.

Figure 4 presents the KIE with electronic population
dynamics of Model IB and Model IC. The corresponding
dynamics in Model IA are much slower compared to IB and
IC, and thus are not shown here. Figure 4(a) depicts the popu-
lation decay of the donor state for protons (red) and deuterium
(blue) in Model IB. It can be seen that there is a clear sep-
aration of time scale during the PI-PCET dynamics, with an

FIG. 3. (a)–(c) Adiabatic vibronic free energy surfaces as functions of the collective solvent coordinate for Model IA (∆ = 0 eV), Model IB (∆ = 1 eV), and
Model IC (∆ = 3.51 eV), with (d)–(f) representing the corresponding adiabatic vibronic populations obtained from vib-PLDM (open circles) and QD-PLDM
(solid lines).
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FIG. 4. Diabatic population of the donor state with pro-
tons (red) and deuterium (blue) in Model IB (a) and Model
IC (b). The time-dependent probability densities of the
transferring proton are presented in (c) and (d), while
the probability densities of the transferring deuterium are
presented in (e) and (f).

initial fast vibrational relaxation process during the first 1 ps
[that corresponds to results shown in Fig. 3(d)], followed by a
second stage, with much slower non-adiabatic dynamics that
transfer electronic population from the donor to the acceptor
state. By contrast, in the system with deuterium, the donor
electronic population does not significantly transfer during the
same time scales. These results indicate a large KIE that can
be observed in Model IB.

Figure 4(b) presents the same population dynamics for
Model IC. One can also observe a similar two-stage dynamical
process, with an ultrafast sub-picosecond relaxation process
and a relatively slower (∼5 ps) charge population transfer
dynamics. In this model system, KIE is negligible compared to
the previous model, whereas the early stage relaxation process
for deuterium is even faster than protons. Similar negligible
or even slightly inverse KIE2,14,15,35 has also been observed
through recent theoretical investigations. The inverse KIE can
be easily understood as follows. When tunneling effects are
less important, the vibrational relaxation dictates the dynam-
ics,2,34 and with a larger nuclear mass, deuterium relaxes
even faster than protons35 because the vibrational states are
closer in energy. Quantum mechanically, the vibrational gap
of deuterium is much smaller compared to that of protons.
With the same initial photoexcitation, more high-lying excited
vibronic states can be populated for deuterium and thus pro-
motes the PCET process.35 Furthermore, as been previously

discussed,2,15,35 the lack of KIE in the initial stage of PI-PCET
cannot exclude the possibility of the concerted transfer of both
protons and electrons.

In order to understand the distinctly different KIE in the
above two model systems, we compute the time-dependent
probability density of the transferring proton/deuterium
associated with the donor electronic states |ΦD(r)|2 =∑
ηξ ρηξ (t)〈r |φm

p 〉〈φ
n
p |r〉, where ρηξ (t) is the reduced den-

sity matrix in the electron-proton diabatic vibronic basis
{|φi

e〉|φ
m
p 〉, |φ

j
e〉|φ

n
p〉}, |η〉 = |D〉|φ

m
p 〉, and |ξ〉 = |D〉|φn

p〉. Sim-
ilar expression is used for computing |ΦA(r)|2, where |η〉
= |A〉|φm

p 〉 and |ξ〉 = |A〉|φn
p〉.

Figures 4(c)–4(e) present these time-dependent probabil-
ity densities for the transferring proton/deuterium described
above. In Fig. 4(c), there is a significant transfer of the pro-
ton probability distribution from the donor to the acceptor
states in Model IB, whereas there is no transfer for deuterium
probability distribution presented in Fig. 4(e). This different
behavior suggests that tunneling of the proton between the
donor and acceptor states dominate the PI-PCET dynamics at
a longer time, after the initial short-time vibrational relaxation.
By contrast, for Model IC, the probability densities for both
protons [Fig. 4(d)] and deuterium [Fig. 4(f)] exhibit very sim-
ilar time-dependent behavior, suggesting a predominant role
of vibrational relaxation and less important role of tunneling
in the PI-PCET dynamics.
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FIG. 5. The vibronic eigenfunctions with the corresponding eigenvalues for
Model IB, as a function of rp at two different solvent configurations, with (a)
right after photoexcitation with R0

s =
√

2λ/f0, and (c) after solvent relaxes to
the donor potential well at Rs ∼ 0. (b) The free energy profile of the S1 state
in Model IB as a function of rp and Rs.

To demonstrate the effect of proton tunneling on PI-
PCET dynamics in Model IB, in Fig. 5, we present the proton
vibrational eigenfunctions Ψα(rp; Rs) = 〈rp |Φα(r̂p; Rs)〉 with
different solvent configurations Rs. In Fig. 5(a), the solvent
configuration Rs is chosen to be at its initial value R0

s =
√

2λ/f0
upon photoexcitation. The initial proton wavepacket is cre-
ated as a linear combination of vibrational states 5-7, which
are blue, red, and brown states in Fig. 5(a). During the first 1
ps, solvent coordinate Rs experiences an overdamped behavior
and relaxes to the donor side (with Rs ∼0), with the correspond-
ing vibronic eigenfunctions presented in Fig. 5(c). At the same
time, the vibrational relaxation process has induced the popu-
lation transfer to vibronic states 3-4 [depicted as the pink and
violet states in Fig. 5(c)]. Note that there is a sizable barrier
along the r̂p coordinate for the relaxed solvent configuration
(Rs ∼ 0) in panel (c) compared to panel (a) (R0

s =
√

2λ/f0).
Under such circumstances in (c), the populated proton vibra-
tional states (pink and violet) are below the barrier, and the
tunneling through the barrier becomes the predominant mech-
anism for the later stage PI-PCET dynamics. This explains the
significant KIE observed in Model IB [Fig. 4(a)]. If the solvent
coordinate experiences an underdamped behavior (by reduc-
ing the f 0τL), it will fluctuate across the barrier and exhibit
the situation depicted in panel (a) for a couple of times before
finally relaxed, which might facilitate the PI-PCET reaction.
This hypothesis will subject to future numerical study. By
contrast, PI-PCET dynamics in Model IC are dictated by the
early stage vibrational relaxation process, with the adiabatic
vibronic states that are more similar to Fig. 5(a) such that it
is almost barrier-less for the reaction (akin to the activation
less regime in Marcus electron transfer theory), resulting in a
negligible KIE.

V. CONCLUSIONS

We apply the recently developed QD propagation
scheme48 to investigate the non-adiabatic dynamics of the
photoinduced proton coupled electron transfer (PI-PCET)
reaction. Using the PLDM path-integral approach and the
electron-proton adiabatic vibronic states as the time-dependent
quasi-diabatic states, the outlined QD propagation scheme
provides an accurate and efficient theoretical framework for
simulating PI-PCET dynamics. Compared to approaches that
only treat the transferring electron quantum mechanically but
protons classically (such as classical Wigner models83), the
QD scheme explicitly quantizes protons with vibronic adia-
batic states and thus provides accurate non-adiabatic dynamics
and KIE. Compared to the approaches that directly propagate
dynamics with the diabatic vibronic basis (such as extended
SQC96), the QD scheme only requires a smaller set of adi-
abatic vibronic states that are directly involved during the
non-adiabatic process, thus significantly reducing the com-
putational costs associated with the number of states that need
to be explicitly propagated. Previous theoretical studies with
diabatic quantum dynamics approaches32 for simulating PCET
reactions usually require parametrizing the original model sys-
tem into a strict diabatic system-bath model.30,32 This process
requires additional efforts and remains a non-trivial task and
a significant challenge for atomistic simulations.32 Here, by
using the adiabatic vibronic basis that can be obtained with
routinely available electronic structure calculations,34 the QD
scheme allows directly propagating quantum dynamics with a
diabatic based approach.

With this QD propagation scheme, we investigate the
vibronic population transfer and the KIE of PI-PCET dynamics
with various driving forces. For systems with a small driving
force, while the vibrational relaxation process significantly
impacts the early stage dynamics, solvent relaxation to the
donor side of the free energy surface eventually creates a
large barrier for PCET such that proton tunnelling plays a
predominant role. A significant KIE will be observed in such
a scenario. Whereas for a system with a much larger driving
force, the vibrational relaxation completely dictates both early
stage dynamics and longer-time PI-PCET reactions, resulting
in a negligible KIE.

Furthermore, we want to emphasize that the outlined QD
scheme and the simulation protocol are general enough and not
limited to PLDM; they can be directly applied to a wide range
of diabatic trajectory-based quantum dynamics approaches.
These approaches include but are not limited to sym-
metrical quasi-classical (SQC) model,64 forward-backward
quantum-classical Liouville equations (FB-QCLE),59 gener-
alized quantum master equations (GQMEs),66 and quantum-
classical path-integral (QCPI) dynamics.97 The QD propaga-
tion scheme provides a transformative theoretical framework
for studying challenging PI-PCET reactions through accurate
diabatic quantum dynamics approaches with efficient adiabatic
electronic structure calculations.

Finally, we want to outline three alternative approaches
for quantizing protons besides the commonly used vibronic
adiabatic state description38 adapted in this study. The first
one requires using the time-dependent Gaussian basis (TDGB)
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function to explicitly expand the proton (as well as the other
nuclear) wavefunction. This approach that has been utilized
in AIMS47 or MP/SOFT11 could be numerically expensive
as it might require many TDGB functions associated with
each nuclear DOF. The second one uses a nuclear-electronic
orbital (NEO) approach98 in which wavefunctions are used for
transferring electrons and protons with molecular orbital tech-
niques, thus could potentially add additional complexity on top
of the already challenging electronic structure problems. The
last one quantizes the proton with an imaginary-time path-
integral framework99 in the extended classical phase-space
(i.e., so-called ring polymer). With an explicit description
of electronic states, recently emerged state-dependent ring
polymer molecular dynamics approaches100–102 can poten-
tially provide accurate electronic non-adiabatic dynamics with
nuclear quantum effects and thus are promising for investing
PI-PCET dynamics once combined with the QD-propagation
scheme.
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APPENDIX A: EQUIVALENT EXPRESSION
OF THE NUCLEAR GRADIENT

Here, we provide the derivation of an alternative but equiv-
alent expression for the nuclear gradient in Eq. (11). Recall the
following basic property of the adiabatic states

〈Φµ(R(t2))|∇V̂el(r̂; R(t2))|Φν(R(t2))〉

= ∇Vµν(R(t2)) + Eν(R(t2))〈Φµ(R(t2))|∇Φν(R(t2))〉

+ Eµ(R(t2))〈∇Φµ(R(t2))|Φν(R(t2))〉, (A1)

where Vµν(R(t2)) = 〈Φµ(R(t2))|V̂el(r̂; R(t2))|Φν(R(t2))〉.
Because {|Φµ(R(t2))〉, |Φν(R(t2))〉} are eigenstates of
V̂el(r̂; R(t2)) (i.e., they are adiabatic states), we have
Vµν(R(t2)) = Eµ(R(t2))δµν . Furthermore, by noticing
that 〈Φµ(R(t2))|∇Φν(R(t2))〉 = 〈∇Φν(R(t2))|Φµ(R(t2))〉 =
−〈Φν(R(t2))|∇Φµ(R(t2))〉 (and thus 〈Φµ(R(t2))|∇Φµ(R(t2))〉
= 0), the above equality reduces to the familiar expression
〈Φµ(R(t2))|∇V̂el(r̂; R(t2))|Φµ(R(t2))〉 = ∇Eµ(R(t2)) (i.e., the
Hellmann-Feynman theorem) when µ= ν and the expression of
the derivative coupling 〈Φµ(R(t2))|∇V̂el(r̂; R(t2))|Φν(R(t2))〉 =
dµν[Eν(R(t2)) − Eµ(R(t2))] when µ , ν, with dµν ≡
〈Φµ(R(t2))|∇Φν(R(t2))〉.

Plugging Eq. (A1) into the last line of Eq. (11), we have
the alternative expression for the nuclear gradient as follows:

∑
µν

bαµ〈Φµ(R(t2))|∇V̂el(r̂; R(t2))|Φν(R(t2))〉b†βν

=
∑
µν

bαµ∇Vµν(R(t2))b†βν +
∑
ν

Eν(R(t2))〈Φα(R0)
∑
µ

|Φµ(R(t2))〉〈Φµ(R(t2))|∇Φν(R(t2))〉b†βν

+
∑
µ

Eµ(R(t2))bαµ〈∇Φµ(R(t2))|
∑
µ

|Φν(R(t2))〉〈Φν(R(t2))|Φβ(R0)〉, (A2)

with the notation bαµ = 〈Φα(R0)|Φµ(R(t2))〉 and b†βν =
〈Φν(R(t2))|Φβ(R0)〉 as we introduced under Eq. (9).

By noticing that
∑
µ |Φµ(R(t2))〉〈Φµ(R(t2))| = 1 in the

third line of the above equation,
∑
ν |Φν(R(t2))〉〈Φν(R(t2))| =

1 in the fourth line, and explicitly applying these two resolution
of identities, we have the following equation:∑
µν

bαµ〈Φµ(R(t2))|∇V̂el(r̂; R(t2))|Φν(R(t2))〉b†βν

=
∑
µν

bαµ∇Vµν(R(t2))b†βν

+
∑
ν

Eν(R(t2))〈Φα(R0)|∇Φν(R(t2))〉b†βν

+
∑
µ

Eµ(R(t2))bαµ〈∇Φµ(R(t2))|Φβ(R0)〉. (A3)

Furthermore, with Vµν(R(t2)) = Eµ(R(t2))δµν , we realize that
Eq. (A3) is nothing more than directly applying∇on the energy
expression Vαβ(R(t2)) in Eq. (9), resulting in three terms based
on the chain rule. The first line of Eq. (A3) is the result of the

nuclear dependence on the adiabatic energy, and the last two
lines of Eq. (A3) are the results of the nuclear dependence
on adiabatic orbitals (adiabatic states), weighted by the corre-
sponding adiabatic energies. We emphasize that Eqn. (11) is an
equivalent but more compact expression compared to Eq. (A3),
which naturally indeed includes derivatives with respect to all
possible sources of the nuclear dependence.

APPENDIX B: SOLVENT PARAMETERS FOR MODEL I

We provide the details of the parameters used in Model I.
The force constant for the collective solvent DOF (so-called
the “inverse Pekar factor”) is f 0 = 4πε0ε∞/(ε0 −ε∞), where ε0

and ε∞ are the inertial and optical dielectric constants charac-
terizing the polarizability of the solvent. Here, we chose these
parameters that correspond to water as the solvent.15

Furthermore, τL = ε∞(τ0 + τD)/ε0 is the longitudinal
relaxation time accounting for the long-time solvent response
function, where τD is the Debye relaxation time and τ0 is the
characteristic rotational time of the solvent molecules. All of



244102-12 Mandal, Shakib, and Huo J. Chem. Phys. 148, 244102 (2018)

TABLE I. Parameters used in Langevine dynamics.

Parameter Water at 298 K

ε0 79.2
ε∞ 4.2
f 0 55.7
τ0 (ps) 0.0103
τD (ps) 8.72
Ms (ps2) 0.265
λ (eV) 0.65

the parameters used in this paper are tabulated in Table I and
a full description of them could be found in Ref. 15.

APPENDIX C: HAMILTONIAN FOR MODEL II

Here we provide the details for the PI-PCET model that
does not contain the collective solvent coordinate,82,83 which is
referred to as Model II in this paper. This Hamiltonian is used
to explore the accuracy of various recently developed non-
adiabatic approaches as well as the role of proton quantization
for PI-PCET reactions in this study. Note that only the results
presented in Fig. 2 are obtained with this model system.

The total Hamiltonian is defined in Eq. (13). The electron-
proton Hamiltonian Ĥep is expressed as following:

Ĥep = T̂p +

[
UD(rp) VDA

VDA UA(rp)

]
. (C1)

Here rp is the proton coordinate, UD(rp) and UA(rp) are the
proton potentials associated with electronic donor and accep-
tor states that have exactly the same expression as Model I [see
Eq. (15)], with rD

p = 0 and rA
p = −0.5 Å. Prior to photoexci-

tation, protons are on the vibrational ground state of the elec-
tronic ground state S0, with the potential U0 = 1

2 mpω
2
p(rp−r0

p )2

where r0
p = −0.15 Å. The rest of parameters in the above

Hamiltonian have the same values as used in Model IA, with
∆ = 0 eV, VDA = 0.03 eV, ωp = 3000 cm−1, and mp = 1.0073
amu.

The bath Hamiltonian which describes the interaction
between the electron-proton system and a condensed-phase
solvent environment is modeled by coupling of the donor elec-
tronic state to a dissipative harmonic bath with the following
expression:

Hsb =

K∑
k=1



P2
k

2Mk
+

1
2

Mkω
2
k

*
,
Rk −

ck

Mkω
2
k

|D〉〈D|+
-

2
, (C2)

where Rk and Pk represent the kth bath coordinate and momen-
tum, with Mk and ωk as the corresponding mass and fre-
quency. The bath is characterized by an Ohmic spectral density
J(ω) = 1

2πξωe−ω/ωc , where ξ is the unit-less Kondo param-
eter and ωc is the cut-off frequency. Here, we use ξ = 24 and
ωc = 600 cm−1. Discretizing this spectral density yields N har-
monic oscillators with frequenciesωk = −ωc ln

(
1−kω0

ωc

)
and

coupling constants, ck =
√
ξω0Mkωk . Here, ω0 for a total of

K bath modes is given by ω0 =
ωc
K

(
1− e−ωm/ωc

)
, and ωm was

chosen to be 3ωc.
The initial condition for the PLDM simulation are pro-

vided as follows. The initial conditions for the bath modes are

sampled from the Wigner distribution for harmonic oscillators’
thermal density as follows:

ρW
b = Π

K
k=1ωkΓke

−Γk

[ P2
k

2Mk
+ 1

2 Mkω
2
k (Rk−R0

k )2
]
, (C3)

where Γk = (2/ωk) tanh(ωk /2kBT ), andωk is sampled from the
spectral density, and R0

k = ck/(Mkω
2
k ). Furthermore, we use

the focused initial conditions92 to facilitate the convergence of
the sampling for the mapping variable.

For the el-PLDM calculation, we choose to treat protons
classically, with the corresponding initial conditions sampled
from the following function:

ρW
p = ωpΓpe−Γp

[
Tp+ 1

2 mpω
2
p (rp−r0

p )2
]
, (C4)

where Γp = (2/ωp) tanh(ωp/2kBT ), Tp is the classical kinetic
energy of the proton, rp is the proton coordinate, andωp is the
proton vibrational frequency.

The converged results for Model II with the el-PLDM
method are obtained by propagating an ensemble of 104 tra-
jectories, with a time step of dt = 0.024 fs. For the same model,
we use 2000 trajectories for vib-PLDM or QD-PLDM prop-
agation. The total number of vibrational bases {|φm

p 〉} used in
this model is 80. In the QD-PLDM propagation, we use the
first 20 low-lying time-dependent vibronic states as the QD
basis.
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