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We apply a recently developed quasi-diabatic (QD) scheme to the symmetric quasi-classical (SQC)
approach for accurate quantum dynamics propagation. By using the adiabatic states as the QD states
during a short-time quantum dynamics propagation, the QD scheme allows for directly interfacing the
diabatic SQC method with commonly used adiabatic electronic structure calculations, thus alleviating
any non-trivial theoretical efforts to reformulate SQC in the adiabatic representation. Furthermore,
the QD scheme ensures a stable propagation of the dynamics and allows using a much larger time step
compared to directly propagating SQC dynamics in the adiabatic representation. This is due to the
fact that the QD scheme does not explicitly require non-adiabatic couplings that could exhibit highly
peaked values during non-adiabatic dynamics propagation. We perform the QD-SQC calculations
with a wide range of model non-adiabatic systems to demonstrate the accuracy of the proposed
scheme. This study opens up the possibility for combining accurate diabatic quantum dynamics
methods such as SQC with any adiabatic electronic structure calculations for non-adiabatic on-the-fly
propagations. Published by AIP Publishing. https://doi.org/10.1063/1.5036787

I. INTRODUCTION

The recently developed symmetric quasi-classical (SQC)
approach1,2 has shown great promise for providing accurate
non-adiabatic dynamics.3–6 By using the window function as
the population estimator, SQC can significantly reduce the
number of trajectories required for convergence,2 while at
the same time, recovers detailed balance with a reasonable
accuracy,7,8 and provide a full description of the electronic
density matrix.5,9 New developments based on this scheme,
such as coherence-controlled SQC10,11 or extended SQC,12

have further improved the accuracy of this approach. That
being said, SQC still faces some intrinsic deficiencies, such
as the inverted potential problem that impacts its numerical
performance in recovering exact thermal equilibrium popu-
lations.8 Moreover, SQC fails to converge for describing the
vibrational relaxation dynamics when increasing the number
of vibrational states.13 Nevertheless, the quasi-classical nature
of the SQC dynamics, together with many appealing features
mentioned above, makes it a promising method to simulate
the non-adiabatic on-the-fly dynamics of complex molecular
systems,2 providing an attractive alternative that departs from
the commonly used fewest-switches surface hopping (FSSH)
approach.14

When performing on-the-fly simulations, the adiabatic
representation is convenient for electronic structure calcula-
tions. Thus, the typical strategy for applying SQC (or other
recently developed diabatic dynamics methods15–17) to “real”
molecular systems is to reformulate them in the adiabatic
representation,18 which usually requires additional non-trivial

a)Electronic mail: pengfei.huo@rochester.edu

theoretical efforts. Moreover, the adiabatic version of these
methods is computationally inconvenient due to the presence
of the first and second-order derivative couplings,18 which
could potentially lead to numerical instabilities during dynam-
ical propagations. The recently developed kinematic momen-
tum (KM)-SQC approach18 uses the kinematic momentum
instead of the canonical momentum as the dynamical variable
and explicitly eliminates the presence of the second-derivative
coupling inside the equation of motion, thus significantly
reducing the numerical cost. However this approach and other
adiabatic mapping approaches15–17 do require computing the
time-dependent non-adiabatic coupling; therefore, it might
encounter numerical instabilities when these couplings are
highly peaked.

An alternative route is to employ diabatic electronic
structure approaches19–23 or diabatization procedures24,25 to
construct globally well-defined diabatic states. Under this
representation, the derivative couplings explicitly vanish,
providing a convenient representation for developing vari-
ous dynamics approaches and propagating quantum dynam-
ics. However, these diabatic based electronic structure
approaches are not routinely available despite recent theoret-
ical progress.19,20 Furthermore, the diabatization procedures
that construct globally defined diabatic models by fitting the
adiabatic surfaces might introduce an additional error. At this
point, it almost seems that (1) if we want to use the diabatic-
based dynamics approach, we need to construct globally well-
defined diabatic states for the system and (2) if we want to use
adiabatic energies and gradients to perform on-the-fly simula-
tion, we have to use dynamics approaches that are explicitly
formulated in the adiabatic representation.15–18

However, we realize26 that in order to use diabatic
approaches for quantum dynamics propagation, we do not
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actually need a globally well-defined diabatic surface; rather,
we only need a set of locally defined diabatic states. To this
end, we have developed the quasi-diabatic (QD) propagation
scheme26 which uses the adiabatic states as the quasi-diabatic
states (local diabatic states) during a short-time propagation
and dynamically updated the QD states between two con-
secutive short-time propagations. This propagation scheme
explicitly addresses the discrepancy between accurate dia-
batic quantum dynamics approaches and routinely available
adiabatic electronic structure methods, allowing a seamless
interface between them without any additional non-trivial
efforts.

In this work, we apply the QD propagation scheme26 with
the diabatic SQC approach for non-adiabatic dynamics simu-
lations. We refer to this approach as QD-SQC throughout this
work. By using the QD scheme, we avoid any additional non-
trivial effort to reformulate the diabatic SQC approach back
into the adiabatic representation. Furthermore, by avoiding the
explicit presence of non-adiabatic couplings, the QD scheme
provides a more robust approach for dynamical propagation
compared to the other adiabatic schemes. We demonstrate the
accuracy and the stability of QD-SQC dynamics with a vari-
ety of non-adiabatic models. For model calculations with the
strict diabatic models, QD-SQC provides exactly the same
results as obtained from the diabatic SQC and provides a
robust propagation regardless of the presence of highly peaked
or diverging non-adiabatic couplings. We further demonstrate
the applicability and accuracy of QD-SQC by using adia-
batic vibronic states of a coupled proton-electron model as
the QD states,27,28 where obvious low-dimensional diabatic
vibronic states are not readily available, without non-trivial
diabatization schemes. This study opens up the possibility for
using QD-SQC to perform accurate on-the-fly non-adiabatic
quantum dynamics for realistic and complex molecular
systems.

II. THEORY AND METHOD
A. MMST mapping Hamiltonian

We begin with a brief outline of the Meyer-Miller-Stock-
Thoss (MMST) mapping Hamiltonian,29–31 which is one
of the basic ingredients for many non-adiabatic dynamics
approaches. The total Hamiltonian for a given molecular sys-
tem can be expressed as a sum of the nuclear kinetic energy
operator T̂ and the electronic Hamiltonian operator V̂

(
r̂, R̂

)
as follows:

Ĥ = T̂ + V̂
(
r̂, R̂

)
. (1)

Here, r̂ represents the coordinate operator of the electronic
degrees of freedom (DOF) and R̂ represents the coordinate
operator of the nuclear DOF.

We start by expressing the total Hamiltonian in Eq. (1)
with the strict diabatic basis {|i〉, |j〉}, i.e., a set of basis
that does not explicitly depend on nuclear positions. With
the diabatic basis, the total Hamiltonian is expressed as
follows:

Ĥ = T̂ +
∑

ij

Vij(R̂)|i〉〈j |, (2)

where Vij(R̂) = 〈i|V̂ (r̂, R̂)|j〉 is the state-dependent poten-
tial. By using the mapping representation of Meyer-Miller-
Stock-Thoss29–31 to transform the discrete electronic states
into continuous variables, we have

|i〉〈j | → â†i âj, (3)

where â†i = (q̂i−ip̂i)/
√

2 and âj = (q̂j +ip̂j)/
√

2. With this trans-
formation, the original diabatic Hamiltonian is transformed
into the following MMST mapping Hamiltonian:

Ĥm = T̂ +
1
2

∑
ij

Vij(R̂)
(
p̂ip̂j + q̂iq̂j − 2γδij

)
, (4)

where γ = 0.5 is the zero-point energy (ZPE) for the map-
ping harmonic oscillators (historically, it is recognized as
the Langer correction by Meyer and Miller29 for the quasi-
classical description). Up to here, there is no approximation.

Instead of solving the equation of motion quantum
mechanically, SQC assumes that the coupled electronic-
nuclear dynamics are governed by the following
Hamiltonian:2

Hm =
P2

2M
+

1
2

∑
ij

Vij(R)
(
pipj + qiqj − 2γδij

)
. (5)

Classical trajectories are generated based on the following
Hamilton’s equations of motion:

q̇i = ∂Hm/∂pi; ṗi = −∂Hm/∂qi,

Ṙ = ∂Hm/∂P; Ṗ = −∂Hm/∂R = F,
(6)

with the nuclear force expressed as

F = −
1
2

∑
ij

∇Vij(R)
(
pipj + qiqj − 2γδij

)
. (7)

Thus, MMST mapping Hamiltonian provides a consistent
classical footing for both electronic and nuclear DOFs.
The non-adiabatic transitions among electronic states are
mapped onto the classical motion of fictitious harmonic
oscillators.

B. Symmetric window function estimator

The equation of motion generated from Hm [Eq. (6)] is
equivalent to the Ehrenfest dynamics.15 However, by using
a window function1 to restrain the initial mapping condi-
tions and estimate the time-dependent population, the SQC
approach can significantly improve the numerical perfor-
mance of non-adiabatic dynamics calculations, even with an
Ehrenfest type equation of motion.

The SQC window function is formulated with the action-
angle variables, {ni, θi}, which are related to the canonical
mapping variables through the following relations:

ni =
1
2

(
p2

i + q2
i − 2γ

)
, θi = − tan−1

(
pi

qi

)
(8)

and the inverse relations

qi =
√

2(ni + γ) cos(θi), pi = −
√

2(ni + γ) sin(θi). (9)
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The SQC approach can be viewed as the classical Wigner
model of the action-angle mapping variables2,9 for computing
population dynamics with the following expression:

ρjj(t) = TrR

[
ρ̂R |i〉〈i|e

iĤt/~ |j〉〈j |e−iĤt/~
]
,

≈
1

(2π~)N+M

∫
dτWR(P, R)Wi(n(0))Wj(n(t)). (10)

Here, ρ̂(0) = |i〉〈i| ⊗ ρ̂R is the initial density operator,
WR(P, R) is the Wigner density of ρ̂R that contains M
total nuclear DOF, n = {n1, n2, . . ., nN} is the action vari-
able vector for N electronic states, with the correspond-
ing angle variable vector θ = {θ1, θ2, . . ., θN}, and dτ
≡ dPdRdndθ. Furthermore, W i(n) is the Wigner transformed
action variables9

Wi(n) = δ(ni − 1)
∏
i,j

δ(nj). (11)

The above results can be viewed as the Bohr-Sommerfeld
quantization rule.9

In the SQC approach where the classical dynamics are
used to solve Eqs. (6) and (7), the delta functions are better
to be broadened by “pre-limit” delta functions, i.e., the win-
dow functions that center at the integer values of the initial
and final action variables, in order to facilitate the numerical
convergence.2 Furthermore, in the SQC approach, γ in Eq. (5)
is viewed as a parameter1,32 instead of the ZPE of the mapping
oscillator (with a value of 0.5).

Because these window functions are viewed as a pre-limit
delta function, i.e., an approximation of Eq. (11), they do not
have a unique form5 and thus allowing the engineering aspect
of the SQC approach. One can choose the following square
window function:1

Wi(n) = w1(ni)
∏
j,i

w0(nj), (12)

where wn is the square window function expressed as follows:

wn(nj) =
1

2γ
h
(
γ − |nj − n|

)
. (13)

Here, h(z) is the Heaviside function and n (either 0 or 1) is the
electronic quantum number.

Figure 1(a) depicts the above window function for a sys-
tem with two electronic states, with the width γ = 1

2 (
√

3 − 1)

FIG. 1. Two possible choices for the window function in the action space: (a)
square histogram windows with γ = 1

2 (
√

3 − 1) ≈ 0.366 and (b) triangle his-

togram windows with γ = 1
3 . Here, the blue windows are used to estimate the

population of state 1, and the red windows are used to estimate the population
of state 2.

≈ 0.366 suggested by Cotton and Miller.1 Numerical results
obtained from this window function have shown excellent
agreement with the exact quantum dynamics for various model
non-adiabatic systems.2,4

Figure 1(b) illustrates a recently proposed triangle win-
dow function.5 For two-level systems, this triangle win-
dowing function can be described with the following
expression:

W1(n) = 2h(n1 + γ − 1)h(n2 + γ)h(2 − 2γ − n1 − n2),

W2(n) = 2h(n1 + γ)h(n2 + γ − 1)h(2 − 2γ − n1 − n2),
(14)

with the width γ = 1
3 . This window function has shown a

consistently better performance for two-level systems2,5 com-
pared to the square window function, as well as a more accurate
description for the non-adiabatic transition rate over a broad
range of electronic couplings.5

The time-dependent population at time t is then calculated
by applying the window function estimator to action variables
{nj(t)} for an ensemble of trajectories. Starting from the initial
diabatic state |i〉, the time-dependent population of the states
|j〉 is computed with Eq. (10). However, by using the window
function estimator, the total population is no longer properly
normalized due to the fraction of trajectories that move out of
any given window.1 Thus, the population has to be normalized1

with the following procedure:

ρjj(t)/
N∑

k=1

ρkk(t)→ ρjj(t). (15)

It should be noted that SQC is different compared to “Ehrenfest
dynamics,” despite that they use the same equation of motion
for the coupled electronic-nuclear DOFs.2,8 The boundary con-
ditions enforced by the window functions in SQC help to elim-
inate several well-known deficiencies in Ehrenfest dynamics,
such as the breakdown of detailed balance.7,8,33

Despite its simplicity, SQC has shown accurate descrip-
tion for non-adiabatic dynamics in a broad range of model sys-
tems.3–6 It can also recover detailed balance with reasonable
accuracy7,8 and reach convergence with just a few thousand
of trajectories.1,2,4 It thus shows great promise to accurately
and efficiently perform ab initio on-the-fly simulations for
molecular systems.

C. Quasi-Diabatic (QD) propagation scheme

For real molecular systems, strict diabatic states {|i〉, |j〉}
are neither uniquely defined nor routinely available, despite
recent theoretical progress.19–23 Rather, it is convenient to
solve the electronic structure problem under the adiabatic
representation with the following eigenequation:

V̂ (r̂, R)|Φα(R)〉 = Eα(R)|Φα(R)〉. (16)

Here, V̂ (r̂; R) is the electronic Hamiltonian operator defined
in Eq. (1) at a given nuclear configuration R and |Φα(R)〉 is
the adiabatic state, i.e., the eigenstate of V̂ (r̂; R), with the
corresponding eigenvalue Eα(R). Most of the commonly used
electronic structure methods are based on solving the above
equation, providing eigenenergies and eigenfunctions under
this representation.
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The total Hamiltonian equation (1), on the other hand,
has a rather complicated expression (see Appendix A) under
the adiabatic representation. This is due to the fact that adi-
abatic states are not the eigenfunctions of the nuclear kinetic
energy operator T̂ . It is more convenient to develop new quan-
tum dynamics methods in the strict diabatic representation
(such as the diabatic SQC introduced in Secs. II A and II B).
Thus, the typical strategy for applying new quantum dynamics
approaches (like SQC) to “real” molecular systems is to refor-
mulate them in the adiabatic representation.18 However, this
reformulating process usually requires additional non-trivial
theoretical efforts,15–18 and the resulting adiabatic version
of these methods is computationally inconvenient due to the
presence of the first and second-order derivative couplings,18

which could lead to numerical instabilities during dynamical
propagations.

To address this discrepancy between accurate quan-
tum dynamics methods in the diabatic representation and
the electronic structure methods in the adiabatic representa-
tion, we have developed the quasi-diabatic (QD) propagation
scheme.26 Here, we briefly summarize it by considering a
short-time propagation of the nuclear DOF during t ∈ [t1,
t2], where the nuclear positions evolve from R(t1) to R(t2),
and the corresponding adiabatic states are {|Φα(R(t1))〉} and
{|Φµ(R(t2))〉}, respectively.

The essential idea of the QD scheme is to use the nuclear
geometry at time t1 as the reference geometry, R0 ≡R(t1), and
use the adiabatic basis {|Φα(R(t1))〉} as the quasi-diabatic
basis during this short-time quantum dynamics propagation
such that

|Φα(R0)〉 ≡ |Φα(R(t1))〉, for t ∈ [t1, t2]. (17)

With the above QD basis (often called the “crude adiabatic
basis”), the derivative couplings vanish in a trivial way, and
V̂ (r̂; R) has off-diagonal elements. Because the electronic
wavefunction changes rapidly with the motion of the nuclei,
the QD basis is only convenient when the nuclear geometry R
is close to the reference geometry R0. Thus, during the next
short-time propagation segment t ∈ [t2, t3], we choose to use a
new reference geometry R′0 ≡ R(t2) and quasi-diabatic basis
|Φ′µ(R′0)〉 ≡ |Φµ(R(t2))〉.

We emphasize that there is always a non-removable
part of the derivative coupling over the entire configura-
tional space for polyatomic systems.34 This is a well-known
result in the literature.19,20 Here, the QD scheme circum-
vents this challenge by only requiring a set of locally defined
diabatic states such that the derivative couplings vanish
within the configurational subspace during a given short-time
propagation.

Compared to the adiabatic representation, the advantage
of the QD basis is that all of the derivative couplings vanish. As
a consequence, the total Hamiltonian operator and the corre-
sponding quantum dynamics propagation adapt a simpler form
in the QD representation. With the nuclear geometry close to
the reference geometry in each step, the QD states remain to be
a convenient and compact basis in each short-term propagation
segment. In addition, because of the diabatic nature of the QD
basis, one can use any diabatic based approach to propagate the
quantum dynamics. These approaches usually require diabatic

energies, electronic couplings, and nuclear gradients. Between
[t1, t2] propagation and [t2, t3] propagation segments, all of
these quantities will be transformed from {|Φα(R0)〉} basis to
{��Φ′µ(R′0)

〉
} basis.

With the above idea in mind, it is straightforward to obtain
electronic couplings and nuclear gradients in the QD basis.
During the t ∈ [t1, t2] short-time propagation, the electronic
Hamiltonian operator V̂ (r̂; R(t)) is evaluated under the QD
states as

Vαβ(R(t)) = 〈Φα(R0)|V̂ (r̂; R(t))|Φβ(R0)〉. (18)

In practical on-the-fly calculations, the above quantity can be
obtained from a linear interpolation between Vαβ(R(t1)) and
Vαβ(R(t2)) as follows:35

Vαβ(R(t)) = Vαβ(R(t1)) +
(t − t1)
(t2 − t1)

×

[
Vαβ(R(t2)) − Vαβ(R(t1))

]
. (19)

Here, the matrix elements Vαβ(R(t1)) = 〈Φα(R0)|V̂ (r̂; R(t1))|
Φβ(R0)〉 = Eα(R(t1))δαβ and the matrix elements Vαβ(R(t2))
can be easily computed as follows:

Vαβ(R(t2)) =
∑
µν

bαµ〈Φµ(R(t2))|V̂ (r̂; R(t2))|Φν(R(t2))〉b†βν ,

(20)

where 〈Φµ(R(t2))|V̂ (r̂; R(t2))|Φν(R(t2))〉 = Eµ(R(t2))δµν ,
bαµ = 〈Φα(R0)��Φµ(R(t2))〉, and b†βν = 〈Φν(R(t2))��Φβ(R0)〉.

Similarly, the nuclear gradients on electronic Hamilto-
nian matrix elements ∇Vαβ(R(t2)) ≡ ∂Vαβ(R(t2))/∂R are
evaluated as

∇Vαβ(R(t2))

= ∇〈Φα(R0)|V̂ (r̂; R(t2))|Φβ(R0)〉

= 〈Φα(R0)|∇V̂ (r̂; R(t2))|Φβ(R0)〉

=
∑
µν

bαµ〈Φµ(R(t2))|∇V̂ (r̂; R(t2))|Φν(R(t2))〉b†βν . (21)

Here, we have used the fact that {|Φα(R0)〉} is a diabatic basis
during the [t1, t2] propagation, which allows moving the gra-
dient operator to bypass 〈Φα(R0)|. Moreover, we have inserted
the resolution of identity

∑
µ |Φµ(R(t2))〉〈Φµ(R(t2))| = 1,

where we explicitly assume that the QD basis at nuclear
position R(t2) is complete. We emphasize that Eq. (21)
includes derivatives with respect to all possible sources of
the nuclear dependence, including those from the adiabatic
potentials as well as the adiabatic orbitals. This can be sim-
ply verified by using the basic property of the adiabatic
states 〈Φµ(R(t2))|∇V̂ (r̂; R(t2))|Φν(R(t2))〉 = ∇Vµν(R(t2))
+ Eν(R(t2))〈Φµ(R(t2))��∇Φν(R(t2))〉 + Eµ(R(t2))〈∇Φµ(R(t2))��
Φν(R(t2))〉, where Vµν(R(t2)) = 〈Φµ(R(t2))|V̂ (r̂; R(t2))|
Φν(R(t2))〉. Plugging the above equality into the last
line of Eq. (21) and noticing the resolution of identity∑
µ |Φµ(R(t2))〉〈Φµ(R(t2))| = 1, we can easily verify that the

nuclear gradient in Eq. (21) is equivalent to the following
expression:
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µν

bαµ〈Φµ(R(t2))|∇V̂ (r̂; R(t2))|Φν(R(t2))〉b†βν

=
∑
µν

bαµ∇Vµν(R(t2))b†βν

+
∑
ν

Eν(R(t2))〈Φα(R0)��∇Φν(R(t2))〉b†βν

+
∑
µ

Eµ(R(t2))bαµ〈∇Φµ(R(t2))��Φβ(R0)〉. (22)

With Vµν(R(t2)) = Eµ(R(t2))δµν , we realize that Eq. (22) is
nothing more than directly applying ∇ on the energy expres-
sion Vαβ(R(t2)) in Eq. (20), resulting in three terms based on
the chain rule. The first term on the right-hand side of Eq. (22)
is the result of the nuclear dependence on the adiabatic energy,
and the last two terms on the right-hand side of Eq. (22) are
the results of the nuclear dependence on adiabatic orbitals
(adiabatic states), weighted by the corresponding adiabatic
energies. We emphasize that Eq. (21) is an equivalent but more
compact expression compared to Eq. (22), which naturally
indeed includes derivatives with respect to all possible sources
of the nuclear dependence. Furthermore, we emphasize that
in the QD propagation scheme, the derivative couplings
dµν(R) = 〈Φµ(R)��∇Φν(R)〉 are not explicitly required. That
being said, we do not omit the derivative coupling; the gradi-
ent 〈Φµ(R(t2))|∇V̂ (r̂; R(t2))|Φν(R(t2))〉used in the QD scheme
[Eq. (21)] is reminiscent of the derivative coupling. One
should note that dµν(R) = 〈Φµ(R)|∇V̂ (r̂; R)|Φν(R)〉/[Eν(R)
− Eµ(R)] can become singular due to the degeneracy
of eigenvalues, i.e., Eν(R) − Eµ(R) = 0, even when
〈Φµ(R)|∇V̂ (r̂; R)|Φν(R)〉 is finite. Thus, the method that
directly requires derivative couplings might suffer from
numerical instabilities, whereas the method that only requires
the gradient (such as the QD scheme) will likely not.

Figure 2 presents a simple two-level model system in
panel (a) and its time-dependent electronic potential in the (b)
diabatic, (c) adiabatic, and (d) quasi-diabatic representations.
In Fig. 2(a), the motion of the nuclear trajectory (indicated by

FIG. 2. (a) Diabatic potentials and the corresponding time-dependent poten-
tials and couplings for a one-dimensional model system in (b) diabatic repre-
sentation, (c) adiabatic representation, and (d) quasi-diabatic representation.

the gray double-sided arrow) is confined on the diabatic state 1
(red surface). The diabatic potential energy surfaces V11(R(t))
and V22(R(t)) presented in panel (b) evolve smoothly in time,
and the diabatic electronic coupling V12 is a small constant in
this model. In panel (c), under the adiabatic representation, the
derivative coupling vector d12(R) = 〈Φ1(R)��∇Φ2(R)〉 starts to
exhibit large peaks at the avoided crossing regions, where the
adiabatic wavefunctions rapidly change their characters. These
rapid changes of derivative couplings usually cause numerical
challenges and require a very small time step for a stable quan-
tum dynamics propagation. The QD representation presented
in panel (d), on the other hand, vanishes the derivative cou-
plings; the non-adiabatic transitions are induced by the overlap
between two consecutive QD bases 〈Φ1(R(t2))��Φ2(R(t1))〉. The
off-diagonal electronic coupling V12(R(t)) under QD has small
values due to the varying QD basis along the propagation
[see Eq. (19)] and will decrease to zero under the limit that
(t2 − t1)→ 0.

Thus, the QD representation provides several unique
advantages over the strict diabatic or adiabatic represen-
tation for quantum dynamics propagations. On one hand,
the QD basis is constructed from the crude adiabatic basis,
which can be easily obtained from any commonly used elec-
tronic structure calculations. On the other hand, the diabatic
nature of the QD basis makes derivative couplings explicitly
vanish and allows using any diabatic dynamics approaches to
perform on-the-fly propagation. Furthermore, the QD scheme
ensures a stable propagation of the quantum dynamics com-
pared to directly solving it in the adiabatic representation.
This is due to the fact that directly solving electronic dynam-
ics in the adiabatic state require the non-adiabatic coupling
〈Φβ(R(t))| ∂∂tΦα(R(t))〉 = dβα(R)Ṙ, which might exhibit
highly peaked values and cause large numerical errors36,37

when using the linear interpolation scheme.38 The QD scheme
explicitly alleviates this difficulty by using the well-behaved
transformation matrix elements 〈Φβ(R(t1))��Φα(R(t2))〉 instead
of 〈Φβ(R(t))�� ∂∂tΦα(R(t))〉.

Furthermore, we note that the QD scheme was histor-
ically introduced for propagating the electronic amplitudes
in surface hopping calculations.35,39–41 It has also been used
in scattering probability calculations42 and recently in Gaus-
sian wavepacket dynamics approaches43–47 and is referred
as the moving crude adiabatic scheme.47 Here, we signifi-
cantly expand the scope of this scheme26 by using it as a
general framework to interface any diabatic trajectory-based
dynamics methods with any adiabatic electronic structure
calculations.

Finally, we note that in a real molecular system, the QD
state at the nuclear position R(t2) may no longer be a complete
basis set. As a consequence, the total population will decay
from unity during the dynamical propagation after apply-
ing many of the basis transformations. This problem, how-
ever, can be easily addressed by performing the orthonormal-
ization procedure26 among vectors {〈Φ(R(t1))��Φµ(R(t2))〉}.
The details of this procedure, as well as one specific exam-
ple can be found in a charge transfer QD dynamics sim-
ulation in our original QD work.26 This procedure has
not been applied to any of the model calculations in this
paper.
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D. Algorithm for QD-SQC propagation

Combining the diabatic SQC approach and the QD prop-
agation scheme described above, we formulate the following
algorithm for the QD-SQC quantum dynamics propagation:

1. sample the initial conditions of the nuclear DOF
R(t1) and P(t1 + ∆t

2 ) based on the Wigner distribution
WR(R, P); uniformly sample the mapping action based
on the window function W j(n) and the mapping angle
variables θj ∈ [0, 2π] for all electronic states |j〉;

2. perform electronic structure calculations at t1 to obtain
the QD basis |Φα(R0)〉 ≡ |Φα(R(t1))〉;

3. propagate nuclear positions as R(t2) = R(t1) +
P(t1 + ∆t

2 )∆t/M; perform electronic structure calcula-
tions at R(t2) to obtain the adiabatic basis {|Φµ(R(t2))〉};

4. compute the electronic Hamiltonian elements Vαβ(R(t))
based on Eq. (19) for t ∈ [t1, t2], as well as the nuclear
gradients ∇Vαβ(R(t2)) based on Eq. (21);

5. propagate the canonical mapping variables {q, p} by
solving Eq. (6) with the electronic elements Vαβ(R(t))
computed from step 4; propagate the nuclear momenta as
P
(
t2 + ∆t

2

)
= P(t1 + ∆t

2 ) + F(R(t2))∆t/M, with the force
computed at nuclear position R(t2) based on Eq. (7);

6. transform the canonical mapping variables from the
instantaneous QD basis {qα, pα} back to the strict dia-
batic basis {qi, pi}, with qi =

∑
α〈Φα(R0)��i〉qα and

pi =
∑
α〈Φα(R0)��i〉pα; compute the action variables

based on ni =
1
2

(
p2

i + q2
i − 2γ

)
; evaluate the strict dia-

batic populations with the window function estimator in
Eq. (12) or Eq. (14), and renormalize population based
on Eq. (15);

7. transform the mapping variables into the new QD
basis |Φ′µ(R′0)〉 ≡ |Φµ(R(t2))〉 for the [t2, t3]
propagation step, with the following expressions:∑
α qα〈Φα(R(t1))��Φµ(R(t2))〉 → qµ and

∑
α pα

〈Φα(R(t1))��Φµ(R(t2))〉 → pµ; and
8. repeat steps 3–7.

Here, we want to comment on three technical details for
the QD propagation scheme. First, we have transformed the
mapping variables between two bases in step 6 and 7. This
process is valid because the relation between two QD bases in
step 7 is |Φµ(R(t2))〉 =

∑
α〈Φα(R(t1))��Φµ(R(t2))〉|Φα(R(t1))〉.

Since the mapping relation between the physical state and
the singly excited oscillator state is |Φµ(R(t2))〉 = a†µ |0〉
= 1√

2
(q̂µ + ip̂µ)|0〉, the relations for the mapping

variables associated with two bases are |Φµ(R(t2))〉
= 1√

2
(q̂µ+ip̂µ)|0〉 =

∑
α〈Φα(R(t1))��Φµ(R(t2))〉 1√

2
(q̂α+ip̂α)|0〉.

For molecular systems, one can always find a suitable choice
for the basis set in order to make 〈Φα(R(t1))|Φµ(R(t2))〉 real,
which guarantees that the mapping variables are transformed
with the same relations as the bases. Similarly, in step 6,
we transform the time-dependent mapping variables from the
instantaneous QD basis, {qα, pα}, to the strict diabatic basis,
{qi, pi}. Note that the relation between the strict diabatic {|i〉}
and QD {|Φα(r; R0)〉} states is |i〉 =

∑
α |Φα(R0)〉〈Φα(R0)��i〉,

which leads to the following transformations for mapping

variables associated with two bases:

qi =
∑
α

〈Φα(R0)��i〉qα, pi =
∑
α

〈Φα(R0)��i〉pα. (23)

Second, the nuclear force evaluated in the QD basis in step
5 has the same form of the nuclear force in the strict diabatic
basis {|i〉, |j〉}. This is valid based on the following analysis.
Consider expanding the strict diabatic basis as the linear com-
bination of the QD basis, with |i〉 =

∑
α |Φα(R0)〉〈Φα(R0)��i〉

=
∑
α Ciα |Φα(R0)〉. This implies that qi =

∑
αCiαqα and

pi =
∑
αCiαpα. Plugging in these two expressions into the

nuclear force F = − 1
2

∑
ij
∇Vij(R)[pipj + qiqj − 2γδij] in the

diabatic representation and noticing the fact that δij = 〈i��j〉
as well as explicitly using the transformation relation among
states, we obtain the nuclear forces in the QD representation as
follows:

F = −
1
2

∑
ijαβ

Ciα∇Vij(R)Cjβ

× [pαpβ + qαqβ − 2γ〈Φα(R0)��Φβ(R0)〉]

= −
1
2

∑
αβ

∇Vαβ(R)
[
pαpβ + qαqβ − 2γδαβ

]
,

which indeed has the nuclear force expression in the dia-
batic representation, as described in Eq. (7). Note that in
the above equation, we use the fact that

∑
ij Ciα∇Vij(R)Cjβ

=
∑

ij Ciα〈i|∇V̂ (R)|j〉Cjβ = 〈Φα(R0)|∇V̂ (R)|Φβ(R0)〉.
Third, in step 6, we evaluate the population with the win-

dow function defined in the strict diabatic basis {|i〉, |j〉},
despite that the mapping trajectories are propagated in the
quasi-diabatic basis (in QD-SQC). For strict diabatic model
systems, we use the above procedure to demonstrate that when
the populations are evaluated with the same diabatic window
functions, the results obtained from QD-SQC propagations
are exactly the same as those obtained from the diabatic SQC
propagations. In real molecular systems, however, the strict
diabatic states are not easily obtained. Thus, one might have
to compute the population with the window function defined
in the QD states, which are those instantaneous adiabatic
states used to define the QD states. In this paper, we test
the performance of QD-SQC in this scenario with a photoin-
duced proton-coupled electron transfer (PI-PCET) model sys-
tem,27,28 where the proton-electron adiabatic vibronic states
are used as the QD states, and there is no obvious exact low-
dimensional diabatic vibronic state without further applying
diabatization procedures.24,25 For this particular application,
we use the window function defined in the QD basis (or equiv-
alently in the instantaneous adiabatic states). Thus, the shape
of the window function will change along the nuclear trajec-
tory R(t), instead of a fixed shape when it is defined in the
strict diabatic states (Fig. 1). We will fully explore the con-
sequence of using such adiabatic window functions in future
investigations.

Finally, we would like to emphasize that the accu-
racy of QD-SQC will be limited by the accuracy of SQC
itself, i.e., the validity of using a window function as
an approximate pre-limit delta function, as well as the
Ehrenfest-type mean-field dynamics. The QD propagation
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scheme is rather general and provides a convenient frame-
work that allows interfacing diabatic dynamics approaches
with adiabatic electronic structure calculations for on-the-fly
propagation.26

III. DETAILS OF MODEL CALCULATIONS
A. Diabatic models

Here, we provide details of the calculations with the strict
diabatic model systems. These models are carefully chosen to
include a wide range of scenarios in non-adiabatic dynamics,
such as weak/strong avoid crossings, conical intersection, and
many-state system, in order to fully assess the performance of
the QD scheme. In this section, we provide details of the spin-
boson model (Figs. 3 and 9) and an excitation energy transfer
(EET) model48 (Fig. 7). The conical intersection model32,49

(Fig. 6) is discussed in Sec. IV, and the details for Tully’s
avoid crossing model systems can be directly found in the
literature.14

1. Model Hamiltonians

The spin-boson model has the Hamiltonian Ĥ =∑
k[P̂2

k/2 +ω2
k R̂2

k/2 + ckR̂kσ̂z] + εσ̂z/2 + ∆σ̂x, with electronic
bias ε , electronic coupling ∆, and the system-bath coupling

ck for a given spectral density J(ω) = π
2

∑
k

c2
k
ωk
δ(ω − ωk).

Here, we use 100 discretized harmonic modes to sample50 the
spectral density J(ω) = π

2 ξωe−ω/ωc , where ξ is the Kondo
parameter andωc is the cut-off frequency (peak of the spectral
density). For the model calculations in this paper, we use∆ = 1
and ωc = 2.5 [Figs. 9(a)–9(c)] or ωc = 1 [Fig. 9(d)]. The ini-
tial Wigner distribution for the bath modes is centered around
Rk(0) = −ck/ω

2
k and Pk(0) = 0.

For simulating singlet excitation energy transfer in a dis-
sipative environment, we use the following Frenkel exciton
model: Ĥ = Ĥex + Ĥsb. The exciton part of the Hamilto-
nian is Ĥex =

∑
iε i |i〉〈i| +

∑
i,j∆ij |i〉〈j|, with singlet excita-

tion energy ε i on chromophore i and the electronic coupling
∆ij between two single excitations |i〉 and |j〉. The system-
bath Hamiltonian that describes the exciton-phonon interac-
tions is Ĥsb =

∑
i
∑

ki
[ 1

2 (P̂2
ki

+ ω2
ki

R̂2
ki

) + cki R̂ki |i〉〈i|], where
each state |i〉 is coupled to a set of independent harmonic
bath modes {Rki }. Here, we use the model parameters of the
Fenna-Matthews-Olson (FMO) complex that contains seven
chromophores.48 In addition, we use 60 modes to sample
the spectral density J(ω) = 2λωτ/(1 + (ωτ)2) for each bath,
where the reorganization energy is λ = 35 cm−1 and the
solvent response time is τ = 50 fs. The parameters for Ĥex

can be found in Ref. 48, and the sampling procedure for the
spectral density can be found in Ref. 4. The initial Wigner
distribution for each bath mode is centered around R(0) = 0
and P(0) = 0.

2. Electronic matrix elements for the QD propagation

For these diabatic model systems, the matrix elements
of the electronic Hamiltonian V ij(R(t)) and the nuclear gra-
dients in the diabatic representation ∇V ij(R(t)) are avail-
able and directly used in SQC propagations. For QD-SQC
propagations, the adiabatic basis {|Φα(R(t))〉} is obtained
by the diagonalizing V ij(R(t)) matrix, which is used as the

QD basis. The matrix elements of the electronic Hamilto-
nian and nuclear gradients are evaluated using Eqs. (18)–(21),
respectively. Alternatively, these elements can be easily com-
puted by taking advantage of the available diabatic basis
in all of our model calculations, for example, as Vαβ(R(t))
=

∑
ij〈Φα(R0)��i〉Vij(R(t))〈j��Φβ(R0)〉. Both protocols generate

the same results.

3. Initial conditions

The initial conditions for all of the model calculations
are ρ̂(0) = |i〉〈i| ⊗ ρ̂R, where |i〉 indicates the initial elec-
tronic diabatic state and ρ̂R represents the initial nuclear
density operator. For non-adiabatic scattering and photo-
dissociation calculations presented in Figs. 5 and 6, we use

ρ̂R = | χ〉〈χ |, where 〈R��χ〉 =
(

2Γ
π

)1/4
e−(Γ/2)(R−R0)2+ i

~P0(R−R0)

represents a Gaussian wavepacket centered around R0 and
P0 with a width Γ. The corresponding nuclear Wigner den-
sity is WR(P, R) = 1

π e−Γ(R−R0)2−(P−P0)2/Γ. For the condensed-
phase model calculations presented in Figs. 7–9, we assume
that each nuclear DOF is represented by a harmonic
mode. The canonical thermal density for the kth nuclear

DOF Rk is thus ρ̂R(P̂k , R̂k) = 1
Ze−

1
kBT [P̂2

k/2M+ 1
2 Mω2

k R̂2
k)]. The

corresponding nuclear Wigner density is then WR(Pk , Rk)

= 2 tanh( ωk
2kBT )e− tanh(

ωk
2kBT )[mωk (Rk−Rk (0))2+Pk (0)2/(mωk )].

4. Window functions and convergence

In this paper, all of the calculations for two level
systems are performed with the triangle window function
[Eq. (14)], which has been shown to provide the accurate
electronic dynamics across a broad range of the electronic
couplings.5 The only results obtained with the square win-
dow function are the seven-states excitation energy trans-
fer calculations48 presented in Fig. 7 and the adiabatic
vibronic dynamics of the model PI-PCET system presented
in Fig. 8. All of the results for diabatic model Hamilto-
nian are obtained with 24 000 trajectories, except those in
the FMO model (Fig. 7) where 200 000 trajectories are used.
The same time step dt is used for both SQC and QD-SQC
calculations.

B. Adiabatic vibronic model

Here, we provide details of the adiabatic vibronic dynam-
ics calculations with a PI-PCET model system,27,28 presented
in Fig. 8. More details about this model can also be found in our
recent work.51 Despite its simple form (which contains strict
diabatic electronic states), this model provides a more strin-
gent test of the QD-SQC approach because (without further
diabatization procedure) there is no obvious low-dimensional
diabatic vibronic states.

1. Model Hamiltonian

The PI-PCET model used in this study is expressed as
Ĥ = Ĥep + Ĥsb, where Ĥep describes the electron-proton
free-energy surfaces and Ĥsb describes the solvent-bath inter-
action. In this paper, we focus on a symmetric PI-PCET system
with zero driving force (bias) of the reaction. The electron-
proton Hamiltonian Ĥep defined in the electronic diabatic
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representation {|D〉, |A〉} is expressed as

Ĥep = T̂p +


UD(r̂p) + 1
2 Msω

2
s R2

s VDA

VDA UA(r̂p) + 1
2 Msω

2
s (Rs − R0

s )2


.

(24)

Here, T̂p represents the kinetic energy operator of the pro-
ton, r̂p is the proton coordinate operator, and Rs represents the
collective solvent coordinate that characterizes electron trans-
fer. In addition, Ms and ωs =

√
f0/Ms are the mass and the

frequency of this solvent coordinate, with f 0 as the force con-
stant and R0

s =
√

2λ/f0, with λ as the solvent reorganization
energy. The second term of Eq. (24), i.e., the Ĥep− T̂p operator,
represents the electron-proton interaction potential in the elec-
tronic diabatic donor |D〉 and acceptor |A〉 excited states, with
VDA = 0.03 eV as the coupling between the two electronic
states. The excited adiabatic states |S1(Rs, rp)〉 and |S2(Rs,
rp)〉 are the eigenstates of the Ĥep − T̂p operator; i.e., they are
linear combinations of |D〉 and |A〉 states and are parametri-
cally dependent on both the solvent and the proton coordinates.
The electronic ground state |S0(Rs, rp)〉 of the system, on the
other hand, is not explicitly included in this Hamiltonian, but
it will dictate the initial conditions of the system before the
Franck-Condon photoexcitation.

Furthermore, UD(r̂p) = 1
2 mpω

2
p(r̂p − rD

p )2 and UA(r̂p)

= 1
2 mpω

2
p(r̂p − rA

p )2 represent the proton free-energy profile
associated with |D〉 and |A〉 states. In this work, we use rD

p = 0

and rA
p = 0.5 Å as the minima of the proton free-energy pro-

file associated with the electronic donor and acceptor states.
mp = 1.0073 amu andωp = 3000 cm−1 are the mass and vibra-
tional frequency of the proton. In this model, the proton and the
solvent DOF do not explicitly interact with each other; rather,
r̂p directly interacts with various electronic states, which in turn
interact with the solvent. All the other parameters are provided
in Appendix B.

The solvent-bath Hamiltonian Ĥsb is expressed as follows:

Ĥsb =
P2

s

2Ms
+

∑
k



P2
k

2Mk
+

1
2

Mkω
2
k

*
,
Rk −

ckRs

Mkω
2
k

+
-

2
. (25)

In the above equation, Rk represents the kth bath mode, with the
corresponding coupling constant ck and frequencyωk sampled

from the following spectral density: J(ω) = π
2

∑
k

c2
k

Mkωk
δ(ω −

ωk) = f0τLωe−
ω
ωc . Here, τL is the solvent response time (see

Appendix B), Mk is the mass of the kth bath mode, and ωc is
the characteristic frequency of the bath that is much faster than
the motion of Rs. Here, we choose ωc = 10ωs and Mk = Ms

for all k. One can thus perform QD-SQC simulation with the
above total Hamiltonian.

Instead of treating the bath DOF explicitly, we can per-
form the following equivalent Langevin dynamics27 to implic-
itly treat the influence of the bath, with the equation of motion
for the collective solvent coordinate Rs as follows:

MsR̈s = Fep(Rs) − f0τLṘs + Fr(t). (26)

In the above Langevin equation, Fep(Rs) is the SQC nuclear
force [see Eq. (7)] evaluated with Ĥep, the friction force is
−f0τLṘs with the friction constant f 0τL, and Fr(t) is the random

force bounded by the fluctuation-dissipation theorem through
equation 〈Fr(t)Fr(0)〉 = 2kBTf 0τLδ(t). Here, Fr(t) is mod-
eled as a Gaussian random force with the distribution width52

σ =
√

2kBTf0τL/dt, where kB is the Boltzmann constant and
dt is the nuclear time step. The details for generating τL for
a given solvent are provided in Appendix B. As a consis-
tency check, in our previous work of using the QD partial-
linearized density matrix (QD-PLDM) approach for simulat-
ing this model,51 we have verified that equivalent results (for
the time-dependent electron-proton reduced density matrix)
are obtained with either an explicit bath (dynamics with the
full Hamiltonian Ĥep + Ĥsb) or implicit bath [Langevin dynam-
ics in Eq. (26)] approach. The equivalency of both approaches
has also been recently explored in the condensed-phase ET
dynamics.53,54

2. Adiabatic vibronic surfaces for QD-SQC propagation

Here, we treat both electron and proton quantum mechan-
ically with their corresponding vibronic states. The “electronic
Hamiltonian” V̂ in Eq. (16) is then defined as Ĥep in Eq. (24)
such that V̂ ≡ Ĥep(T̂p, r̂p, r̂e, Rs). Thus, the “electronic Hamil-
tonian” V̂ includes proton kinetic energy, electronic potential,
as well as electron-proton and electron-solvent interactions,
except the nuclear kinetic energy of the solvent (which is
treated as the classical DOF).

In order to obtain the adiabatic vibronic states |Φα(Rs)〉
for the coupled electron-proton Hamiltonian Ĥep, we express
|Φα(Rs)〉 with a set of two-particle basis functions as
follows:

|Φα(Rs)〉 =
∑
i,m

cαim(Rs)|φ
i
e〉|φ

m
p 〉, (27)

where |φi
e〉 ∈ {|D〉, |A〉} and |φm

p 〉 is chosen to be the mth

eigenfunction of a quantum harmonic oscillator, with the total
Hamiltonian Ĥ = T̂p + 1

2 mpω
2
p r̂2

p . Thus, by using M har-
monic basis functions for proton and two basis states for
electron, the total number of vibronic basis is N = 2M, and Ĥep

contains 2M × 2M Hamiltonian matrix 〈φn
p |〈φ

j
e |Ĥep |φ

i
e〉|φ

m
p 〉

under this representation. In the model calculation presented
in this study, the total number of vibrational basis {|φm

p 〉}

is 30, i.e., m = 0, 1, . . ., 29 for the Harmonic oscillator
eigenstates.

Because both UD(r̂p) and UA(r̂p) are just simple displaced
harmonic oscillator potentials, the matrix elements of Ĥep can
be obtained analytically by recognizing the basic property of
harmonic oscillator as follows:

〈φn
p |T̂p +

1
2

mpω
2
p r̂2

p |φ
m
p 〉 =

(
n +

1
2

)
~ωpδnm

〈φn
p |r̂p |φ

m
p 〉 =

√
~

mpωp

1
√

2

(√
m δn,m−1 +

√
m + 1 δn,m+1

)
.

The eigenvalues and the eigenvectors (adiabatic vibronic
basis) are then obtained through direct diagonalization of the
Ĥep matrix under the above two-particle basis.

3. Initial conditions

The system is initially prepared in the proton vibrational
ground state |φ0

p〉 of the electronic ground state |S0〉. The sys-
tem is then excited to the |D〉 state (which is an electronic
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excited state) through the Franck-Condon process, which gen-
erate the initial state described by the total density operator
ρ̂(0) = |Φ(0)〉〈Φ(0)| ⊗ ρ̂s. Here, the initial electron-proton
quantum state is expressed as |Φ(0)〉 = |D〉|φ0

p〉, and ρ̂s is the
density operator of the solvent.

In order to initialize the SQC calculation, we need to give
an initially occupied state, as the current SQC approach is
developed to handle such an initial condition.1 In the model
system we studied here, we find that |Φ(0)〉 are always nearly
identical to one specific adiabatic vibronic state, |Φα(Rs)〉, such
that 〈Φ(0)��Φβ(Rs)〉 = δαβ . Note that with a different solvent
coordinate Rs, the corresponding initially occupied adiabatic
vibronic states |Φα(Rs)〉 are different. Nevertheless, it allows
using the normal SQC procedure to sample the initial action
variables with the square window function Wα [Eq. (12)]
that corresponds to initially occupied adiabatic vibronic state
|Φα(Rs)〉 for every single trajectory.

The initial configuration of the solvent coordinate is sam-

pled through Wigner density ρW
s =ωsΓse

−Γs

[ P2
s

2Ms
+ 1

2 Msω
2
s (Rs−R0

s )2
]
.

Here, Γs = (2/ωs) tanh(ωs/2kBT ) and ωs =
√

f0/Ms. In
this study, we choose R0

s =
√

2λ/f0 that corresponds to
the minimum of the proton acceptor free energy diabatic
surface.

4. Window functions and convergence

For the PI-PCET model calculation, we use the square
window scheme. The converged QD-SQC results of the
vibronic dynamics are obtained with 4000 trajectories and a
time step of dt = 0.024 fs (1 a.u.). The trend of the population
dynamics, on the other hand, can be obtained with just a few
hundred trajectories for this model, comparable to the numer-
ical cost of the widely used fewest-switches surface hopping
(FSSH) approach.27 Instead of mapping a large number of dia-
batic vibrational basis {|φm

p 〉} [with 30 total vibrational bases
in Eq. (27)], as has been done in recent SQC13,55 or extended
SQC12 studies, here, we map the adiabatic electron-proton
vibronic states {|Φα(Rs)〉} with the MMST mapping variables
through Eq. (3). With the QD-SQC approach developed in
this work, we can directly use the diabatic SQC approach1,2

to propagate dynamics with quantities evaluated in the adia-
batic vibronic state through the QD scheme.26 Furthermore,
we are aware that by including more vibronic states, SQC
might encounter intrinsic difficulties to fully converge, as has
been demonstrated by a recent study of the vibrational relax-
ation process in a simple harmonic oscillator.13 To avoid this
potential issue, here we only included the lowest four adiabatic
vibronic states, as the photoinduced vibrational relaxation
dynamics mainly occur within these states in this model.27,51

To compute the adiabatic vibronic population, we use the win-
dow function defined in the instantaneous adiabatic vibronic
states (which are also the QD states) for binning the mapping
action variables in the adiabatic representation, as oppose the
step 6 in the QD-SQC propagation algorithm in Sec. II D when
well-defined diabatic states exist.

IV. RESULTS AND DISCUSSIONS

Figure 3 presents the results of the spin-boson model.
In these model calculations, the temperature is (kBT )−1 = 5,

FIG. 3. Population dynamics of the spin-boson model in the (a) strong (b)
weak diabatic electronic coupling regime, obtained from SQC calculation in
the diabatic (open circles), adiabatic (dashed lines), and quasi-diabatic (solid
lines) representations. In the adiabatic SQC calculation, the second derivative
couplings are ignored.18 Derivative coupling d12(R) and its derivative∇d12(R)
are calculated for both scenarios and presented in panels (c) and (d). The R
coordinate is chosen based on its frequency, which is closest to ωc.

the energy bias is ε = 1, and the parameters for the bath are
ωc = 2.5 and ξ = 0.1. The diabatic electronic coupling is
(a) ∆ = 1 for the adiabatic regime (such that (kBT )−1∆ � 1)
or (b) ∆ = 0.1 for the non-adiabatic regime (such that (kBT )−1

∆ � 1). The results are obtained from the original diabatic
SQC (open circles), QD-SQC (solid lines), and the adiabatic
SQC (dashed lines) propagation18, with the details of adiabatic
mapping Hamiltonian provided in Appendix A. For the adi-
abatic SQC approach, the gradient of the derivative coupling
term ∇d12(R) has been ignored in the dynamical propaga-
tion18 because they are equivalent to second-order derivative
couplings and very expensive to obtain in regular electronic
structure calculations.18 It can be clearly seen that while SQC
and QD-SQC provide identical results (with the same numeri-
cal cost), the adiabatic SQC completely breakdown in the non-
adiabatic regime presented in panel (b). This due to the fact
that∇d12(R) is much larger in the non-adiabatic regime (weak
diabatic coupling regime) compared to the adiabatic regime
(strong diabatic coupling regime). Figs. 3(c) and 3(d) depict
both the first derivative coupling term d12(R) and its derivative
∇d12(R) for a particular nuclear mode R that has the closest fre-
quency compared toωc, with the corresponding electronic cou-
pling in (a) and (b). One can clearly see that the derivative cou-
pling d12(R) exhibits large peaks and a rapidly change near the
avoiding crossing regions, which is even more pronounced for
∇d12(R), especially in the non-adiabatic regime. Thus, when
simply ignored, it will cause a large numerical error for dynam-
ics,18 especially when it is even larger than derivative cou-
pling itself. Comparisons between the SQC-based approaches
and the numerically exact results are also provided in
Appendix C.

We should note that with the recently developed
KM-SQC approach18 (with details provided in Appendix A),
the kinematic momentum transform explicitly eliminates the
presence of the ∇d12(R) term in the nuclear force (instead
of ignoring it) and thus helps achieving accurate results in
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the non-adiabatic regime presented in panel (b). However,
KM-SQC explicitly contains the derivative couplings in the
mapping equations (see Eq. (A6) in Appendix A). Thus, it
might exhibit a numerical challenge when derivative couplings
are highly peaked and require a much smaller time step for a
stable propagation.

Figure 4 presents the relative error of the action vari-
able nj =

1
2

(
p2

j + q2
j − 2γ

)
associated with the diabatic elec-

tronic state |j〉 at a long time (t → ∞), under various nuclear
time steps dt used for the dynamics propagation. To demon-
strate the performance of various propagation schemes, here
we use the original Tully’s model I (single avoided crossing
model14), as well as a modified version of it which contains a
much narrower derivative coupling (i.e., a weak avoid cross-
ing model). The Hamiltonians of these two models and the
corresponding parameters are provided in Appendix D. The
adiabatic potentials and derivative couplings are presented in
panels (a) and (b). In these simple avoid crossing models, the
long-time population plateaus are at a given value even at the
single-trajectory level, allowing us to conveniently assess the
numerical error generated from various propagation schemes.
The relative error is defined as Perror = [nj(dt) − nj(dt →
0)]/nj(dt → 0), where nj(dt) is the action obtained with a
nuclear time step dt and nj(dt→ 0) is the action obtained with
a very small nuclear time step such that the time-dependent
action along a given trajectory and its long-time value con-
verge. The electronic time step for integrating the mapping
equation of motion, on the other hand, is chosen to be as
small as required to converge the corresponding action nj at
a given nuclear time step dt. For propagating mapping vari-
ables, no additional derivative couplings (for KM scheme) or
electronic Hamiltonian matrix elements (for QD scheme) are
computed; they are obtained based on simple linear interpola-
tion schemes [such as Eq. (19)]. This is consistent with most of
the on-the-fly quantum dynamics propagation procedures,35–38

where the electronic structure calculations are performed only

FIG. 4. The relative error of the action variable in simple avoided crossing
models. The adiabatic potentials (red and blue) and the derivative couplings
(black) for the model with (a) strong and (b) weak avoid crossing are presented.
The corresponding relative error is presented in (c) and (d), obtained from
KM-SQC (open circle) and QD-SQC (filled circle) propagation schemes.

at various nuclear time steps and the quantities at electronic
time steps are interpolated. This is a compromise in order
to address the expensive numerical cost of expensive elec-
tronic structure calculations. The relative error is computed
from a single SQC trajectory, with an initial nuclear condition
R0 = −9.0 a.u. and P0 = 30. a.u., and initial mapping condition
n1 = 1.0, n2 = 0.0, and θ1 = θ2 = π/4; consistent numerical
behaviors of the error with other initial conditions are also
observed.

Figures 4(c) and 4(d) present the relative errors of the
action variable obtained from KM-SQC (red open circles) and
QD-SQC (black filled circles). In Fig. 4(c), it is clear that for
the model system presented in panel (a), both QD-SQC and
KM-SQC provide stable propagations, generating a very small
numerical error even with a relatively large nuclear time step
dt. This is because that the model in Fig. 4(a) has a broad
derivative coupling such that it does not change significantly
on a typical time scale and that the nucleus moves. Under this
scenario where the derivative coupling is well behaved, the
QD scheme does not have a significant numerical advantage
compared to the adiabatic propagation scheme that directly
uses derivative couplings.

In Fig. 4(d), however, there is a large difference between
the numerical error generated from KM-SQC and QD-SQC,
especially when a large dt is used. This is because that the
system presented in panel (b) has a very narrow deriva-
tive coupling such that it can spike on a time scale that is
shorter than the nuclear time step dt. When using large dt in
KM-SQC, the nuclear position can step on different values of
the derivative coupling spike or even completely step-over it
and miss it,36 resulting in different long time populations and
an oscillatory behavior of errors. The details of the nuclear
positions along a trajectory with various dt are presented
in Appendix D, clearly demonstrating the above mentioned
behavior. We emphasize that even though the error defined
from the long-time action value seems to be reduced with
some larger dt, the overall time-dependent action variable,
especially the value at the avoid crossing region is erroneous.
Thus, the approaches that explicitly require derivative cou-
plings (and use a simple linear interpolation scheme for obtain-
ing them, as here we implemented for the KM scheme) either
encounter numerical challenges or start to accumulate numer-
ical errors.36 The QD scheme, on the other hand, provides
more accurate results even when using a relatively larger dt,
simply because the QD schemes only require the well-behaved
transformation matrix elements 〈Φ1(R(t1))��Φ2(R(t2))〉 instead
of the highly peaked derivative coupling d12(R). That being
said, there might be good alternative approaches to achieve
the same attractive features for dynamics propagation, such
as those recently developed norm-preserving interpolation
schemes.36,37 The QD scheme is perhaps still the most straight-
forward one that allows robust dynamical propagation and
enables a seamless interface between the diabatic quantum
dynamics approach (such as SQC) and adiabatic electronic
structure calculations.

The extreme scenarios are systems with trivial cross-
ings or conical intersections, where the derivative couplings
become singular. Under these circumstances, the QD scheme
becomes more appealing compared to the other schemes that
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explicitly require derivative couplings (regardless of the
detailed interpolation schemes), as they might encounter
intrinsic difficulties no matter how small the dt is used due
to the diverging derivative couplings. Under these circum-
stances, the QD scheme still provides more robust propagation
of the dynamics regardless of the shape of derivative couplings,
simply because it does not use the information of deriva-
tive couplings. In real molecular systems, weak avoid cross-
ings, trivial crossings, or conical intersections are commonly
encountered, making the QD scheme appealing due to its
robustness.

Figure 5 presents the results of Tully’s three non-adiabatic
scattering models,14 with (a) single avoided crossing (Tully’s
model I), (b) dual avoided crossing (Tully’s model II), and
(c) extended coupling with reflection (Tully’s model III).
These results are obtained from the diabatic SQC (open
circles), QD-SQC (solid lines), and the numerical exact
split-operator Fourier transform (dashed lines) methods. Ini-
tial nuclear conditions are sampled from the Wigner trans-
formed Gaussian wavepacket, with Γ = 1 a.u., R0 = −9.0
a.u., and P0 = 30. a.u. Figs. 5(a)–5(c) provide the popula-
tion ρ11(t) (red) and ρ22(t) (blue). QD-SQC gives the same
results as those obtained from diabatic SQC; both are close
to the numerically exact results. Figure 5(d) presents the
asymptotic diabatic population of Tully’s model II as a func-
tion of the center momenta P0 = ~k for the initial nuclear
wavepacket. Again, QD-SQC provides the same results as
the diabatic SQC, and both are close to the numerical exact
ones.

Figure 6 presents the results for a two-state three-
mode conical intersection model.32,49 Here, the three modes
are indicated as Rk ∈ {R1, R6a, R10a}, and the model
Hamiltonian has the form Ĥ =

∑
k

1
2

[
P2

k + ω2
k R2

k

]
+∑

i
[
Ei +

∑
k cik Rk

]
|i〉〈i| + λR10a[|1〉〈2| + |2〉〈1|]. The parame-

ters can be found in Ref. 32. Both the non-adiabatic coupling
element 〈Φ1(R(t))�� ∂∂tΦ2(R(t))〉 and the derivative coupling
vector diverge near the conical intersection, creating numerical

FIG. 5. Diabatic state population of Tully’s scattering models, with (a) model
I, (b) model II, and (c) model III. Results are obtained from SQC (open circles),
QD-SQC (solid lines), and numerical exact (dashed lines) calculations. (d)
Asymptotic diabatic population of model II as a function of various center
momenta P0 = ~k of the initial nuclear wavepacket.

FIG. 6. Quantum dynamics in a conical intersection model of pyrazine, with
(a) diabatic population of state |2〉, (b) average momentum of the 6a mode, (c)
average position of the 6a mode, and (d) average momentum of the symmetric
mode. Results are obtained from SQC (open circles), QD-SQC (solid lines),
and numerical exact (dashed lines) calculations.

challenges for directly propagating dynamics in the adiabatic
representation. The QD scheme avoids this challenge because
it only requires 〈Φ1(R(t1))��Φ2

(
R(t2)〉 for the basis transforma-

tion during the dynamical propagation. Figure 6 demonstrates
that QD-SQC exactly reproduces the diabatic SQC results,
with (a) the diabatic population of state |2〉 and (b)–(d) expec-
tation values of the nuclear positions and momenta. In addition,
both SQC and QD-SQC provide reasonably accurate results
compared to the numerical exact ones.

Figure 7 presents the quantum dynamics results for
an excitation energy transfer (EET) model system.48 Here,
instead of using the triangle shaped window function, we
use the original square shaped window function with a width
γ = 0.336. The diabatic state population is obtained from the
SQC (open circles), QD-SQC (solid lines), as well as exact
results (dashed lines) from the hierarchy equations of motion
(HEOM) approach.48 Two different initial excitation condi-
tions are considered, with (a) state |1〉 and (b) state |6〉. As
can be clearly seen, QD-SQC exactly reproduces SQC results,
which are reasonably accurate compared to the numerical exact
results.

FIG. 7. Excitation energy transfer (EET) dynamics in a model Fenna-
Matthews-Olson (FMO) complex. Diabatic state populations with an initial
excitation on (a) state |1〉 or (b) state |6〉 are presented. Results are obtained
from SQC (open circles), QD-SQC (solid lines), and numerical exact (dashed
lines) calculations.
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Figure 8 presents the adiabatic vibronic population
dynamics in a PI-PCET model, with the adiabatic vibronic
surfaces provided in panel (a). The initial photoexcitation is
illustrated with the black arrow, and the subsequent vibra-
tional relaxation process is illustrated with the gray arrow. The
corresponding adiabatic vibronic state populations calculated
using QD-SQC (solid lines) are presented in panel (b), with
the same color coding used in the adiabatic vibronic potential
in panel (a). Without diabatization procedure24,25 or using a
large number of proton vibrational basis,12,13 there is no obvi-
ous exact low-dimensional diabatic vibronic states available
in this model. To assess the accuracy of the QD-SQC result,
we choose to use the QD-Partial Linearized Density Matrix
(PLDM) path-integral approach51 (dashed lines) as well as
the widely used FSSH approach27 (open circles) to simulate
the same dynamical process. These two alternative approaches
are proven to be accurate, at least for simulating short-time
vibrational relaxation dynamics.27,51 The results presented
in Fig. 8(b) clearly suggest that all three approaches gener-
ate consistent dynamics, demonstrating the accuracy of the
QD-SQC method. Note that the model calculations presented
here with QD-SQC are different compared to the calcula-
tions with the extended-SQC.12 The latter relies on mapping
the strict diabatic vibrational basis with MMST formalism,
whereas QD-SQC directly uses adiabatic vibronic states to
propagate dynamics. Thus, the QD propagation scheme sig-
nificantly expands the scope and applicability of the SQC
approach. That being said, we are aware of the recently discov-
ered13 convergence difficulties of SQC when including more
vibrational (or vibronic) states with higher energies. Here,

FIG. 8. Adiabatic vibronic relaxation dynamics in a PI-PCET model system.
(a) Adiabatic vibronic free energy surfaces as a function of the collective
solvent coordinate. (b) The corresponding adiabatic vibronic populations
obtained from QD-SQC (solid lines), QD-PLDM (dashed lines), and FSSH
(open circles).

we explicitly avoid this issue by only including the first four
adiabatic vibronic states in our QD-SQC dynamics propaga-
tion. We expect a similar issue for converging QD-SQC by
including more adiabatic vibronic states; we plan to investi-
gate this in future studies. Nevertheless, we want to emphasize
that by applying the QD framework, diabatic SQC can now be
directly used to propagate dynamics with adiabatic vibronic
states even when there are no obvious exact low-dimensional
diabatic states.

V. CONCLUSIONS

We apply the recently developed quasi-diabatic (QD)
scheme26 to propagate quantum dynamics with the symmet-
ric quasi-classical (SQC) approach.1 Using the instantaneous
adiabatic states as the QD states during a short-time propa-
gation, we can directly apply the diabatic SQC to propagate
quantum dynamics and avoid any additional non-trivial efforts
for redeveloping this approach in the adiabatic representa-
tion. The QD states are dynamically updated for each nuclear
propagation step and remain to be a convenient and com-
pact basis for quantum dynamics propagation. In addition,
the QD scheme provides a much more stable propagation
compared to the adiabatic scheme as it does not explicitly
require derivative couplings in the equation of motion. Fur-
thermore, because QD states are just the adiabatic states,
they can be easily obtained from any routinely available elec-
tronic structure calculation. That being said, there might be
good alternative approaches for achieving the same attrac-
tive features to propagate quantum dynamics,36,37 but the QD
scheme is, perhaps, the simplest and the most straightfor-
ward one that allows a seamless interface between diabatic
quantum dynamics approaches (such as SQC) and adiabatic
electronic structure calculations. As SQC becomes an attrac-
tive approach2,10–12 with many appealing features,1,2 one of the
last missing ingredients for real molecular applications is to
efficiently interface it with on-the-fly electronic structure cal-
culations. Thus, the QD-SQC approach developed in this work
opens up many possibilities to perform accurate and efficient
ab initio on-the-fly simulations in complex molecular systems
in future.
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APPENDIX A: ADIABATIC MMST HAMILTONIAN
AND KINEMATIC MOMENTUM TRANSFORMATION

Here we provide the detailed expression of the adiabatic
MMST Hamiltonian. In the adiabatic representation, the total
Hamiltonian in Eq. (1) is expressed as the following “vibronic”
Hamiltonian operator (with ~ = 1):
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Ĥ =
P̂

2

2M
+

∑
α

Eα(R)|Φα(R)〉〈Φα(R)|

−
∑
αβ

[
i

P̂
M

dαβ(R) +
Dαβ(R)

2M

]
|Φα(R)〉〈Φβ(R)|, (A1)

where dαβ(R) = 〈 Φα(R)|∇|Φβ(R)〉 is the derivative coupling
vector, Dαβ(R) = 〈 Φα(R)|∇2|Φβ(R)〉 is the second-derivative
coupling, and the diagonal terms Dαα(R) are usually referred
as the Born-Oppenheimer (BO) corrections.

Note that this vibronic Hamiltonian in Eq. (A1) can also
be written as18

Ĥ =
∑
α

Eα(R)|Φα(R)〉〈Φα(R)|

+
∑
αβ

1
2M

(
P̂δαβ − i~dαβ(R)

)2
|Φα

(
R〉〈Φβ(R)|, (A2)

where the second-derivative coupling does not explicitly
appear, but will indeed arise18 through the noncommutivity
between P̂ and dαβ(R).

Applying mapping representation |Φα(R)〉〈Φβ(R)| →
â†αâβ for the adiabatic states of the above vibronic Hamil-
tonian in Eq. (A2) leads to the standard adiabatic MMST
Hamiltonian15,18 as follows:

Ĥ =
1

2M

(
P̂ +

∑
αβ

q̂αp̂βdαβ(R)
)2

+
1
2

∑
α

Eα(R)
(
q̂2
α + p̂2

α − 2γ
)
, (A3)

where γ = 0.5 is the ZPE of the mapping oscillator.
Replacing quantum mechanical operators with classical

variables, we have the following classical Hamiltonian:

H =
1

2M
(P + ∆P)2 +

1
2

∑
α

Eα(R)
(
q2
α + p2

α − 2γ
)
, (A4)

where ∆P(R, p, q) =
∑
αβqαpβdαβ(R). The classical equation

of motion can thus be generated from the above Hamiltonian.
However, it is computationally inconvenient, as the nuclear
gradient explicitly depends upon the derivative of the deriva-
tive coupling, ∇dαβ(R) = ∂dαβ(R)/∂R. Evaluating this term
with electronic structure calculations is equivalent to com-
pute the second derivative couplings, which remains extremely
expensive. Thus, the MMST theory in the adiabatic repre-
sentation significantly increases the complexity for quantum
dynamics propagations.

In order to avoid the presence of ∇dαβ(R) in the equa-
tion of motion, Cotton and Miller18 developed the kinematic
momentum (KM) transformation approach. The kinematic
momentum P̃ is obtained through the following transforma-
tion:

P̃ = P + ∆P. (A5)

With this new set of the canonical variables, {R, P̃}, one can
generate an equivalent set of EOMs as follows:

q̇α =
∂Vad

∂pα
+

∑
β

qβdβα(R) ·
P̃
M

,

ṗα = −
∂Vad

∂qα
+

∑
β

pβdβα(R) ·
P̃
M

,

Ṙ =
P̃
M

,

˙̃P = −
∂Vad

∂R
+

∑
αβ

(
q̇αpβ + qαṗβ

)
dαβ(R).

(A6)

Here, the adiabatic potential is defined as Vad(q, p, R)
= 1

2

∑
α

(
p2
α + q2

α − 2γ
)
Eα(R). On the other hand, the EOMs

explicitly contain dβα(R), which could lead to numeri-
cal instabilities when these derivative couplings are highly
peaked.

APPENDIX B: SOLVENT PARAMETERS
FOR THE PI-PCET MODEL

We provide the details of the parameters used in the
PI-PCET model. The force constant for the collective solvent
DOF (the so-called “inverse Pekar factor”) is f 0 = 4πε0ε∞/(ε0

− ε∞), where ε0 and ε∞ are the inertial and optical dielec-
tric constants characterizing the polarizability of the solvent.
Here, we chose these parameters that correspond to water as
the solvent.28

Furthermore, τL = ε∞(τ0 + τD)/ε0 is the longitudinal
relaxation time accounting for the long-time solvent response
function, where τD is the Debye relaxation time and τ0 is
the characteristic rotational time of the solvent molecules.
All of the parameters used in this paper are tabulated in
Table I, and a full description of them could be found in
Ref. 28.

APPENDIX C: QD-SQC RESULTS
FOR SPIN-BOSON SYSTEM

Here, we provide additional results of spin-boson model
calculations with various electronic biases and temperatures,
compared to the numerical exact results. Figure 9 presents
the population dynamics obtained from SQC, QD-SQC,
and numerical exact quasi-adiabatic propagator path integral
(QUAPI) calculations.56,57 In all test cases, QD-SQC (solid
lines) provides identical results compared to SQC (open cir-
cles), which are close to the exact QUAPI results (filled
circles).

TABLE I. Parameters used in Langevin dynamics.

Parameter Water at 298 K

ε0 79.2
ε∞ 4.2
f 0 55.7
τ0 (ps) 0.0103
τD (ps) 8.72
Ms (ps2) 0.265
λ (eV) 0.65
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FIG. 9. Population dynamics of the spin-boson model with electronic cou-
pling∆ = 1 and various bias ε and temperature with (a) ε = 0, (kBT )−1 = 0.1, ξ
= 0.09, (b) ε = 1, (kBT )−1 = 5, ξ = 0.25, (c) ε = 1, (kBT )−1 = 0.25, ξ = 0.1, and
(d) ε = 5, (kBT )−1 = 0.1, ξ = 0.4. Results are obtained from SQC (open circles),
QD-SQC (solid lines), and numerical exact (filled circles) calculations.

APPENDIX D: MODEL POTENTIAL USED IN FIG. 4

Here, we provide the Hamiltonian of Tully’s model I used
in Fig. 4, which has the following form:

V11(R) = A(1 − e−BR) (for R > 0)

V11(R) = −A(1 − eBR) (for R < 0)

V22(R) = −V11(R)

V12(R) = V21(R) = Ce−DR2
.

(D1)

The mass of the nuclear DOF is M = 2000 a.u. The parameters
of the potential (in a.u.) for the both models are tabulated in
Table II.

In model 2 presented in Fig. 4(b), all of the parameters
are the same as in model 1 (i.e., the original14 Tully’s model
I), except that the diabatic coupling (modeled by parameter
C) is reduced by 100 times, resulting in a very weak avoid
crossing and a highly spiked derivative coupling, as depicted
in Fig. 4(b).

Furthermore, in Fig. 10, we present the derivative cou-
pling (black) of model 2 and the nuclear position propagated
with the KM-SQC approach with various nuclear time steps.
In panel (a), the relative error with different dt are shown [the
same as Fig. 4(d)]. In panels (b)–(d), one can clearly see that
when various dt are used, the nuclear position can either step
on or step over the spike of the derivative coupling, resulting
in a large numerical error for interpolating derivative coupling
when a linear scheme is used.36 That being said, the recently
developed norm preserving interpolation scheme36,37 can sig-
nificantly reduce the numerical error compared to the simple
linear interpolation scheme.38 The QD scheme, on the other

TABLE II. Parameters for the models presented in Fig. 4.

Parameter A B C D

Model 1 0.01 1.6 5× 10�3 1.0
Model 2 0.01 1.6 5× 10�5 1.0

FIG. 10. (a) The relative error of the action variable in model 2, obtained from
QD-SQC (black filled circles) and KM-SQC (red filled circles). Several dt (in
a.u.) used in the propagation are highlighted with open squares. (b)–(d) The
derivative coupling (black) of model 2 and the nuclear position propagated
with the KM-SQC method with various nuclear time steps. These nuclear
positions are presented during a time interval that the trajectory passes over
the derivative coupling region, with the same color coding of the dt used in
panel (a).

hand, explicitly avoids this issue by using the overlap inte-
grals instead of the derivative couplings,26 as discussed in
Sec. II C.

1S. J. Cotton and W. H. Miller, J. Chem. Phys. 139, 234112 (2013).
2W. H. Miller and S. J. Cotton, Faraday Discuss. 195, 9 (2016).
3S. J. Cotton, K. Igumenshchev, and W. H. Miller, J. Chem. Phys. 141,
084104 (2014).

4W. H. Miller and S. J. Cotton, J. Chem. Theory Comput. 12, 983 (2016).
5S. J. Cotton and W. H. Miller, J. Chem. Phys. 145, 144108 (2016).
6G. Tao, J. Phys. Chem. C 118, 17299 (2014).
7W. H. Miller and S. J. Cotton, J. Chem. Phys. 142, 131103 (2015).
8N. Bellonzi, A. Jain, and J. E. Subotnik, J. Chem. Phys. 144, 154110 (2016).
9W. H. Miller and S. J. Cotton, J. Chem. Phys. 145, 081102 (2016).

10G. Tao, J. Phys. Chem. Lett. 7, 4335 (2016).
11G. Tao and N. Shen, J. Phys. Chem. A 121, 1734 (2017).
12A. A. Kananenka, C.-Y. Hsieh, J. Cao, and E. Geva, J. Phys. Chem. Lett. 9,

319 (2018).
13A. Jain and J. E. Subotnik, J. Phys. Chem. A 122, 16 (2018).
14J. C. Tully, J. Chem. Phys. 93, 1061 (1990).
15N. Ananth, C. Venkataraman, and W. H. Miller, J. Chem. Phys. 127, 084114

(2007).
16P. Huo and D. F. Coker, J. Chem. Phys. 137, 22A535 (2012).
17C.-Y. Hsieh, J. Schofield, and R. Kapral, Mol. Phys. 111, 3546 (2013).
18S. J. Cotton, R. Liang, and W. H. Miller, J. Chem. Phys. 147, 064112 (2017).
19T. van Voorhis, T. Kowalczyk, B. Kaduk, L.-P. Wang, C.-L. Cheng, and

Q. Wu, Annu. Rev. Phys. Chem. 61, 149 (2010).
20J. E. Subotnik, E. C. Alguire, Q. Ou, B. R. Landry, and S. Fatehi, Acc.

Chem. Res. 48, 1340 (2015).
21A. Kubas, F. Hoffmann, A. Heck, H. Oberhofer, M. Elstner, and J. Blum-

berger, J. Chem. Phys. 140, 104105 (2014).
22X. Zeng, X. Hu, and W. Yang, J. Chem. Theory Comput. 8, 4960 (2012).
23A. Sirjoosingh and S. Hammes-Schiffer, J. Chem. Theory Comput. 7, 2831

(2011).
24S. Pierre, J. R. Duke, T. Hele, and N. Ananth, J. Chem. Phys. 147, 234103

(2017).
25J. S. Kretchmer and T. F. Miller III, J. Chem. Phys. 138, 134109 (2013).
26A. Mandal, S. S. Yamijala, and P. Huo, J. Chem. Theory Comput. 14, 1828

(2018).
27A. Hazra, A. V. Soudackov, and S. Hammes-Schiffer, J. Phys. Chem. B 114,

12319 (2010).
28A. Hazra, A. V. Soudackov, and S. Hammes-Schiffer, J. Phys. Chem. Lett.

2, 36 (2011).
29H. Meyer and W. H. Miller, J. Chem. Phys. 70, 3214 (1979).

https://doi.org/10.1063/1.4845235
https://doi.org/10.1039/c6fd00181e
https://doi.org/10.1063/1.4893345
https://doi.org/10.1021/acs.jctc.5b01178
https://doi.org/10.1063/1.4963914
https://doi.org/10.1021/jp5038602
https://doi.org/10.1063/1.4916945
https://doi.org/10.1063/1.4946810
https://doi.org/10.1063/1.4961551
https://doi.org/10.1021/acs.jpclett.6b01857
https://doi.org/10.1021/acs.jpca.6b10936
https://doi.org/10.1021/acs.jpclett.7b03002
https://doi.org/10.1021/acs.jpca.7b09018
https://doi.org/10.1063/1.459170
https://doi.org/10.1063/1.2759932
https://doi.org/10.1063/1.4748316
https://doi.org/10.1080/00268976.2013.837207
https://doi.org/10.1063/1.4995301
https://doi.org/10.1146/annurev.physchem.012809.103324
https://doi.org/10.1021/acs.accounts.5b00026
https://doi.org/10.1021/acs.accounts.5b00026
https://doi.org/10.1063/1.4867077
https://doi.org/10.1021/ct300758v
https://doi.org/10.1021/ct200356b
https://doi.org/10.1063/1.4986517
https://doi.org/10.1063/1.4797462
https://doi.org/10.1021/acs.jctc.7b01178
https://doi.org/10.1021/jp1051547
https://doi.org/10.1021/jz101532g
https://doi.org/10.1063/1.437910


044115-15 Sandoval C., Mandal, and Huo J. Chem. Phys. 149, 044115 (2018)

30G. Stock and M. Thoss, Phys. Rev. Lett. 78, 578 (1997).
31M. Thoss and G. Stock, Phys. Rev. A 59, 64 (1999).
32U. Müller and G. Stock, J. Chem. Phys. 111, 77 (1999).
33P. V. Parandekar and J. C. Tully, J. Chem. Theory Comput. 2, 229 (2006).
34C. A. Mead and D. G. Truhlar, J. Chem. Phys. 77, 6090 (1982).
35F. Webster, P. J. Rossky, and R. A. Friesner, Comput. Phys. Commun. 63,

494 (1991).
36G. A. Meek and B. G. Levine, J. Phys. Chem. Lett. 5, 2351 (2014).
37A. Jain, E. Alguire, and J. E. Subotnik, J. Chem. Theory Comput. 12, 5256

(2016).
38S. Hammes-Schiffer and J. C. Tully, J. Chem. Phys. 101, 4657 (1994).
39N. Yu, C. Margulis, and D. Coker, J. Phys. Chem. B 105, 6728 (2001).
40G. Granucci, M. Persico, and A. Toniolo, J. Chem. Phys. 114, 10608

(2001).
41F. Plasser, G. Granucci, J. Pittner, M. Barbatti, M. Persico, and H. Lischka,

J. Chem. Phys. 137, 22A514 (2012).
42B. C. Garrett, M. J. Redmon, D. G. Truhlar, and C. F. Melius, J. Chem. Phys.

74, 412 (1981).
43G. A. Meek and B. G. Levine, J. Chem. Phys. 145, 184103 (2016).
44G. A. Meek and B. G. Levine, J. Chem. Phys. 144, 184109 (2016).

45D. V. Makhov, W. J. Glover, T. J. Martinez, and D. V. Shalashilin, J. Chem.
Phys. 141, 054110 (2014).

46S. Fernandez-Alberti, D. V. Makhov, S. Tretiak, and D. V. Shalashilin, Phys.
Chem. Chem. Phys. 18, 10028 (2016).

47L. Joubert-Doriol and A. F. Izmaylov, J. Chem. Phys. 148, 114102 (2018).
48A. Ishizaki and G. R. Fleming, Proc. Natl. Acad. Sci. U. S. A. 106, 17255

(2009).
49G. Stock, J. Chem. Phys. 103, 2888 (1995).
50N. Makri, J. Phys. Chem. B 103, 2823 (1999).
51A. Mandal, F. A. Shakib, and P. Huo, J. Chem. Phys. 148, 244102 (2018).
52J. C. Tully, G. H. Gilmer, and M. Shugard, J. Chem. Phys. 71, 1630

(1979).
53P. Huo, T. F. Miller III, and D. F. Coker, J. Chem. Phys. 139, 151103

(2013).
54B. R. Landry, M. J. Falk, and J. E. Subotnik, J. Chem. Phys. 139, 211101

(2013).
55J. Provazza, F. Segatta, M. Garavelli, and D. F. Coker, J. Chem. Theory

Comput. 14, 856 (2018).
56P. L. Walters and N. Makri, J. Chem. Phys. 144, 044108 (2016).
57D. E. Makarov and N. Makri, Chem. Phys. Lett. 221, 482 (1994).

https://doi.org/10.1103/physrevlett.78.578
https://doi.org/10.1103/physreva.59.64
https://doi.org/10.1063/1.479255
https://doi.org/10.1021/ct050213k
https://doi.org/10.1063/1.443853
https://doi.org/10.1016/0010-4655(91)90272-m
https://doi.org/10.1021/jz5009449
https://doi.org/10.1021/acs.jctc.6b00673
https://doi.org/10.1063/1.467455
https://doi.org/10.1021/jp0108925
https://doi.org/10.1063/1.1376633
https://doi.org/10.1063/1.4738960
https://doi.org/10.1063/1.440847
https://doi.org/10.1063/1.4966967
https://doi.org/10.1063/1.4948786
https://doi.org/10.1063/1.4891530
https://doi.org/10.1063/1.4891530
https://doi.org/10.1039/c5cp07332d
https://doi.org/10.1039/c5cp07332d
https://doi.org/10.1063/1.5020655
https://doi.org/10.1073/pnas.0908989106
https://doi.org/10.1063/1.470502
https://doi.org/10.1021/jp9847540
https://doi.org/10.1063/1.5030634
https://doi.org/10.1063/1.438490
https://doi.org/10.1063/1.4826163
https://doi.org/10.1063/1.4837795
https://doi.org/10.1021/acs.jctc.7b01063
https://doi.org/10.1021/acs.jctc.7b01063
https://doi.org/10.1063/1.4939950
https://doi.org/10.1016/0009-2614(94)00275-4

