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ABSTRACT
We use the ring polymer (RP) representation to quantize the radiation field inside an optical cavity to investigate polariton quantum dynamics.
Using a charge transfer model coupled to an optical cavity, we demonstrate that the RP quantization of the photon field provides accurate rate
constants of the polariton mediated electron transfer reaction compared to Fermi’s golden rule. Because RP quantization uses extended phase
space to describe the photon field, it significantly reduces the computational costs compared to the commonly used Fock state description
of the radiation field. Compared to the other quasi-classical descriptions of the photon field, such as the classical Wigner based mean-field
Ehrenfest model, the RP representation provides a much more accurate description of the polaritonic quantum dynamics because it alleviates
the potential quantum distribution leakage problem associated with the photonic degrees of freedom (DOF). This work demonstrates the
possibility of using the ring polymer description to treat the quantized radiation field in polariton chemistry, offering an accurate and efficient
approach for future investigations in cavity quantum electrodynamics.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0038330., s

I. INTRODUCTION

Coupling molecules to the quantized radiation field inside an
optical cavity creates a set of new photon-matter hybrid states, so-
called polaritons. These light–matter hybrid polaritons have shown
great promise to control chemical reactivities1–7 in a general way
by tuning the fundamental properties of photons and provides a
new paradigm for enabling chemical transformations that can pro-
foundly impact catalysis, energy production, and the field of chem-
istry at large. Theoretical investigations have played a crucial role
in unraveling the fundamental principles of polariton chemistry.4–20

Despite encouraging progress, accurately and efficiently simulating
these polariton quantum dynamics processes opens a brand new
challenge in theoretical chemistry.

In previous works of polariton chemistry, the cavity pho-
ton field has been treated quantum mechanically through Fock
states,8,9,12,13,15,18,19 grid points,4,11,21 coherent states,7 and polarized
Fock states.22 These approaches provide an accurate description of
the quantum light–matter interactions. They are, however, compu-
tationally demanding as they involve the full quantum description

of the radiation modes and are often limited in terms of how many
modes can be explicitly quantized.

The similarity (or even the isomorphism) between the vibra-
tional quantization of nuclei in molecules and the photonic quan-
tization of the radiation mode inside the cavity has inspired the
quasi-classical description of the photon field. In fact, quasi-classical
quantization (in the action-angle quasi-classical description) of
the photon field has been historically used to treat molecule-laser
field interaction by Miller and co-workers.23,24 A recent example
of the quasi-classical description of the radiation mode in cav-
ity quantum electrodynamics (QED) includes the classical Wigner
based mean-field Ehrenfest model25–27 as well as the symmetric
quasi-classical window approach.27,28 Here, we refer to the clas-
sical Wigner based mean-field Ehrenfest model as an approach
that samples the nuclear or photonic degrees of freedom (DOFs)
through initial Wigner quantum distribution and then propagates
them through the classical equation of motion. In the following,
we refer to this classical Wigner based mean-field Ehrenfest model
as the classical Wigner model for simplicity. These quasi-classical
approaches can significantly reduce the computational cost due to

J. Chem. Phys. 154, 044109 (2021); doi: 10.1063/5.0038330 154, 044109-1

Published under license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1063/5.0038330
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0038330
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0038330&domain=pdf&date_stamp=2021-January-28
https://doi.org/10.1063/5.0038330
https://orcid.org/0000-0002-8639-9299
mailto:pengfei.huo@rochester.edu
https://doi.org/10.1063/5.0038330


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

the quasi-classical treatment of the photon field. However, the clas-
sical Wigner model25,26 is expected to cause incorrect quantum
dynamics due to the leakage of the zero-point energy (ZPE).29–31

Note that when coupling molecules with the classical radiation
field (through the description from the classical Maxwell equa-
tions), the detailed balance has been enforced in the recent Ehren-
fest+R approach.32 With its current implementation, on the other
hand, Ehrenfest+R is limited to the weak light–matter interactions
(that causes the exponential decay of the excited state popula-
tion) through a phenomenologically introduced spontaneous decay
channel.

These shortcomings of the quasi-classical treatment can be
readily addressed with the recently developed state-dependent
ring polymer molecular dynamics (RPMD) approaches.33–38 These
approaches are based upon the imaginary-time path-integral
description of the quantum DOF in the extended phase space.39–44

The classical evolution in RPMD (for a thermal-equilibrium sys-
tem) preserves its initial quantum distribution captured by the ring
polymer Hamiltonian, and it is free of the zero-point energy leak-
ing problem.29,44 With the recent development of state-dependent
RPMD approaches,33–38 one can accurately capture both non-
adiabatic electronic transitions in molecular systems while explic-
itly quantizing either the nuclear DOF or even the photonic
mode through the ring polymer description. The ring polymer
has been previously used to quantize the electron,45–48 proton49,50

and hydride,51 hydrogen and muonium atoms,52 molecular hydro-
gen,53 helium,40 coupled electron and proton,54,55 as well as coupled
electron and hole.56

In this work, we quantize the photon field with the ring
polymer description and simulate the polariton mediated elec-
tron transfer (PMET) reaction through the non-adiabatic RPMD
(NRPMD) approach.31,33,38 To the best of our knowledge, this is
the first numerical example of using the ring polymer represen-
tation40,41,44 to quantize the cavity photon field. We demonstrate
that the ring polymer quantization of the photon field provides
an accurate polaritonic quantum dynamics of the molecule-cavity
hybrid system, compared to the quasi-classical description with the
classical Wigner model. We further provide an interesting inter-
pretation of the influence from the cavity field on the molecule
as a fluctuating (Peierls-type) coupling that facilitates the charge
transfer.

II. THEORETICAL APPROACH
We start with the Pauli–Fierz (PF) non-relativistic QED Hamil-

tonian13,20,21,57,58 to describe the molecular system Ĥm coupled to the
radiation field Ĥp = (â†â + 1

2)h̵ωc inside an optical cavity under the
long-wavelength limit.20 A brief derivation of this Hamiltonian is
provided in the Appendix. The PF Hamiltonian is

ĤPF = Ĥm + (â†â +
1
2
)h̵ωc + χ ⋅ μ̂(â† + â) +

(χ ⋅ μ̂)2

h̵ωc

= Ĥm +
1
2
P̂2

c +
1
2
ω2

c
⎛
⎝
Q̂c +

√
2

h̵ω3
c
χ ⋅ μ̂
⎞
⎠

2

, (1)

where â† and â are the photonic creation and annihilation operator,
respectively, and Q̂c =

√
h̵/2ωc(â† + â) and P̂c = i

√
h̵ωc/2(â† − â)

are the photon field coordinate and momentum operators, with ωc

as the photon frequency inside the cavity. Furthermore, χ =
√

h̵ωc
2ε0V

ê
characterizes the light–matter interaction. The unit vector ê is along
the field polarization direction, V is the quantization volume for
the cavity photon field, and ε0 is the permittivity inside the cavity.
Finally, μ̂ is the total molecular dipole operator (for both electrons
and nuclei). ĤPF is a pure real Hamiltonian, and the photonic DOF
can be viewed as an additional “nuclear” DOF, hence computation-
ally treated in that way. In this work, we only consider a single cav-
ity mode to clearly demonstrate the accuracy of various theoretical
treatments of the photon field. In reality, the matter will couple to
multiple modes inside the cavity.25–27,59

The central idea of this paper is to treat the photonic DOF
in Eq. (1) as classical variables, i.e., Q̂c → Qc and P̂c → Pc, then
quantizing them through the ring polymer description.40,41,44 More
specifically, we treat both the nuclear DOF R and the photonic DOF
Qc on an equal footing and denote the “nuclear” DOF in the hybrid
system as X = {R, Qc}, with the corresponding momenta Π = {P, Pc}.
For a given diabatic Hamiltonian Ĥ = T̂ + V̂0(X̂) +∑ij Vij(X̂)∣i⟩⟨ j∣,
the NRPMD approach31,33,38 suggests that there is an isomorphic
Hamiltonian31,33,34 as follows:

HN =
N
∑
α=1

1
2M

Π2
α + V0(Xα) +

M
2β2

Nh̵2 (Xα −Xα−1)2

+
1

2h̵∑ij
Vij(Xα)([qα]i[qα]j + [pα]i[pα]j − δijh̵), (2)

where the coordinate X (with the corresponding mass M) is quan-
tized through the extended phase space description with N copies
(the number of the imaginary time slices) {Xα} of the original coordi-
nate that are harmonically coupled to each other. This is commonly
referred to as the ring polymer. The diabatic states {|i⟩} are mapped
onto a set of mapping oscillators {qi, pi} through the Meyer–Miller–
Stock–Thoss (MMST) formalism,60,61 which are then extended to
N copies {[qα]i, [pα]i} as well in the NRPMD Hamiltonian.31,34,38

The above Hamiltonian provides accurate non-adiabatic quantum
dynamics and, at the same time, explicitly captures nuclear quan-
tum effects, as demonstrated in several model systems in previous
studies.31,33,38

In the NRPMD quantum dynamics approach,31,33,38 the classi-
cal trajectories are propagated according to the Hamilton’s equation
of motion associated with HN in Eq. (2). The motion of the “nuclei”
(X) is governed by Π̇α = −∇XαHN, with the detailed equation of
motion as follows:

Π̇α = −
M

β2
Nh̵2 (2Xα −Xα+1 −Xα−1) − ∇XαV0(Xα)

− 1
2h̵∑ij

∇XαVij(Xα)([qα]i[qα]j + [pα]i[pα]j − δijh̵). (3)
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The bead-specific mapping variables [qα]i and [pα]i are propagated
based on the following Hamilton’s equations of motion:

[q̇α]i =
∂HN

∂[pα]i
= 1
h̵∑j

Vij(Xα)[pα]j, (4)

[ṗα]i = −
∂HN

∂[qα]i
= − 1

h̵∑j
Vij(Xα)[qα]j. (5)

Below, we present the model system used in this work, the analyti-
cal rate constant expression used as the benchmark of the quantum
results, details of our NRPMD quantum dynamics simulations, and
alternative theoretical descriptions for the photon field.

A. Model system
Using an optical cavity to manipulate electron transfer reac-

tions8,58,62,63 has gained an increasing interest in polariton chemistry.
It has been shown that coupling to a quantized radiation mode can
significantly enhance or suppress the electron transfer (ET) rate con-
stants by using photon-dressed reactive channels.8,58,62,63 Accurately
and efficiently simulating the polariton mediated electron transfer
(PMET) reaction, one of the most fundamental polariton chemi-
cal reactions, will significantly advance our ability to theoretically
investigate molecular cavity quantum electrodynamics.

In this paper, we consider a donor–acceptor charge transfer
system coupled to a single radiation mode inside the cavity.58 The
charge transfer molecular Hamiltonian is

Ĥm =
P̂2

s

2Ms
+∑

i
Ui∣i⟩⟨i∣ + VDA(∣D⟩⟨A∣ + ∣A⟩⟨D∣)

+∑
i

1
2
Msω2

s(Rs − R0
i )2∣i⟩⟨i∣ + Ĥsb, (6)

where |i⟩ ∈ {|D⟩, |A⟩} is the diabatic donor or acceptor state and
T̂s = P̂2

s /2Ms represents the kinetic energy operator of the solvent
coordinate Rs with mass Ms and frequency ωs. Furthermore, U i is
the constant diabatic energy associated with the state |i⟩, with UD = 0
and UA = −ε, and VDA is the constant diabatic electronic coupling.
The driving force (bias) ΔG of the reaction is ΔG = UA − UD = −ε,
and λ = 1

2Msω2
s(R0

A−R0
D)2 is the solvent reorganization energy. Fur-

thermore, we take R0
D = 0 and R0

A =
√

2λ/f0, where f 0 is the force
constant, which is related to the solvent frequency ωs =

√
f0/Ms.

Throughout this study, we use the solvent reorganization energy of
λ = 650 meV. Finally, Ĥsb describes the interaction between the
solvent mode Rs and a dissipative bath as follows:

Ĥsb = ∑
k

P2
k

2Mk
+
Mkω2

k

2
(Rk −

ck
Mkω2

k
Rs)

2

, (7)

where Rk represents the kth bath mode with a conjugate momen-
tum Pk and a mass Mk = Ms. The coupling constant ck and
the frequency ωk are characterized by an Ohmic spectral density

J(ω) = π
2 ∑k

c2
k

Mkωk
δ(ω − ωk) = ηωe−ω/ωb with a characteristic fre-

quency ωb = 9.5 meV and a friction constant η. The details of the
bath discretization and all the above parameters are provided in the
supplementary material.

We further assume that the transition dipole and the perma-
nent dipoles of the molecule are constants, i.e., not a function of the
solvent coordinate.62 We find that within the light–matter coupling
strength considered in this work, the presence of the permanent
dipoles does not impact the polariton quantum dynamics because
these permanent dipoles only couple the states that are energeti-
cally off-resonance, for example, |D, n⟩ and |D, n ± 1⟩. Hence, we
completely ignore the permanent dipoles in our quantum dynam-
ics simulations presented in the main text. In the supplementary
material, we present the results of the PMET rate obtained with the
explicit permanent dipoles, which gives visually indistinguishable
results from those obtained with only the transition dipole.

We further assume that the transition dipole moment
μDA = ⟨D∣μ̂∣A⟩ is always aligned with the polarization direction ê
such that

μ̂ ⋅ ê = μDA ⋅ ê(∣D⟩⟨A∣ + ∣A⟩⟨D∣) ≡ μDA(∣D⟩⟨A∣ + ∣A⟩⟨D∣), (8)

where we have defined μDA ≡ μDA ⋅ ê.
The light–matter interaction Ĥint = χ ⋅ μ̂(â† + â) + (χ ⋅ μ̂)2/h̵ωc

in Eq. (1) for the above model system is then given as

Ĥint = h̵gc(∣D⟩⟨A∣ + ∣A⟩⟨D∣)(â† + â) +
1

2ϵ0V
(μ̂ ⋅ ê)2, (9)

where the coupling strength h̵gc ≡
√

h̵ωc
2ϵ0V

μDA, and the second term
in Eq. (9) is referred to as the dipole self-energy. For a two-state sys-
tem without any permanent dipole moment, (μ̂ ⋅ ê)2 = μ2

DA(∣D⟩⟨D∣
+ ∣A⟩⟨A∣), which causes a constant energy shift for both electronic
states, and hence, it is ignored for this special case.

The polariton Hamiltonian is defined as Ĥpl = ĤPF − P̂2
s /2Ms

− Ĥsb, where the polariton states are the eigenstates of Ĥpl through
the following eigenequation:

Ĥpl∣Ψi(Rs)⟩ = Ei(Rs)∣Ψi(Rs)⟩, (10)

where Ei(Rs) is the polariton eigenenergy. Note that the char-
acters of the polariton states change58 as a function of Rs. The
above equation can be numerically solved by using the basis
{|D, n⟩, |A, m⟩}.

Figure 1 illustrates quantizing the photon field through Fock
states as well as through the ring polymer description. Figure 1(a)
presents the quantum evolution of the light–matter hybrid sys-
tem under the Fock state representation of the photon field. The
nuclear wavepacket evolves among the photon-dressed electronic
states |D, n⟩ = |D⟩ ⊗ |n⟩ (the donor electronic state with n pho-
tons inside the cavity) and |A, m⟩ = |A⟩ ⊗ |m⟩ (the acceptor
electronic state with m photons inside the cavity), where |n⟩ and
|m⟩ are the Fock states (eigenstates) of the vacuum photon field
Ĥp = (â†â + 1

2)h̵ωc. While Fock states provide an exact quantum
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FIG. 1. Schematic illustrations of the polariton mediated electron transfer model.
(a) The model system described with explicit Fock state quantization of the photon
field coordinate Qc, where |D⟩ and |A⟩ refer to the donor and acceptor elec-
tronic states and |n⟩ ∈ {|1⟩, |2⟩, . . .} represents the vacuum’s Fock states. (b)
Schematic illustration of the ring polymer quantization (cyan beads) of the pho-
tonic (and nuclear) DOFs. The cavity donor (red) and the acceptor (blue) diabatic
surfaces are depicted as a function of the solvent coordinate Rs and the photonic
coordinate Qc.

mechanical description of the cavity mode and polariton quantum
dynamics, a lot of them are required to achieve converged results
for treating the light–matter interactions, especially when the cou-
pling strength is in the strong and ultra-strong coupling regime.21

In addition, the required number of Fock states will grow expo-
nentially when multiple cavity modes are considered,27 making this
approach computationally expensive. For example, when consid-
ering a single molecule coupled to M cavity modes, each mode
requires K Fock states, the size of the Hilbert space for the cavity
modes then becomes KM, and the numerical cost of propagating the
time-dependent Schrodinger equation for these Fock states scales as
(KM)2 = K2M.

Figure 1(b) schematically presents the quantum evolution of
a light–matter hybrid system when using the ring polymer quanti-
zation. Here, the electronic DOFs are described with two diabatic
states, |D⟩ (red) and |A⟩ (blue). The nuclei R and the photon field
coordinate Qc are quantized with the ring polymer representation.
The ring polymer evolves on the 2-dimensional diabatic electronic
potential energy surfaces and undergoes non-adiabatic transitions
between |D⟩ and |A⟩. Compared to the exponential scaling of the
Fock state quantization, the computational cost of quantizing the
photon field with ring polymer scales linearly when considering

multiple radiation modes. With N beads for each mode, the com-
putational cost for describing M modes is N ⋅M, which is more
favorable than the scaling of the Fock state quantization approach
K2M when considering a large number of cavity modes. Note that
when using the same level of trajectory-based approaches to treat
nuclear DOF, both descriptions of the photon field require a simi-
lar amount of trajectories to converge; thus, the pre-factors of both
approaches are comparable.

B. Analytical rate theory
In this work, we use Fermi’s Golden Rule (FGR) analytical

rate expressions8,62,63 as a benchmark for our numerical simulations.
More specifically, we use Marcus rate theory to describe the ET rate
of a molecule and use FGR62 to describe the PMET rate in PMET.
We also use the fluctuating ET theory to assess the classical limit
(low frequency) of the cavity mode. We note that all of the analyti-
cal rate theories we used here correspond to the short-time limit of
FGR64,65 where the rate constant is insensitive to nuclear dynamics
(solvent Rs and bath Ĥsb). Details of the time-domain FGR rate and
the short-time approximations are discussed in the supplementary
material. The model parameter chosen for Ĥm in this study, on the
other hand, ensures that the nuclear dynamics does not influence the
rate. Recent developments of the accurate FGR expression through
the linearized path-integral approach66–68 have significantly expand
the scope and applicability of the condensed phase ET66–68 and non-
equilibrium ET calculations,69,70 going beyond the usual harmonic
phonon approximations. We believe that these new advanced FGR
approaches are also well suited for investigating PMET within the
non-adiabatic limit. The NRPMD method, along the same line of the
linearized path-integral FGR,66–70 offers a general theoretical frame-
work to simulate PMET reaction without any restrictions and the
numerical capacity to treat the anharmonic bath environment71,72

(in Ĥsb) and strong electronic coupling and light–matter couplings
that go beyond the capability of FGR.58 In Sec. III, we provide fur-
ther numerical tests for the cases when the FGR is no longer valid
to describe PMET. We use the Fock state quantization of the pho-
ton field (and Ehrenfest approach for state-dependent dynamics)
as a benchmark for direct NRPMD polariton quantum dynamics
simulations.

(1) Marcus theory for ET. For the ET model system consid-
ered in this work, the equilibrium rate constant for the
non-adiabatic electron transfer reaction between donor and
acceptor states can be accurately described by Marcus theory
(MT),73

kMT =
∣VDA∣2

h̵

√
πβ
λ

exp[−β(ΔG + λ)2

4λ
], (11)

where ΔG is the ET driving force, λ is the reorganization
energy, VDA is the diabatic coupling between donor and
acceptor states, and β = 1/kBT, where kB is the Boltzmann
constant and T is the temperature of the system.

(2) FGR for PMET. For the molecule-cavity hybridized system,
the polariton mediated electron transfer (PMET) occurs from
a set of photon-dressed donor states |D, n⟩ to a set of photon-
dressed acceptor states |A, m⟩. To explicitly calculate the rates
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associated with each photon-dressed channel, we follow the
previous theoretical work8,62,63 and use Fermi’s golden rule
(also known as the Jortner theory74–76 in ET) described as
follows:

kFGR = ∑
n
Pn∑

m

∣Fnm∣2
h̵

√
πβ
λ

exp[−β(ΔGnm + λ)2

4λ
], (12)

where Fnm = ⟨D,n∣Ĥpl∣A,m⟩ = VDAδnm + h̵gc[
√
m + 1δn,m+1

+
√
mδn,m−1] is the effective coupling among photon-dressed

states, Ĥpl = ĤPF − T̂s − Ĥsb is the polariton Hamiltonian,
h̵gc is the effective light–matter coupling [see Eq. (9)], ΔGnm
= ΔG + (m − n)h̵ωc is the driving force between photon-
dressed states, and Pn = exp[−βnh̵ωc]/∑m exp[−βmh̵ωc] is
the thermal population of the corresponding cavity mode.
Here, we treat n and m as a convergence parameter and use
large enough Fock states to converge the rate. Note that the
presence of zero-point energy (ZPE) of the radiation field is
exactly canceled inside Pn, hence not directly impacting the
PMET rate. The quantized nature of the photon states, on
the other hand, indeed significantly influences the PMET rate
through Fnm and ΔGnm. When treating the photonic DOF
through quasi-classical descriptions (such as through the
Wigner initial distributions), the zero-point energy leakage
problem, on the other hand, could contaminate the electronic
dynamics and lead to a less accurate PMET rate constant, as
shown in our results.

When explicitly considering the presence of the perma-
nent dipoles μDD and μAA associated with the diabatic elec-
tronic states |D⟩ and |A⟩, the PMET rate in Eq. (12) can be
generalized as follows:62

kFGR = ∑
n
Pn∑

m

∣F̃nm∣2
h̵

√
πβ
λ

exp[−β(ΔGnm + λ)2

4λ
], (13)

where F̃nm = VDASnm + h̵gc[
√
nSn−1,m +

√
n + 1Sn+1,m] is

the effective coupling among photon-dressed states and

Snm = ⟨n∣e
− i

h̵ P̂c

√
2

h̵ω3
c
χΔμ
∣m⟩, where Δμ = μDD − μAA. Here,

we assume that all dipoles are aligned with ê such that χ ⋅
(μDD − μAA) = χ(μDD − μAA), where χ =

√
h̵ωc
2ε0V

. As one can
clearly see that under the limit of a small Δμ, the permanent
dipole does not play a significant role in PMET. A detailed
proof of Eq. (13) together with additional numerical results
of the PMET rate with permanent dipoles is provided in the
supplementary material.

(3) Marcus theory with a fluctuating coupling. We further view
the cavity radiation mode as a Peierls coupling mode,77–90 i.e.,
a fluctuating off-diagonal coupling term in the light–matter
interaction Hamiltonian Ĥint [Eq. (9)], which can modulate
the static electronic coupling (VDA) between the donor and
acceptor states. This, of course, is only valid when the photon
frequency approaches the classical limit h̵ωc ≪ kBT.

This Peierls fluctuated electronic coupling for the model
in Eq. (9) is expressed as

VDA(Qc) = ⟨D∣Ĥm + Ĥint∣A⟩ = VDA +
√

2ωcgcQc. (14)

The variance σ2
DA characterizes the magnitude of the fluctu-

ation around the static value of ⟨VDA(Qc)⟩ = VDA, which is

σ2
DA = ⟨V2

DA(Qc)⟩ − ⟨VDA(Qc)⟩2 = 2ωcg2
c ⟨Q2

c⟩, (15)

where ⟨Q2
c⟩ = 1/βω2

c based on the classical distribution of
the photon mode Qc. With the presence of Peierls coupling,
the VDA term in the MT [Eq. (11)] needs to be modified as
VDA(Qc) [Eq. (14)], and the Marcus theory with the Peierls
coupling can be expressed as81,85

kP
MT =

⟨V2
DA(Qc)⟩
h̵

√
πβ
λ

exp[−β(ΔG + λ)2

4λ
], (16)

where the mean square coupling ⟨V2
DA(Qc)⟩ = V2

DA + σ2
DA

includes both static contribution and the fluctuations induced
by the photon field. Depending on the relative magnitude of
V2

DA and σ2
DA, the ET rate is controlled by either the averaged

electronic coupling square or the variance squared term.82

Note that when deriving Eq. (16), the donor–acceptor energy
gap fluctuations are assumed to be uncorrelated to the fluctu-
ations of the off-diagonal coupling as these two types of fluc-
tuations are originated from different sets of nuclear modes.81

Our PMET model studied here indeed satisfies this uncorre-
lated assumption. The off-diagonal fluctuations in our PMET
model are caused by the photonic DOF Qc, and the diagonal
fluctuations are caused from the solvent coordinate Rs and
bath coordinates {Rk}.

C. NRPMD simulations of PMET
We aim to compute the reduced density matrix of the light–

matter hybrid system

ρjj(t) = TreTrRTrQc[ρ̂0eiĤt/h̵P̂je−iĤt/h̵], (17)

where ρjj(t) is the time-dependent population of the diabatic state |j⟩
∈ {|D⟩, |A⟩}, P̂j = ∣j⟩⟨j∣ is the associated projection operator, and TrR
represents the trace over all nuclear DOF (including solvent Rs and
the bath {Rk}), TrQc represents the trace over the photonic DOF, and
Tre represents the trace over the electronic DOF in the {|D⟩, |A⟩}
subspace.

For a cavity-free charge transfer reaction, the initial condi-
tion is sampled based upon the quantum canonical distribution
of the Hamiltonian,64,91,92 P̂ĤmP, where the projection operator
P̂ = ∣D⟩⟨D∣ confines Ĥm inside the |D⟩ subspace. Similarly, the
initial density operator of the reactant state for the light–matter
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hybrid system should correspond to the quantum canonical density
associated with the hybrid system confined in the donor electronic
subspace as P̂ĤPFP̂. When only considering the transition dipole
in the light–matter interactions, ⟨D∣Ĥint∣D⟩ = 1

2ϵ0V
μ2

DA with Ĥint in
Eq. (9). Note that this term [coming from the dipole self-energy
(DSE) term] has a constant value (due to our assumption that μDA
is a constant) and is not a function of Rs or Qc. Thus, the initial
canonical density associated with P̂ĤPFP̂ is ρ̂0 = ∣D⟩⟨D∣ ⊗ ρ̂R ⊗ ρ̂Qc ,
which is a direct product of the initial donor electronic state |D⟩
with the initial nuclear density operator ρ̂R = e−βĤR/ZR, where
ĤR = 1

2Ms
P̂2

s + 1
2Msω2

s(R̂s − R0
D)2 + Ĥsb and the initial distribu-

tion of the photon mode ρ̂Qc = e−β(â
† â+ 1

2 )h̵ωc/ZQc . Furthermore, ZR
and ZQc are the corresponding partition functions for the nuclear
and photonic DOFs. Choosing the initial electronic state as |D⟩,
the distribution of the solvent coordinate Rs is centered around
R0

D and the distribution of the photonic coordinate is centered
around Qc = 0.

On the other hand, for a model system where the transition
dipole is not a constant, i.e., μ̂ ⋅ ê = μDA(Rs)(∣D⟩⟨A∣ + ∣A⟩⟨D∣),
the light–matter interaction in P̂ĤPFP̂ is no longer a constant, but
rather ⟨D∣Ĥint∣D⟩ = 1

2ϵ0V
μDA(Rs)2. This part will influence the ini-

tial distribution of Rs. Furthermore, when explicitly considering
the constant permanent dipole μDD (as well as the constant tran-
sition dipole μDA), the light–matter interaction in Eq. (9) becomes

⟨D∣Ĥint∣D⟩ =
√

2ωc
h̵ χμDD ⋅ Q̂c + 1

2ϵ0V
(μ2

DD + μ2
DA), and the photonic

coordinate will be shifted accordingly for sampling the canonical
distribution associated with P̂ĤPFP̂. The details for this case are
provided in the supplementary material.

We use the NRPMD Hamiltonian in Eq. (2) to simulate the
molecule-cavity hybrid system and compute the time-dependent
reduced density matrix ρjj(t) defined in Eq. (17) through the follow-
ing population expression:31,36

ρjj(t) ≈ ∫ dτP0({qα, pα})ρrp({Xα,Πα}) ⋅ P̄j(t), (18)

where X ≡ {R, Qc}, Π ≡ {P, Pc}, and dτ ≡ ∫d{Xα}d{Πα}d{qα}d{pα}
with a shorthand notation d{ξα} = ∏N

α=1 dξα. In addition,
P0({qα, pα}) represents the distribution of the initial electronic vari-
ables and ρrp({Xα, Πα}) represents the initial ring polymer distri-
bution of both the nuclear and photonic DOFs that corresponds to
ρ̂R ⊗ ρ̂Qc . Finally, P̄j = 1

N ∑αPj(α) = 1
N ∑

N
α=1

1
2([qα]

2
j + [pα]

2
j − 1)

is the electronic state estimator that has shown31,33 to provide accu-
rate results for non-adiabatic dynamics. Other choices of the initial
conditions for the mapping variables, such as the symmetric quasi-
classical window approaches,93,94 have shown to further improve the
population dynamics, and we plan to explore these choices in the
future.

In this work, because the solvent Rs and the bath coordi-
nates {Rk} have low vibrational frequencies (hence exhibiting quasi-
classical behavior), we use N = 1 bead for these DOFs. Thus, the
initial distribution of the solvent and the bath DOFs corresponds
to a pure classical distribution ρR = e−βHR/ZR, where HR = 1

2Ms
P2

s

+ 1
2Msω2

s (Rs−R0
D)2 +Hsb. For the photonic ring polymer, we treat the

number of beads N as a convergence parameter such that the initial

distribution ρrp([Qc]α, [Pc]α) is converged.31,36 The same number
of beads is used for the mapping variables,31 with the initial den-
sity31,36 P0({qα, pα}) = ∏

N
α=1∏j=1 δ(Pj(α) − ρjj(0)) that is prop-

erly constrained to represent the initially occupied state |D⟩ through
Pj(α) = 1

2([qα]
2
j + [pα]

2
j − 1) = δDj. The details of the sampling pro-

cedure are provided in the supplementary material. All DOFs are
then propagated using the Hamilton’s equation of motion accord-
ing to the Hamiltonian in Eq. (2). For all of the results presented in
this work, a total of 104 trajectories are used to ensure the tight con-
vergence of population [based on Eq. (18)], although 103 trajectories
already present the basic trend of the dynamics.

With the converged population dynamics, we use a rate fitting
scheme91,92 (details are provided in the supplementary material) to
obtain the PMET rate of the reaction. In general, the charge trans-
fer rate constant can be obtained by using the flux–side correlation
function formalism95 k = Q−1

r limt→tp TrR[ρ̂F̂eiĤt/h̵ĥe−iĤt/h̵], where
the side operator ĥ = ∑n ∣A,n⟩⟨A,n∣ represents the dividing sur-
face distinguishing reactant and product (where n is the number
of photons in the cavity), F̂ = i/h̵[Ĥ, ĥ] is the flux operator, tp is
the plateau time of the correlation function, ρ̂ = e−βĤ is the ther-
mal density operator, and Qr = Tr [ρ̂ĥ] is the reactant partition
function. It requires, however, additional theoretical development
to use NRPMD for computing the Kubo-transformed version of this
correlation function. Hence, we choose to compute the population
dynamics with NRPMD and use the well-defined fitting procedure
to obtain the rate.91,92

D. Additional theoretical approaches
To further assess the accuracy of the ring polymer quantization

of the cavity photon field, we compare it with the following theoreti-
cal descriptions of the cavity photon field, where the state-dependent
non-adiabatic dynamics are propagated with the multi-trajectory
Ehrenfest approach.25

(i) Classical: using a classical distribution of the photon field
and Ehrenfest dynamics to propagate the non-adiabatic
dynamics.

(ii) Wigner: using the Wigner initial distribution of the pho-
ton field25–27 and Ehrenfest dynamics to propagate the non-
adiabatic dynamics.

(iii) Fock states: using Fock states to represent the polariton
Hamiltonian Ĥpl = ĤPF − T̂s − Ĥsb and then propagate
the quantum dynamics in the diabatic-Fock basis {|D, n⟩,
|A, m⟩}.

For each of the above approaches, a total of 104 trajectories
are used to make sure both convergence and a consistent com-
parison with the NRPMD calculations. The details of all the above
approaches are provided in the supplementary material.

E. Model parameters
In this work, we consider the following four model parame-

ters for the molecular Hamiltonian and light–matter interactions,
presented in Table I.
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TABLE I. Model parameters used in the light–matter interaction Hamiltonian.

Model VDA (meV) h̵gc (meV) h̵ωc (meV)

I 5 3 10
II 5 5 200
III 30 5 200
IV 5 20 200

Models I and II have weak electronic coupling parameters
(βVDA≪ 1). For model I, the parameters are chosen for the theoret-
ical purpose to achieve a classical limit of the cavity field. Parameters
for model II are chosen according to the recent theoretical work by
Semenov and Nitzan,62 which are chosen by closely connecting to
the available polariton experimental setup. For both models I and
II, h̵gc and VDA are chosen to be small [such that |Fnm| ≪ kBT in
Eq. (12)], and Fermi’s golden rule (FGR) is valid, which can be used
as a benchmark for our direct dynamics simulation.

Moreover, models III and IV are chosen such that |Fnm| ∼ kBT
(where Fnm = ⟨D,n∣Ĥpl∣A,m⟩ = VDAδnm + h̵gc[

√
m + 1δn,m+1

+
√
mδn,m−1]) in Eq. (12); thus, the FGR description (which requires

|Fnm|≪ kBT) of the PMET rate constant breaks down. The photon
frequency for both models is chosen to be h̵ωc = 200 meV, with two
possible choices of electronic coupling and light–matter coupling;
for model III, VDA = 30 meV and h̵gc = 5 meV, and for model IV,
VDA = 5 meV and h̵gc = 20 meV. For case III, the FGR breaks down
because of the large VDA, whereas for case IV, FGR is no longer valid
due to the strong light–matter interactions h̵gc.

III. RESULTS AND DISCUSSIONS
Figure 2 presents the PMET rate of the molecule-cavity hybrid

system over a range of driving force (−ΔG), with both model I in
Fig. 2(a) and model II in Fig. 2(b). The NRPMD approach (red
dots) with a total of N = 4 and N = 8 beads are used to gener-
ate converged results for model I [panel (a)] and model II [panel
(b)], respectively. We emphasize that for model I, only N = 1
bead will be sufficient enough for generating converged results
because of the low frequency photon mode (h̵ωc = 10 meV) used
there. The PMET rate constants obtained from the NRPMD sim-
ulations (red dots) are compared against the FGR rate when the
molecule is explicitly coupled to the cavity (black solid lines) and
when the molecule is decoupled from the cavity (blue dashed line).
For the model used here, the solvent DOF Rs has a low vibra-
tional frequency that does not exhibit any nuclear quantum effects at
T = 300 K. As a result, we can see one single turnover of the ET rate
as −ΔG increases when the molecule is decoupled from the cavity
(blue dashed lines in both panels) where the charge transfer occurs
via |D⟩ → |A⟩, and the rate peaks at −ΔG = λ, known as the Marcus
turnover.73,96

With the presence of the cavity, the charge transfer occurs from
the photon-dressed donor states |D, n⟩ to the photon-dressed accep-
tor states |A, m⟩. When the cavity has a low photon frequency h̵ωc
= 10 meV [Fig. 2(a)] such that h̵ωc ≪ kBT, one needs to explicitly

FIG. 2. PMET rate constants of a molecule-cavity hybrid system over a range of
−ΔG with (a) ̵hωc = 10 meV and (b) ̵hωc = 200 meV. The rate constants are
obtained from the NRPMD simulations (red dots), and the PMET rate (black solid
lines) is obtained from FGR [Eq. (12)]. Marcus theory [Eq. (11)] for the cavity-free
ET rate constant (blue dashed lines) is presented for comparison.

consider reactive channels for those n, m ≥ 1. This is because the
excited photon-dressed donor states, |D, 1⟩, |D, 2⟩, . . ., etc., are ther-
mally accessible, and as a result, the predominant reactive channel
is not only |D, 0⟩ → |A, 0⟩, but there is also a significant contribu-
tion from other high-lying photon-dressed states. As a result, the
PMET rate [described by FGR in Eq. (13)] is significantly enhanced
throughout all ranges of driving forces compared to the cavity-free
case [described by the MT rate in Eq. (11)]. Quantizing the radia-
tion mode with the ring polymer description (through the NRPMD
approach) provides quantitatively accurate results compared to the
FGR analytical rate theory for PMET.

Figure 2(b) presents the PMET rate for the light–matter hybrid
system with a high photonic frequency h̵ωc = 200 meV such that h̵ωc
≫ kBT. In this case, the photon frequency is high enough such that
under the room temperature, only |D, 0⟩ has an appreciable amount
of thermal population. At a small driving force −ΔG < λ, the pre-
dominant reactive channel is |D, 0⟩ → |A, 0⟩, and the channel |D, 0⟩
→ |A, 1⟩ is less favorable due to the large energy difference between
these two photon-dressed states. Hence, the PMET rate constant
(from FGR) in this parameter regime is close to the ET rate of the
molecule (through the |D, 0⟩ → |A, 0⟩ reactive channel) without the
coupling with the cavity. At a larger driving force, −ΔG ≥ λ (Marcus
inverted regime), the photon-dressed acceptor state |A, 1⟩ is energet-
ically closer to the |D, 0⟩ state, and hence, the rate constant is higher
than the Marcus ET rate in the inverted regime due to this additional
channel.

Thus, the high-frequency radiation mode plays a similar role
as those high-frequency vibrational modes do.75 In this sense,
the PMET process is akin to the proton-coupled electron transfer
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(PCET) reaction, where the presence of quantized vibrational levels
of the transferring proton mediates the effective vibronic couplings
as well as the effective state-to-state driving force.97,98 In PMET, the
presence of quantized photonic states of the cavity radiation mode
mediates the effective vibronic couplings and the effective state-to-
state driving force. Again, the ring polymer description of the pho-
ton field provides a quantitatively correct answer compared to the
FGR results, similar to the success of the ring polymer quantization
of the proton,37,54 which provides an accurate PCET rate constant.
As a side note, it is also interesting to observe the success of the
NRPMD approach to correctly predict the Marcus turnover as well
as the rate enhancement in the inverted regime when the electronic
subsystem is coupled to the quantum (photonic) mode. This accu-
rate numerical performance of NRPMD goes beyond the mean-field
RPMD approach,99 which shows a less accurate rate constant in the
inverted regime.99

Figure 3 presents the detailed comparisons of the PMET rate
constants and polariton quantum dynamics obtained from various
theoretical treatments of the photon field, including the ring poly-
mer quantization (red dots), Fock state quantization (cyan open
circles), Wigner distribution (dashed orange line), and classical dis-
tribution (dashed green line) of the radiation mode. For the Fock
state description, we have used a total of five Fock states for model II
(although two Fock states already generate visually indistinguishable
results), whereas 15 Fock states are required for model I (results not
shown here).

FIG. 3. (a) The PMET rate constant of model system II with ̵hωc = 200 meV,
obtained from different photon quantization approaches, including the ring polymer
quantization with NRPMD (red filled circles), the Fock state quantization (cyan
open circles), classical description (green dashed line), and Wigner quantization
(orange dashed line) of the photon mode. (b) The corresponding acceptor state
population dynamics ρAA(t).

Figure 3(a) presents the PMET rate of the model system with
h̵ωc = 200 meV [same model in Fig. 2(b)] obtained from different
theoretical approaches, with FGR rate theory (black solid line) as a
benchmark of the quantum result. It can be clearly seen that treat-
ing the radiation mode with a classical initial distribution (green
dashed line) does not account for the quantum effects associated
with the high-frequency photon modes and thus fails to predict
the accurate PMET rate constant throughout the entire range of
driving force. Furthermore, in contrast to the previous results of
cavity QED,25–28 treating the photon mode with the initial Wigner
distribution (orange dashed line) also fails to provide the quanti-
tative results of the rate constants. The breakdown of the classical
Wigner model is likely due to the fact that the classical equation
of motion for the photon field in this calculation29,31,100 leads to
the incorrect flow of the photonic energy (from the Wigner distri-
bution) to the electronic subsystem. Finally, we also quantize the
photon field through the Fock state description (cyan open cir-
cles), and this description provides the most accurate results of the
PMET rate constant (compared to FGR) due to the explicit quantum
mechanical description of the radiation mode as well as all reactive
channels.

While quantizing the photon field with Fock states provides
accurate results, it is limited in terms of how many radiation
modes can be explicitly treated. The ring polymer quantization,
on the other hand, provides the same level of accuracy while sig-
nificantly reducing the computational costs by using the extended
classical phase space description. Note that both the Fock state
quantization and the NRPMD simulation presented in this paper
are trajectory-based approaches (multi-trajectory Ehrenfest and
NRPMD approach, respectively), and both require 104 trajectories
to achieve numerical convergence. Through a similar amount of
trajectories, the Fock state quantization with Ehrenfest dynamics
requires initial sampling for the nuclear DOFs, whereas the NRPMD
approach samples both the initial nuclear configurations and the
ring polymer configurations for the photonic DOF. This provides
a consistent framework to meaningfully compare the numerical cost
of the ring polymer and the Fock state quantization of the cavity
modes, specifically for model parameter II, which requires K = 5
Fock states or N = 8 beads to converge the polariton quantum
dynamics. Considering M = 2 cavity modes, the corresponding
computational costs for the Fock state or the ring polymer descrip-
tion are K2M = 54 = 625 and N ⋅M = 10 × 2 = 20, respectively.
Our numerical test (see details in the supplementary material) con-
firms this scaling and the advantage of the ring polymer quantiza-
tion. In fact, even considering just one cavity mode, the numerical
advantage of using the ring polymer quantization (N ⋅M = 10
× 1 = 10) is already shown compared to the Fock state quantization
(K2M = 52 ≈ 25).

Figure 3(b) presents the population dynamics of the accep-
tor state ρAA(t) for the same molecule-cavity system presented in
Fig. 3(a), with a particular driving force −ΔG = 300 meV. This figure
further demonstrates the accuracy of the ring polymer quantization
compared to other approaches, through the real-time population
dynamics (and not only through the rate constant). We can clearly
see that NRPMD (red dots) provides nearly identical population
dynamics compared to the Fock state description of the photon field
(cyan solid line), which, in principle, provides the most accurate
polariton quantum dynamics [as shown in the rate constant in panel
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(a)]. On the other hand, the Wigner quantization (orange dashed
line) and the classical description (green dashed line) of the photon
field fail to provide quantitatively accurate population dynamics. To
confirm the failure of the Wigner description of the photon field,
we further tested (see the results in the supplementary material) the
N = 1 bead case of the NRPMD approach, with either a Wigner
or a classical initial distribution of the photonic DOF. Both simula-
tions provide less accurate PMET dynamics (see the supplementary
material), confirming that the numerical improvement we observed
in Fig. 3 is directly associated with the ring polymer description
of the photon field and not because of the MMST mapping rep-
resentation in the NRPMD (which potentially brings improvement
compared to the Ehrenfest approach).

Figure 4 compares the PMET results obtained from the Mar-
cus theory with a fluctuating coupling (blue dots) in Eq. (16), the
FGR rate (solid black line) in Eq. (12), as well as the classical treat-
ment of the photon field (green dashed line). In Fig. 4(a), the model
system has the same parameters as the one used in Fig. 2(a). At a
low photonic frequency, the classical description of the radiation
mode provides an accurate result because the quantum distribution
of the photonic DOF is nearly identical with the classical distribu-
tion. Furthermore, the Marcus theory with a fluctuating coupling
provides a quantitative agreement with the FGR rate. In this case,
the photon mode can be viewed as a fluctuating Peierls-type of cou-
pling (off-diagonal coupling in the {|D⟩, |A⟩} subspace). The cavity
mode fluctuates the value of the electronic coupling [see Eq. (15)]
and significantly contributes to the rate [see Eq. (16)]. Under this
low frequency regime, the cavity assisted charge transfer mechanism
can be purely viewed as the fluctuation of the radiation mode that
enhances the electronic coupling term. Similar effects have been well

FIG. 4. PMET rate constants for (a) model I and (b) model II over a range of driving
force (−ΔG). The rates are obtained with the classical description of the photon
mode (green dashed line), FGR rate in Eq. (12) (black solid line), and fluctuation
mediated rate theory in Eq. (16) (blue dots).

understood in charge transfer reactions in protein81,82,85,87,90 as well
as in singlet fission.101–103 Our theoretical results imply that for the
PMET reaction in the vibrational strong coupling regime (where the
photon frequency is close to the vibrational frequency), the cavity
mode acts like a fluctuating coupling term that can further enhance
the ET rate.

Figure 4(b) presents the same comparison of the model system
with a high cavity frequency [same parameters used in Fig. 2(b)].
Due to the high photonic frequency h̵ωc, the classical description of
photonic DOF is no longer capable of accurately capturing the quan-
tum effect, especially the rate enhancement in the Marcus inverted
regime. Furthermore, the Marcus theory with a fluctuating coupling
deviates from the quantum FGR results but agrees with the classical
description of the radiation mode since both of them use the classical
treatment of the radiation mode. On the other hand, both the state-
resolved FGR rate and the ring polymer quantization of the radiation
field [Fig. 2(b)] provide accurate PMET rate constants under the
high-frequency limit of the cavity mode.

Finally, Fig. 5 presents the population dynamics of models III
[panel (a)] and IV [panel (b)] with a driving force of −ΔG = 0.8 eV.
Both model parameters are beyond the FGR regime, which requires
|Fnm| ≪ kBT in Eq. (12). The Fock state description (with K = 5
Fock states) of the photon field (cyan) is used as a benchmark for
the population dynamics. The populations of photon-dressed states
{|D, n⟩, |A, m⟩} are provided in the supplementary material. The
ring polymer description of the photon field (red dots) with N = 16
beads provides the converged results of the population dynamics,
which has an excellent agreement with the Fock state description.

FIG. 5. (a) The population dynamics [ρDD(t) and ρAA(t)] for model III with
VDA = 30 meV and ̵hgc = 5 meV. (b) The population dynamics for model IV with
VDA = 5 meV and ̵hgc = 20 meV. The photon frequencies for both cases are
̵hωc = 200 meV. The populations are obtained from the NRPMD simulations (red
dots) and Fock state quantization (cyan solid line). The gray solid lines correspond
to the population dynamics of the cavity-free case, obtained from the Ehrenfest
dynamics governed by Ĥm.
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Similar to the results presented in Fig. 3(b), the Wigner or classi-
cal treatment of the cavity photon field provides less accurate results
(which are provided in the supplementary material), even at a short
time. The cavity-free dynamics (gray) is also presented for compar-
ison. Figure 5(a) presents a case where the electronic coupling is
large and beyond the FGR limit (βVDA > 1) such that the popu-
lation dynamics is no longer following a single exponential decay
(described by a rate constant). Adding additional light–matter cou-
pling further enhances the PMET process. Figure 5(b) presents a
case where the electronic coupling is weak βVDA ≪ 1, and light–
matter coupling is strong such that Fnm ∼ kBT. In fact, gc/ωc = 0.1,
which means the light–matter interactions start to enter into the
ultra-strong coupling regime.59,104 In this case, the large light–
matter interaction significantly changes the population dynamics
of the donor and acceptor compared to the cavity-free case (gray
curves) and makes them non-exponential. For both cases, beyond
the simple FGR limit, the ring polymer quantization provides an
accurate description of the electronic dynamics influenced by the
cavity.

Before we end this section, we want to comment on the
potential limitations of using the NRPMD approach to simulate
PMET dynamics. First, using the ring polymer extended phase space
description for the cavity mode, one does not have an explicit
access to the information related to Fock states or the polariton
states |Ψi(Rs)⟩ [defined in Eq. (10)]. Thus, we do not directly have
the polariton population or coherence. Second, the success of any
RPMD-based approach relies on the separation of the time-scale
between the high-frequency vibrations of the ring polymer and the
dynamics of physical interest.44 The high-frequency ring polymer
oscillations could potentially contaminate the real-time dynamics of
the photonic DOF, which, in turn, influence the electronic quantum
dynamics. We will investigate this issue in the future based on the
previous work that has been shown to address this issue.31

IV. CONCLUSION
In this paper, to the best of our knowledge, we present the first

numerical example of using the ring polymer representation40,41,44

to quantize the cavity photon field in polariton chemistry. Using the
recently developed non-adiabatic ring polymer molecular dynam-
ics approach,31,33,38 we investigate a charge transfer model coupled
to an optical cavity.8,58,62 Our numerical results suggest that the ring
polymer quantization of the photon field provides accurate polariton
mediated charge transfer rate constants and dynamics over a broad
range of electronic driving force compared to Fermi’s golden rule.62

For the system beyond the FGR regime, the ring polymer quan-
tization also gives accurate dynamics compared to the Fock state
description of the cavity mode.

Our investigations provide further mechanistic insights into
the polariton mediated electron transfer (PMET) reaction.58,62

With a high photon frequency (h̵ωc > kBT), the cavity radiation
mode acts like a quantized vibrational DOF, and PMET is anal-
ogous to proton-coupled electron transfer reactions.97,98 With a
low photon frequency (h̵ωc < kBT), the cavity mode plays a role
in the classical fluctuating Peierls-type coupling, and PMET is
analogous to ET reactions in a fluctuating environment such as
protein.81,82,85,87,90

Compared to the Fock state description of the photon field,
the ring polymer quantization provides the same level of accuracy
and yet offers a computationally convenient framework to describe
the polariton quantum effects through the extended phase space
description. In contrast to the unfavorable scaling of Fock states,
the extended phase space (ring polymer) description can easily
treat multiple quantized modes inside the cavity and scales linearly
with these photonic DOFs. Compared to the quasi-classical descrip-
tions (such as the classical Wigner model) that cause zero-point
energy (ZPE) leakage problems,29 which contaminate the electronic
dynamics,31 the ring polymer description alleviates the ZPE leaking
problem, thus reliably providing longer time electronic population
dynamics.31 These encouraging numerical results open up new pos-
sibilities for using NRPMD to accurately and efficiently simulate
polaritonic chemistry with many molecules8,19,63 coupled to many
quantized radiation modes inside an optical cavity,27 providing a set
of general and powerful theoretical tools and frameworks for the
emerging polariton chemistry community. We also note that the
present approach can be extended to include cavity losses, which
include the coupling between the cavity modes to a set of dissipative
far-field modes.105

We envision that recently developed state-dependent RPMD
approaches33,35–38,55,106–108 should be well-suited for the investigation
of polariton chemistry27 and atomic cavity QED25,26 when multiple
photonic modes play a crucial role in polariton quantum dynam-
ics.27 In fact, because {P̂c, Q̂c} in ĤPF [Eq. (1)] can be viewed as
an effective “nuclear” DOF that exhibits quantum effects, we con-
jecture that any approach in theoretical chemistry that can accu-
rately treat nuclear quantization42,44,109–112 will have a chance to be
applicable to investigate polariton chemistry when explicit quantiza-
tion of the cavity radiation mode is necessary. This “isomorphism”
between the nuclear vibrations and cavity photonic modes23–26,28

could also provide further insights into understanding new reac-
tivities113 in polariton chemistry. At the same time, this “isomor-
phism” allows one to transfer knowledge (methods or insights)
from one field (physical and theoretical chemistry) to another field
(atomic and molecular polariton physics) and facilitate the merger of
both.

SUPPLEMENTARY MATERIAL

See the supplementary material for the details of the bath dis-
cretization and model parameters, non-adiabatic RPMD quantum
dynamics, initial sampling procedure and details of the numerical
simulations of NRPMD, details of other theoretical treatments of the
photon field, fitting scheme for obtaining the rate constant, addi-
tional numerical results, and permanent dipole moment in PMET
dynamics.
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APPENDIX: DERIVATION OF THE PAULI–FIERZ
QED HAMILTONIAN

We provide a brief derivation of the Pauli–Fierz QED Hamil-
tonian. We begin by defining the matter Hamiltonian and the
corresponding total dipole operator as follows:

Ĥm = T̂ + V̂(x̂) = ∑
j

1
2Mj

P̂2
j + V̂(x̂), μ̂ = ∑

j
zjx̂j, (A1)

where j is the index of the jth charged particle (including all electrons
and nuclei), with the corresponding mass Mj and charge zj. In addi-
tion, x̂ ≡ {x̂j} = {R̂, r̂} with R̂ and r̂ representing the nuclear and
electronic coordinates, respectively, and P̂ ≡ {P̂R, P̂r} ≡ {P̂j} is the
mechanical momentum operator as well as the canonical momen-
tum operator such that P̂j = −ih̵∇j. Furthermore, T̂ = T̂R + T̂r is
the kinetic energy operator, where T̂R and T̂r represent the kinetic
energy operator for nuclei and for electrons, respectively, and V̂(x̂)
is the potential operator that describes the Coulombic interactions
among electrons and nuclei.

The cavity photon field Hamiltonian under the single-mode
assumption is expressed as

Ĥph = h̵ωc(â†â +
1
2
) = 1

2
(P̂2

c + ω2
cQ̂

2
c), (A2)

where ωc is the frequency of the mode in the cavity, â† and
â are the photonic creation and annihilation operators, and
Q̂c =

√
h̵/2ωc(â† + â) and P̂c = i

√
h̵ωc/2(â† − â) are the pho-

tonic coordinate and momentum operators, respectively. Choosing
the Coulomb gauge, ∇ ⋅ Â = 0, the vector potential becomes purely
transverse Â = Â⊥. Under the long-wavelength approximation,

Â = A0(â + â†) = A0
√

2ωc/h̵ Q̂c, (A3)

where A0 =
√
h̵/2ωcε0V ê, with V as the quantization volume inside

the cavity, ε0 as the permittivity, and ê as the unit vector of the field
polarization.

We further introduce the Power–Zienau–Woolley (PZW)
gauge transformation operator57,114 as

Û = exp[− i
h̵
μ̂ ⋅ Â] = exp[− i

h̵
μ̂ ⋅A0(â + â†)]. (A4)

The PZW transformation operator can also be expressed as
Û = exp[− i

h̵

√
2ωc/h̵μ̂A0Q̂c] = exp[− i

h̵(∑j zjÂxj)]. Recall that a

momentum boost operator Ûp = e−
i
h̵ p0 q̂ displaces p̂ by the amount

of p0 such that ÛpÔ(p̂)Û†
p = Ô(p̂+ p0). Hence, Û is a boost operator

for both the photonic momentum P̂c by the amount of
√

2ωc/h̵μ̂A0

and the matter momentum P̂j by the amount of zjÂ. Using Û† to
boost the matter momentum, one can show that

ĤC = Û†ĤmÛ + Ĥph; (A5)

hence, ĤC can be obtained115 by a momentum boost with the
amount of −zjÂ for P̂j and then by adding Ĥph.

The QED Hamiltonian under the dipole gauge (the “d ⋅ E”
form114,116) can be obtained by performing the PZW transformation
on ĤC as follows:

ĤD = ÛĤCÛ† = ÛÛ†ĤmÛÛ† + ÛĤphÛ
†

= Ĥm + h̵ωc(â†â +
1
2
) + iωcμ̂A0(â† − â) +

ωc

h̵
(μ̂A0)2, (A6)

where we have used supplementary material, Eq. (23) to express ĤC,
and the last three terms of the above equation are the results of
ÛĤphÛ†. Using Q̂c andP̂c, one can instead show that

ĤD = Ĥm +
1
2
ω2

cQ̂
2
c +

1
2
(P̂c +

√
2ωc/h̵μ̂A0)2 (A7)

because the PZW operator boosts the photonic momentum P̂c by√
2ωc/h̵μ̂A0. The term ωc

h̵ (μ̂A0)2 is commonly referred to as the
dipole self-energy (DSE).

The Pauli–Fierz (PF) QED Hamiltonian6,20,21 can be obtained
by using a unitary transformation Ûϕ = exp[i π2 â

†â] on ĤD. To
proceed, we use the following Baker–Campbell–Hausdorff (BCH)
identity

eÂB̂e−Â = B̂ + [Â, B̂] +
1
2!
[Â, [Â, B̂]] +⋯ (A8)

Using the fundamental commutator [â†, â] = −1, we have [â†â, â]
= â†[â, â] + [â†, â]â = −â. Denoting Ûϕ = exp[iϕâ†â] = e−Â (with
ϕ = π

2 ), hence Â = −iϕâ†â. Using the BCH identity, we have

e−iϕâ
† ââeiϕâ

† â = â − iϕ[â†â, â] +
1
2!
(−iϕ)2[â†â, [â†â, â]] +⋯

= (1 + (−iϕ)(−1) +
1
2!
(−iϕ)2(−1)2 +⋯)â = eiϕâ

(A9)

Similarly, we have e−iϕâ
† ââ†eiϕâ

† â = e−iϕâ†. Choosing ϕ = π
2 results in

Û†
ϕ âÛϕ → iâ and Û†

ϕ â
†Ûϕ → −iâ†. Using these results, and applying

Ûϕ on ĤD, we have the PF Hamiltonian as follows:
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ĤPF = ÛϕĤDÛ†
ϕ

= Ĥm + h̵ωc(â†â +
1
2
) + A0ωcμ̂(â + â†) +

ωc

h̵
(A0μ̂)2

= Ĥm +
1
2
P̂2

c +
1
2
ω2

c(Q̂c +
A0μ̂√
h̵ωc
)

2

, (A10)

where the coupling constant is A0√
h̵ωc
=
√

2
h̵ω3

c
χ as we used in Eq. (1).

Note that we have used the fact that ÛϕĤmÛ†
ϕ = Ĥm, i.e., Ûϕ

does not contain any matter DOFs. Hence, the role of Ûϕ is to switch
P̂c andQ̂c, and for a photon field, they are inter-changeable due to
the pure harmonic nature of the quantized field. The PF Hamilto-
nian has the advantage as a pure real Hamiltonian and the photonic
DOF can be viewed6,21 and computationally treated26,28 as “nuclear
coordinates.”

In quantum optics, a two-level atom coupled to a single model
in an optical cavity is a well-studied subject. This leads to the well-
known model Hamiltonian, such as the Rabi model and the Jaynes–
Cummings model. Since these two models are also widely used in
recent investigations of polariton chemistry, here we briefly derive
them from the PF Hamiltonian.

We consider a molecule with two electronic states,

ĤM = T̂ + Eg(R)∣g⟩⟨g∣ + Ee(R)∣e⟩⟨e∣, (A11)

and the transition dipole is μeg = ⟨e∣μ̂∣g⟩. Note that the permanent
dipoles in a molecule μee = ⟨e∣μ̂∣e⟩, μgg = ⟨g∣μ̂∣g⟩ are not necessar-
ily zero, as opposed to the atomic case where they are always zero.
Hence, it is not always a good approximation to drop them.

The Rabi model assumes that one can drop the permanent
dipoles and leads to the dipole operator expression in the subspace
P̂ = ∣g⟩⟨g∣ + ∣e⟩⟨e∣ as follows:

P̂μ̂P̂ = μeg(∣e⟩⟨g∣ + ∣g⟩⟨e∣) ≡ μeg(σ̂
† + σ̂), (A12)

where we have defined the creation operator σ̂† ≡ ∣e⟩⟨g∣ and anni-
hilation operator σ̂ ≡ ∣g⟩⟨e∣ of the electronic excitation. The PF
Hamiltonian [Eq. (A10)] in the subspace P̂ thus becomes

ĤPF = ĤM + Ĥph + χ ⋅ μeg(σ̂
† + σ̂)(â† + â) +

(χ ⋅ μeg)
2

h̵ωc
. (A13)

Dropping the DSE (the last term) from Eq. (A13) leads to the Rabi
model

ĤRabi = ĤM + Ĥph + χ ⋅ μeg(σ̂
† + σ̂)(â† + â). (A14)

Dropping both the DSE and the counter-rotating terms σ̂†â† and σ̂â
leads to the well-known Jaynes–Cummings model117 as follows:

ĤJC = ĤM + Ĥph + χ ⋅ μeg(σ̂
†â + σ̂â†). (A15)

The limitations of these two models are thoroughly discussed
in our recent work on PMET58 and polariton mediated photo-
dissociation dynamics for diatomic molecules.22

DATA AVAILABILITY

The data that support the findings of this study are available
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