
Quasi-Diabatic Representation for Nonadiabatic Dynamics
Propagation
Arkajit Mandal,†,‡ Sharma SRKC Yamijala,†,‡ and Pengfei Huo*,†

†Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States

*S Supporting Information

ABSTRACT: We develop a nonadiabatic dynamics propagation scheme that
allows interfacing diabatic quantum dynamics methods with commonly used
adiabatic electronic structure calculations. This scheme uses adiabatic states as
the quasi-diabatic (QD) states during a short-time quantum dynamics
propagation. At every dynamical propagation step, these QD states are updated
based on a new set of adiabatic basis. Using the partial linearized density matrix
(PLDM) path-integral method as one specific example for diabatic dynamics
approaches, we demonstrate the accuracy of the QD scheme with a wide range
of model nonadiabatic systems as well as the on-the-fly propagations with
density functional tight-binding (DFTB) calculations. This study opens the
possibility to combine accurate diabatic quantum dynamics methods with
adiabatic electronic structure calculations for nonadiabatic dynamics prop-
agations.

■ INTRODUCTION

One of the central challenges in modern theoretical chemistry
is performing on-the-fly nonadiabatic dynamics simulations in
an accurate and efficient fashion. This challenge boils down into
two parts:1 (i) electronic structure calculations that provide on-
the-fly nuclear potential energy surfaces and electronic wave
functions and (ii) dynamical propagations of the coupled
electronic and nuclear motions. While extensive efforts have
been focused on developing methods in each individual field,
the incompatibility between electronic structure methods and
quantum dynamics approaches remains to be addressed
because they are usually developed in two different
representations.
The majority of the electronic structure methods are

formulated in the adiabatic representation, i.e., the eigenstates
of the electronic Hamiltonian that parametrically depend on
nuclear positions. The routinely available adiabatic electronic
structure calculations have enabled on-the-fly dynamics
propagations with approximate quantum dynamics approaches
formulated in the same representation.2−4 As a side note, here
and throughout this paper, we refer to “quantum dynamics”
approaches as those methods that incorporate electronic
nonadiabatic transitions and/or nuclear quantum effects
regardless of how they include these effects. These approximate
quantum dynamics approaches such as widely used Ehrenfest
dynamics or fewest switches surface hopping (FSSH),3−5

however, are limited by their inherent mixed quantum-classical
approximation,1 which leads to the breakdown of detailed
balance6,7 or the creation of artificial electronic coherence.4

New quantum dynamics methods are developed to address
the limitations and deficiencies of mixed quantum-classical
approximations by treating electronic and nuclear dynamics on

an equal classical footing1,8−10 or rigorously preserving detailed
balance.11−13 Most of these recently emerged quantum
dynamics approaches are developed in the diabatic representa-
tion,9−12,14−16 i.e., a set of electronic states that do not explicitly
depend upon nuclear positions. Under the diabatic representa-
tion, derivative couplings explicitly vanish,17 providing a much
simpler and convenient framework for quantum dynamics
method development. In contrast to the adiabatic states, strict
diabatic wave functions are neither uniquely defined nor
routinely available, despite recent theoretical progress.17−21

Thus, the typical strategy for applying these new methods to
“real” molecular systems is to reformulate them in the adiabatic
representation,8,22−24 which usually requires tedious theoretical
efforts. Moreover, the adiabatic version of these methods are
computationally inconvenient due to the presence of the first-
and second-order derivative couplings,22 which could poten-
tially lead to numerical instabilities during dynamical
propagations.
The discrepancy between the accurate and convenient

dynamics approaches in the diabatic representation and the
routinely available electronic structure calculations in the
adiabatic representation has significantly hampered our ability
to accurately and efficiently perform on-the-fly quantum
dynamics simulations.
To address this challenge, here we apply a quasi-diabatic

(QD) scheme that allows combining diabatic dynamics
approaches with adiabatic electronic structure calculations for
direct quantum dynamics propagation. Within this scheme, the
adiabatic states from routine electronic structure calculations
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are used as quasi-diabatic states during a short-time
propagation. Between two consecutive short-time propagations,
the representation is transformed from the old to the new QD
states. We should note that the QD scheme has been previously
used to provide a numerically stable integration of the time-
dependent Schrödinger equation (TDSE).25−32 Here, we
expand the scope and the applicability of this scheme by
using it as a general framework to interface diabatic quantum
dynamics methods and adiabatic electronic structure calcu-
lations.
In this paper, we demonstrate the accuracy of the QD

propagation scheme by using the recently developed partial
linearized density matrix (PLDM) path-integral method10,33 as
one example of the diabatic dynamics methods. Quantum
dynamics simulations of the model systems as well as the on-
the-fly calculations suggest an excellent agreement between the
QD propagation scheme and the diabatic PLDM method or the
numerical solution of TDSE. The QD scheme provides a
general and seamless framework to combine accurate diabatic
quantum dynamics methods with commonly used adiabatic
electronic structure calculations for nonadiabatic quantum
dynamics propagations.

■ THEORY AND METHOD
Adiabatic and Diabatic Representations. We begin with

a brief introduction of the adiabatic and the diabatic
representations. The total Hamiltonian for a given molecular
system can be expressed as a sum of the nuclear kinetic energy
operator T̂ and the electronic Hamiltonian operator V̂(r,̂ R̂) as
follows

̂ = ̂ + ̂ ̂ ̂H T V r R( , ) (1)

Here, r ̂ represents the coordinate operator of the electronic
degrees of freedom (DOF), and R̂ represents the coordinate
operator of the nuclear DOF.
Based on the Born−Oppenheimer approximation, it is

convenient to solve the eigenequation of the electronic
Hamiltonian operator at a given value of the nuclear coordinate
operator

̂ ̂ |Φ ⟩ = |Φ ⟩V Er R r R R r R( ; ) ( ; ) ( ) ( ; )i i i (2)

Here, |Φi(r; R)⟩ is the adiabatic state, i.e., the eigenstate of
V̂(r;̂ R). A majority of the commonly used electronic structure
methods are based on solving the above equation, providing
eigenenergies and eigenfunctions under this representation.
In the adiabatic representation, the total Hamiltonian in eq 1

is expressed as the following “vibronic Hamiltonian” operator
(with ℏ = 1)

∑

∑

̂ =
̂

+ |Φ ⟩⟨Φ |

−
̂

+ |Φ ⟩⟨Φ |
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

H
M

E

i
M

D

M

P
R r R r R

P
d R

R
r R r R

2
( ) ( ; ) ( ; )

( )
( )

2
( ; ) ( ; )

i
i i i

ij
ij

ij
i j

2

(3)

where dij(R) = ⟨Φi (r; R)|∇|Φj(r; R)⟩ is the derivative coupling
vector, Dij(R) = ⟨Φi(r; R)|∇2|Φj(r; R)⟩ is the second-derivative
coupling, and the diagonal terms Dii(R) are usually referred as
the Born−Oppenheimer (BO) corrections.
One can see that despite the compact expression of V̂(r;̂ R)

under its own eigenstates, the adiabatic states indeed make the
total Hamiltonian complicated, due to the fact that they are not

the eigenfunctions of the nuclear kinetic energy operator. Thus,
the adiabatic representation is not convenient for solving
quantum dynamics problems governed by the total Hamil-
tonian (eq 3), although it is well-suited for electronic structure
calculations (eq 2).
Alternatively, one can use the diabatic basis which is

independent of nuclear coordinates and, thus, make dij(R)
and Dij(R) vanish. It turns out that there are infinite ways to
choose the diabatic basis. One trivial way to construct diabatic
states is to simply use the adiabatic basis {|Φi(r; R0)⟩} at a
reference nuclear geometry R0. Then, the total Hamiltonian
operator becomes

∑̂ =
̂

+ |Φ ⟩⟨Φ |H
M

V
P

R r R r R
2

( ) ( ; ) ( ; )
i j

ij i j0 0

2

, (4)

with Vij(R) = ⟨Φi(r; R0)|V̂(r;̂ R)|Φj(r; R0)⟩. The above diabatic
basis are usually called the “crude adiabatic” basis (CAB).34−36

In this paper, we refer to CAB as the quasi-diabatic (QD) basis.
Compared to the adiabatic representation, the advantage of

the QD basis is that all of the derivative couplings vanish, and
the nonadiabatic transitions are only induced by the diabatic
coupling elements Vij(R). As a consequence, the total
Hamiltonian operator and the corresponding quantum
dynamics propagation adapt a simpler form in the QD
representation. However, because that the electronic wave
function changes rapidly with the motion of the nuclei, the QD
basis is convenient only when the nuclear geometry R is close
to the reference geometry R0.

Quasi-Diabatic (QD) Propagation Scheme. Now, we
provide a detailed description of the QD scheme that can
resolve the incompatibility between the diabatic dynamics
approaches and the adiabatic electronic structure methods.
Consider a short-time propagation of the nuclear DOF

during t ∈ [t1, t2], where the nuclear positions evolve from
R(t1) to R(t2) and the corresponding adiabatic states are
{|Φi(r; R(t1))⟩} and {|Φj(r; R(t2))⟩}. The key idea of the QD
scheme is to use the nuclear geometry at time t1 as the
reference geometry, R0 ≡ R(t1), and use the adiabatic basis
{|Φi(r; R(t1))⟩} as the quasi-diabatic basis during this short-
time quantum dynamics propagation, such that

|Φ ⟩ ≡ |Φ ⟩ ∈t t t tr R r R( ; ) ( ; ( )) , for [ , ]i i0 1 1 2 (5)

With the above QD basis, the derivative couplings vanish in a
trivial way, and V̂(r;̂ R) has off-diagonal elements. During the
next short-time propagation segment t ∈ [t2, t3], we use a new
reference geometry R0′ ≡ R(t2) and quasi-diabatic basis
|Φk′(r;R0′)⟩ ≡ |Φk(r; R(t2))⟩. With the nuclear geometry close
to the reference geometry in each step, the QD representation
remains to be a convenient and compact basis in each short-
term propagation segment. In addition, because of the diabatic
nature of the QD basis, one can use any diabatic-based
approach to propagate the quantum dynamics. These
approaches usually require diabatic energies, electronic
couplings, and nuclear gradients. Between [t1, t2] propagation
and [t2, t3] propagation segments, all of these quantities will be
transformed from {|Φi(r; R0)⟩} basis to {|Φ′k(r;R0′)⟩} basis.
Next, we briefly summarize how to obtain these electronic

couplings and nuclear gradients within the QD scheme. During
the t ∈ [t1, t2] short-time propagation, the electronic
Hamiltonian operator V̂ (r;̂ R(t)) is expressed as

= ⟨Φ | ̂ ̂ |Φ ⟩V t V tR r R r R r R( ( )) ( ; ) ( ; ( )) ( ; )ij i j0 0 (6)
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In practical on-the-fly calculations, the above quantity can be
obtained by a linear interpolation between Vij(R(t1)) and
Vij(R(t2)) as follows

25

= +
−
−

−V t V t
t t
t t

V t V tR R R R( ( )) ( ( ))
( )
( )

[ ( ( )) ( ( ))]ij ij ij ij1
1

2 1
2 1

(7)

Here, the matrix elements Vij(R(t1)) = ⟨Φi (r; R0)|V̂
(r;̂R(t1))|Φj (r; R0)⟩ = Ej(R(t1)) δij and the matrix elements
Vij(R(t2)) can be easily computed as follows

∑= ⟨Φ | ̂ ̂ |Φ ⟩†V t b b t V t tR r R r R r R( ( )) ( ; ( )) ( ; ( )) ( ; ( ))ij
kl

ik jl k l2 2 2 2

(8)

where ⟨Φk(r; R(t2))|V̂ (r;̂ R(t2))|Φl(r; R(t2))⟩ = El(R(t2)) δkl,
bik = ⟨Φi(r; R0)|Φk(r; R(t2))⟩ and b†jl = ⟨Φl(r; R(t2))|Φj(r;
R0)⟩. The above linear interpolation scheme can be further
improved in the future work; one potential choice is the
recently developed norm-preserving interpolation scheme.37,38

Similarly, the nuclear gradients on electronic Hamiltonian
matrix elements ∇Vij(R(t2)) ≡ ∂Vij(R(t2))/∂R are evaluated as

∑

∇ = ∇⟨Φ | ̂ ̂ |Φ ⟩

= ⟨Φ |∇ ̂ ̂ |Φ ⟩

= ⟨Φ |∇ ̂ ̂ |Φ ⟩ †

V t V t

V t

b t V t t b

R r R r R r R

r R r R r R

r R r R r R

( ( )) ( ; ) ( ; ( )) ( ; )

( ; ) ( ; ( )) ( ; )

( ; ( )) ( ; ( )) ( ; ( ))

ij i j

i j

kl
ik k l jl

2 0 2 0

0 2 0

2 2 2

(9)

Here, we have used the fact that {|Φi(r; R0)⟩} is a diabatic basis
during the [t1, t2] propagation, which allows moving the
gradient operator to bypass ⟨Φi(r; R0)|. In addition, we have
inserted the resolution of identity

∑ |Φ ⟩⟨Φ | =t tr R r R( ; ( )) ( ; ( )) 1
k

k k2 2

where we explicitly assume that this basis at nuclear position
R(t2) is complete. Note that {|Φk(r;R(t2))⟩} is an adiabatic
basis during this propagation step, due to the fact that R(t2) is a
changing geometry during the [t1, t2] propagation rather than a
fixed reference geometry. Since {|Φk(r;R(t2))⟩} are the
adiabatic states during this propagation step, we can directly
obtain ⟨Φk(r; R(t2))|∇V̂(r;̂ R(t2))|Φl(r; R(t2))⟩ from standard
electronic structure calculations.
Further, we emphasize that in the QD propagation scheme,

only ⟨Φk(r; R)|∇V̂(r;̂ R)|Φl(r; R)⟩ is needed. The derivative
couplings

=
⟨Φ |∇ ̂ ̂ |Φ ⟩

−
V

E E
d R

r R r R r R
R R

( )
( ; ) ( ; ) ( ; )

( ) ( )kl
k l

l k (10)

on the other hand, are not explicitly required. One should note
that dkl(R) can become singular due to the degeneracy of
eigenvalues, i.e., El(R) − Ek(R) = 0, even when ⟨Φk(r; R)|
∇V̂(r;̂ R)|Φl(r; R)⟩ is finite. Thus, the method that directly
requires derivative couplings might suffer from numerical
instabilities, whereas the QD propagation scheme will not.
In order to provide a detailed picture of the adiabatic,

diabatic, and quasi-diabatic basis, we consider a simple model
system. The model contains two electronic states and one
nuclear coordinate, with the potential operator V̂(R) = 0.5ω2R2

+ Δσ̂x + cRσ̂z, where the electron−phonon coupling is c = 1,
the phonon vibrational frequency is ω = 1, and the electronic
coupling is Δ = 0.1. This potential is illustrated in the inset of

Figure 1a. To simplify our discussion, we initiate the nuclear
trajectory on the diabatic state 1 (red surface in the inset of

Figure 1a) and constrain the motion of the trajectory on that
surface.
Figure 1a presents the matrix elements of the electronic

Hamiltonian in the diabatic representation, with diabatic
potential energy surfaces V11(R(t)) and V22(R(t)), as well as
a constant diabatic electronic coupling V12(R(t)) = Δ = 0.1. By
the model construction, the matrix elements of V̂ under the
diabatic representation exhibit smooth time evolution.
Figure 1b presents V̂(R) in the adiabatic representation. At

the avoided crossing region where the adiabatic wave functions
rapidly change their characters, the derivative coupling vector
d12(R) = ⟨Φ1(R)|∇|Φ2(R)⟩ starts to exhibit large peaks. These
rapid changes of d12(R) cause numerical challenges for direct
integration of TDSE (see eq 22 in Appendix A).
The situation becomes more complicated when considering

Born−Oppenheimer (BO) corrections ⟨Φi(R)|∇2|Φi(R)⟩/2M
for the adiabatic surfaces. As depicted in Figure 1c, even the
potentials Ei(R) + ⟨Φi(R)|∇2|Φi(R)⟩/2M are highly peaked due
to these BO corrections. Simply ignoring the BO corrections
might cause additional errors in approximate quantum
dynamics approaches.22,39

Figure 1d presents the V̂(R) in the quasi-diabatic
representation. Here, the off-diagonal electronic couplings
have small values due to the varying QD basis along the
propagation, as illustrated in the in the inset of this panel.
These couplings decrease to zero under the limit that t2 − t1 →
0, and the nonadiabatic transitions are purely induced by the
overlap between two consecutive QD bases ⟨Φj(r; R(t2))|Φi(r;
R(t1))⟩.
The QD representation provides several unique advantages

over the strict diabatic or adiabatic representation for quantum
dynamics propagations. On one hand, the QD basis are
constructed from the crude adiabatic basis, which can be easily
obtained from any widely used electronic structure calculations.
On the other hand, the diabatic nature of the QD basis makes
derivative couplings explicitly vanish and allows using any
diabatic dynamics approaches to perform on-the-fly propaga-
tion.

Figure 1. Time-dependent potentials and couplings for a model
system in (a) diabatic representation (inset: diabatic potential), (b)
adiabatic representation, (c) adiabatic representation with Born−
Oppenheimer corrections, and (d) quasi-diabatic representation
(inset: time-dependent electronic coupling).

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.7b01178
J. Chem. Theory Comput. 2018, 14, 1828−1840

1830

http://dx.doi.org/10.1021/acs.jctc.7b01178


Further, the QD representation ensures a stable propagation
of the electronic quantum dynamics compared to directly
solving TDSE in the adiabatic representation. This is due to the
fact that directly solving TDSE requires the nonadiabatic

coupling ⟨Φ | Φ ⟩ = ̇∂
∂t tr R r R d R R( ; ( )) ( ; ( )) ( )j t i ji , which might

exhibit highly peaked values and cause large numerical
errors37,38 when using the linear interpolation scheme.40 A
recently developed norm-preserving interpolation scheme37,38

addresses this issue by providing accurate values of non-
adiabatic couplings, resulting in a much more stable procedure
for integrating TDSE. The QD scheme, on the other hand,
explicitly alleviates this difficulty by using the well-behaved
transformation matrix elements ⟨Φj(r; R(t1))|Φi(r; R(t2))⟩

instead of ⟨Φ | Φ ⟩∂
∂t tr R r R( ; ( )) ( ; ( ))j t i . The numerical advant-

age of the QD scheme compared to the adiabatic propagation
scheme (i.e., solving the equation of motion for the adiabatic
mapping Hamiltonian in Appendix B) is thus most significant
when the derivative couplings are highly peaked. For example,
with the model system presented in Figure 1, our numerical
results suggest that one can use a relatively large time step in
the QD propagation scheme, whereas in the adiabatic mapping
propagation scheme, a time step that is at least 10 times smaller
is required to integrate the equation of motion in order to
obtain accurate results.
The essential idea of QD propagation can be dated back to

the Magnus expansion41 for solving TDSE. Similar schemes
have been developed25,30,32 to provide a stable integration of
TDSE, with one particular scheme25 provided in Appendix A.
However, we should emphasize that these previous applications
(which are mainly FSSH calculations) only use a QD scheme to
evolve the quantum amplitudes, whereas the nuclei are still
propagated on the adiabatic surfaces30,32 or with forces
expressed in the adiabatic representation.42 In this paper, we
expand the scope and the applicability of the QD scheme by
using it as a general framework to interface diabatic quantum
dynamics methods and adiabatic electronic structure calcu-
lations. In addition, we propagate both electronic and nuclear
DOF in the same QD representation.
Finally, the QD scheme allows using recently developed

diabatic quantum dynamics methods to perform on-the-fly
propagations and avoids additional efforts to reformulate these
approaches in the adiabatic representation. These new
dynamics methods include, but are not limited to, the
symmetrical quasi-classical (SQC) approach,9,43−46 quantum-
classical Liouville equation (QCLE) dynamics,14,47−50 quan-
tum-classical path integral (QCPI) approach,51−54 and non-
adiabatic ring polymer molecular dynamics (NRPMD)
approach.15 To illustrate this idea, we use the partial linearized
density matrix (PLDM) path-integral approach10,33 as one
specific example to perform quantum dynamics propagation
with the QD scheme.
Partial Linearized Density Matrix (PLDM) Path-

Integral Method. We provide a brief outline of the PLDM
approach.10,33 We begin with expressing the total Hamiltonian
in terms of nuclear kinetic energy and potential energy
operators

∑ α β̂ = ̂ + ̂ + ̂ | ⟩⟨ |
α β

αβH T V VR R( ) ( )0
, (11)

where {|α ⟩, |β ⟩} are the strict diabatic basis, Vαβ(R̂) is the
state-dependent potential, and V0(R̂) is the state-independent

potential. By using the mapping representation of Meyer−
Miller−Stock−Thoss55−57 to transform the discrete electronic
states into continuous variables, we have |α⟩⟨β| → a ̂α†aβ̂, where
̂ = ̂ − ̂α α α
† ( )a q ip / 2 . With this transformation, the non-

adiabatic transitions between electronic states are exactly
mapped onto the classical motion of fictitious harmonic
oscillators. Thus, MMST mapping Hamiltonian provides a
consistent classical footing for both electronic and nuclear
DOFs.
Applying a partial linearization approximation10 only to the

nuclear DOF and keeping the explicit propagation of the
electronic mapping DOF for both forward and backward paths,
we arrive at the PLDM expression for computing reduced
density matrix10,33

∫∑

ρ ρ α β

π
ρ

= ̂ | ⟩⟨ |

≈
ℏ

′ ′ ′ ̂ ′

αβ

γμ
γμ γα βμ

̂ ℏ − ̂ ℏ⎡⎣ ⎤⎦t e

d
d

d d d d G G T TR
P

q p q p

( ) Tr (0) e

2
[ (0) ]

iHt iHt
R

/ /

0 0
W

(12)

where

= + −γα α α γ γT q t t q
1
2

( ( ) ip ( ))( (0) ip (0))

and

′ = + −βμ μ μ β βT q q t t
1
2

( (0) ip (0))( ( ) ip ( ))

are the electronic transition amplitudes, and [ρ̂(0)γμ
W] is the

partial Wigner transform (with respect to the nuclear DOF) of
the γμth matrix element of the initial density operators ρ̂(0).
The initial distribution of electronic DOF is sampled from the
coherent state (Husimi) distribution, with G0(q,p) =

e−1/2∑ν(qν
2+pν

2) and G0′(q′,p′) = e−1/2∑ζ(q′ζ
2+p′ζ2).

Classical trajectories are used to evaluate the approximate
time-dependent reduced density matrix in eq 12. The forward
mapping variables are evolved based on the Hamilton’s
equations of motion10,33

̇ = ∂ ∂ ̇ = −∂ ∂α α α αq h p p h q/ ; /m m (13)

where hm is the classical mapping Hamiltonian10,58 with the
following expression

∑= +
αβ

αβ α β α βh V R p p q qR p q( , , )
1
2

( )( )m
(14)

The backward mapping variables are propagated with the
similar equations of motion governed by hm(R,p′,q′). The
nuclei are propagated with the force10

= +F F F0 e (15)

where F0 = −∇V0(R) is the state-independent force and Fe is
the state-dependent force with the following expression10

∑= − ∇ + + ′ ′ + ′ ′
αβ

αβ α β α β α β α β
⎡⎣ ⎤⎦V R p p q q p p q qF

1
4

( )e

(16)

PLDM uses consistent dynamical footing for both electronic
and nuclear DOFs and, thus, accurately describes their coupled
motion. In contrast, widely used mixed quantum-classical
methods such as Ehrenfest or FSSH1,5 treat quantum and
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classical DOFs on different footings, which causes the
breakdown of detailed balance6,7 or creating the artificial
electronic coherence.4,5 In addition, compared to the closely
related methods that fully linearize both mapping and nuclear
DOFs,50,59,60 PLDM retains full dynamical propagation along
both forward and backward paths for the mapping DOF, thus
achieving a more accurate description of the electronic
dynamics.10,14,61 PLDM has been successfully applied to
simulate a broad range of nonadiabatic processes, including
excitation energy transfer dynamics,33,62 electron transfer
reactions,61 and singlet fission quantum dynamics,63 as well as
nonlinear optical spectroscopy calculations.64

QD-PLDM Propagation. Combining the QD scheme and
the diabatic PLDM approach described in the previous sections,
we formulate the following algorithm for quantum dynamics
propagation:
(1) Sample the initial conditions of the nuclear DOF R(t1)

and + Δ( )tP t
1 2

based on the Wigner distribution [ρ̂(0)γμ
W],

where Δt = t2 − t1, and sample the mapping variables based on
the Husimi distribution G0(q,p) and G0′(q′,p′).
(2) Perform electronic structure calculations at t1 to obtain

the QD basis |Φi(r; R0)⟩ ≡ |Φi(r; R(t1))⟩.
(3) Propagate nuclear positions as

= + + Δ Δ⎜ ⎟⎛
⎝

⎞
⎠t t t

t
t MR R P( ) ( )

2
/2 1 1

perform electronic structure calculations at R(t2) to obtain the
adiabatic basis {|Φk(r; R(t2))⟩}.
(4) Compute the electronic Hamiltonian elements Vij(R(t))

based on eq 7 for t ∈ [t1, t2], as well as the nuclear gradients
∇Vij(R(t2)) based on eq 9.
(5) Propagate the forward and backward mapping variables

{q,p} and {q′,p′} by solving Hamilton’s equations of motion in
eq 13, with the electronic elements Vij(R(t)) computed from
step 4; propagate the nuclear momenta as

+ Δ = + Δ + Δ⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠t

t
t

t
t t MP P F R

2 2
( ( )) /2 1 2

with the force computed at nuclear position R (t2) based on eq
15.
(6) Transform the mapping variables into the new QD basis

|Φ′k(r;R′0)⟩ ≡ |Φk(r; R(t2))⟩ for the [t2, t3] propagation step,
with the following expressions: ∑i qi ⟨Φi(r; R(t1))|Φk(r;
R(t2))⟩ → qk and ∑i pi ⟨Φi(r; R(t1))|Φk(r; R(t2))⟩ → pk.
(7) Repeat steps 3−6.
Here, we would like to justify two technical choices in steps 5

and 6 of the above algorithm.
First, we transform the mapping variables between two bases,

with the expression provided in step 6. This expression is valid
due to the fact that the relations between two QD bases are
|Φk(r; R(t2))⟩ = ∑i ⟨Φi(r; R(t1))|Φk(r; R(t2))⟩|Φi(r; R(t1))⟩.
Since the mapping relation between the physical state and the
singly excited oscillator state is

|Φ ⟩ = | ⟩ = ̂ + ̂ | ⟩†t a q ipr R( ; ( )) 0
1
2

( ) 0k k k k2

the relations for the mapping variables associated with two
bases are

∑

|Φ ⟩ = ̂ + ̂ | ⟩

= ⟨Φ |Φ ⟩

× ̂ + ̂ | ⟩

t q ip

t t

q ip

r R

r R r R

( ; ( ))
1
2

( ) 0

( ; ( )) ( ; ( ))

1
2

( ) 0

k k k

i
i k

i i

2

1 2

(17)

For molecular systems, one can always find a suitable choice of
the basis set to make ⟨Φi(r; R(t1))|Φk(r; R(t2))⟩ real. Thus, it is
guaranteed that the mapping variables are transformed with the
same relations as the bases.
Second, the nuclear QD-PLDM force used in step 5 has the

same form of the PLDM force in the strict diabatic basis {|α⟩}.
This is valid based on the following analysis. Consider to
expand the strict diabatic basis as the linear combination of QD
basis, with |α⟩ = ∑i|Φi(r; R0)⟩⟨Φi(r; R0)|α⟩ = ∑αCiα|Φi(r;
R0)⟩. This implies that qα = ∑iCiαqi and pα = ∑iCiαpi. Plugging
these two expressions into the state-dependent PLDM force

∑= − ∇ + + ′ ′ + ′ ′
αβ

αβ α β α β α β α βV p p q q p p q qF R
1
4

( )[ ]e

we obtain the nuclear force in the QD representation as follows

∑

∑

= − ∇ + + ′ ′ + ′ ′

= − ∇ + + ′ ′ + ′ ′

αβ
α αβ βC V C pp q q p p q q

V pp q q p p q q

F R

R

1
4

( ) [ ]

1
4

( )[ ]

ij
i j i j i j i j i j

ij
ij i j i j i j i j

e

(18)

The current equations of motion for QD-PLDM are closely
related to those used in the adiabatic Forward−Backward (FB)-
QCLE,24 with the same nuclear force expression. In addition,
the QD-PLDM force shares a similar feature with the force in
the recently developed kinematically transformed KT-SQC,22

where the second-derivative couplings explicitly vanish.
However, both KT-SQC and adiabatic FB-QCLE do explicitly
require computing nonadiabatic coupling elements

⟨Φ | Φ ⟩ = ̇∂
∂t tR R d R( ( )) ( ( ))j t i ji in order to propagate the

mapping equations. Thus, these two approaches might
encounter numerical instability when these couplings are highly
peaked.
Finally, we would like to emphasize that the accuracy of QD-

PLDM will be limited by PLDM, i.e., the validity of partial
linearization approximation. Rather, the QD propagation
scheme provides a convenient framework that allows diabatic
dynamics approaches to directly uses electronic energies and
gradients in the adiabatic representation for quantum dynamics
propagation.

Details of Model Calculations. Model Systems. For the
model nonadiabatic systems investigated in this paper, the exact
expression of the Hamiltonian Ĥ = T̂ + ∑αβVαβ(R̂)|α⟩⟨β| is
available in the diabatic representation {|α⟩,|β⟩}. These
expressions, together with the model parameters are provided
in the Supporting Information.
The matrix elements of the electronic Hamiltonian Vαβ(R(t))

and the nuclear gradients in the diabatic representation
∇Vαβ(R(t)) are available and directly used in PLDM
propagations. For QD-PLDM propagations, the adiabatic
basis {|Φi(r; R(t))⟩} is obtained by diagonalizing the
Vαβ(R(t)) matrix, which is used as the QD basis. The matrix
elements of the electronic Hamiltonian and nuclear gradients
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are evaluated using eqs 6−8 and eq 9, respectively.
Alternatively, these elements can be easily computed by taking
advantage of the available diabatic basis, for example, as
Vij(R(t)) = ∑αβ⟨Φi(r; R0)|α⟩ Vαβ(R(t))⟨β|Φj(r; R0)⟩.
The initial conditions for all of the model systems are ρ̂(0) =

|ν⟩⟨ν|⊗ρ̂R, where |ν⟩ indicates the initial electronic diabatic
state and ρ̂R represents the initial nuclear density operator. For
nonadiabatic scattering and photodissociation calculations
presented in Figures 2−4, we use ρ̂R = |χ⟩⟨χ|, where

χ⟨ | ⟩ =
π
Γ − Γ − + ℏ −( ) eR iR R P R R2 1/4 ( /2)( ) / ( )0

2
0 0 represents a Gaus-

sian wavepacket centered around R0 and P0 with a width Γ. For
the condensed-phase model calculations presented in Figures 5
and 6, we assume that each nuclear DOF is represented by a
harmonic mode that has a canonical thermal density

ρ ρ= ̂ = ω− + ̂̂
eTr [ ] Tr [ ]k T

R R R R
R( )/m

mP2
2 2

2 2
B .

For PLDM and QD-PLDM calculations, the initial
conditions for nuclear and mapping DOFs are generated
from [ρ̂(0)γμ

W], and G0 and G0′, respectively. Here, the partial
Wigner transformations [ρ̂(0)γμ

W] = (ρR)
Wδγνδμν can be

performed analytically with the ρ̂R provided above, yielding

ρ
π

= − Γ − − − Γe( )
1

R
R R P PW ( /2)( ) ( ) /( /2)0

2
0

2

for the Gaussian wavepacket and (ρR)
W = 2tanh(ω/2kBT)

e−tanh(ω/2kBT)[mω(R−R0)
2+(P−P0)

2/mω] for the harmonic bath at a
finite temperature. The initial conditions of the forward and
backward mapping DOFs are sampled from G0, and G0′, except
for the results presented in Figures 3 and 4 where focused
initial conditions,65 qμ = qμ′ = δμν and pμ = −pμ′ = δμν, are used to
facilitate the convergence of the calculations. We used 105

trajectories for calculations with sampled initial conditions and
104 trajectories for calculations with the focused initial
conditions.
Atomistic Systems. We perform on-the-fly calculations for

the photoinduced charge separation dynamics with a model
organic photovoltaic (OPV) system. We use density the
functional tight-binding (DFTB) method with self-consistent
charge corrections for electronic structure calculations. DFTB
has proven to provide accurate electronic structures for model
OPV systems66,67 Here, we perform the on-the-fly calculations
at the DFTB3 level of theory,68 with the 3ob-3−1 Slater−
Koster parameter set69 as implemented in the DFTB+
package.70 Dispersion interaction between atoms are incorpo-
rated by using Lennard-Jones potential with UFF parameters.71

In this paper, we adapt a widely used approximation for
simulating the photoinduced charge transfer dynamics. We
assume that the time-dependent wave function for transferring
a single electron can be expressed as a linear combination of the
ground state DFTB molecular orbitals (MOs) (see Appendix A
for more information). This approximation has proven to
provide an accurate description of the photoinduced charge
transfer dynamics.28,72−76 To further reduce the computational
cost, we truncate the size of the MO basis to a smaller set which
contains LUMO to LUMO+9 orbitals. These are low-lying
orbitals that directly participate in the photoinduced charge
transfer process. We have carefully checked the convergence of
our truncation scheme compared to the propagation with the
entire set of MOs with the results provided in the Supporting
Information.
In the QD-PLDM scheme, the above approximation

corresponds to using the ground state DFTB MOs as the

QD basis to construct the classical mapping Hamiltonian in eq
14. The matrix elements of the electronic Hamiltonian are
calculated from eqs 6−8. To evaluate Vij(R(t2)) in eq 8, we
need to compute the overlap between two bases bik = ⟨ Φi(r;
R0)|Φk(r; R(t2))⟩. This can be easily computed in the atomic
orbita l (AO) basis , for example, |Φ i(r ; R0)⟩ =
∑μCμi(R0)|φμ(r,R0))⟩ with expansion coefficient Cμi(R0).
Thus, the overlap between two adiabatic bases can be
computed as

∑⟨Φ |Φ ⟩ =
μν

μ ν μνt C C t Sr R r R R R( ; ) ( ; ( )) ( ) ( ( ))i k i k0 02 2

(19)

where Sμν = ⟨φμ(r; R0)|φν(r; R(t2))⟩ is the overlap between
two AOs at two different time steps. These overlap integrals are
evaluated with our in-house version of the DFTB+ code.
The initial electronic state is chosen to be one of the MOs of

the entire system. To model the photoinduced charge transfer
dynamics between donor and acceptor molecules, we choose
the initial MO as |Φi(r; R)⟩, such that it maximizes the overlap
⟨ΦLUMO

D |Φi(r; R)⟩. Here, |ΦLUMO
D ⟩ is the LUMO orbital of the

donor moiety as obtained from the DFTB calculation of the
isolated donor. This provides a reasonable single-electron
picture of the localized photoexcitation of the system.28,74 We
use eq 19 to compute the overlap ⟨ΦLUMO

D |Φi(r; R)⟩ and simply
assume that |ΦLUMO

D ⟩ has zero expansion coefficients over the
AOs on the acceptor moiety.
Between two consecutive short-time QD-PLDM propaga-

tions, we need to transform the mapping variables from the old
QD basis { |Φ i(r; R(t1))⟩} to the new QD basis
{|Φk(r; R(t2))⟩}. As discussed in the QD-PLDM theory
section, this requires expressing QD state vectors {|Φk(r;
R(t2))⟩} in terms of the previous basis as

∑|Φ ⟩ = ⟨Φ |Φ ⟩|Φ ⟩t t t tr R r R r R r R( ; ( )) ( ; ( )) ( ; ( )) ( ; ( ))k
i

i k i2 1 2 1

(20)

However, the new QD vectors do not necessarily maintain their
mutual orthogonality when they are expressed in terms of the
previous QD basis. The reason is that {|Φi(r; R(t1))⟩} is no
longer a complete basis for representing |Φk(r; R(t2))⟩.
Without a proper orthonormalization, the total population
will gradually decay from unity. To alleviate this problem, we
perform the Gram−Schmidt orthonormalization procedure
among vectors ⟨Φ(r; R(t1))|Φk(r; R(t2))⟩ for all k. This is a
valid procedure for single electron bases (MOs) used here. In
future implementation, a similar procedure can be easily
accomplished for many-electrons basis (for example, Slater
determinants) by using the Löwdin orthogonalization meth-
od.32,77,78

With the time-dependent reduced density matrix ρij(t)
obtained from QD-PLDM propagation, we characterize the
photoinduced charge transfer dynamics by computing the time-
dependent charge population on molecule N with the following
expression28,72

∑ ∑ ρ=
μ

ν

μ μν ν
∈

P t t C t S C tR R( ) Re ( ) ( ( )) ( ( ))N
N ij

ij i j
(21)

with the AO coefficients Cμi(R(t)) and AO overlap matrix Sμν =
⟨φμ(r,R(t))|φν(r,R(t))⟩. We emphasize that our focus in this
paper is to examine the accuracy of the QD propagation
scheme, rather than providing the physical dynamics of the
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photoinduced charge transfer process. Thus, we choose to
adapt the classical path approximation (CPA)28,53,72,76,79 that
ignores the back reaction from electronic nonadiabatic
transitions to the motion of the nuclei. Based on this
approximation, we use the DFTB ground state force, F0, to
propagate the motion of the nuclei. The mapping variables are
propagated with the QD-PLDM equations of motion that
parametrically depend upon the nuclear positions. In addition,
we only present the quantum dynamics results with a single
nuclear trajectory in order to conveniently demonstrate the
accuracy of QD-PLDM. Further, we choose to use the classical
Boltzmann distribution instead of the Wigner distribution (as
required by PLDM) to simplify our calculations.
We generate the initial conditions with the following

procedure. First, we equilibrate the system under the NVT
ensemble with the Nose−́Hoover chain thermostat as
implemented in the DFTB+ package for 30 ps with a 0.5 fs
nuclear time step. The trajectory is further equilibrated with 5
ps-long NVE dynamics, which produces the initial condition for
the single nuclear trajectory. For QD-PLDM quantum
dynamics propagation, the nuclear time step is 0.1 fs, and the
electronic time step for propagating the mapping equations is
10−3 fs. The initial conditions of the mapping variables are
sampled from the Husimi distribution governed by G0(q, p)
and G0′(q′, p′), with 104 various configurations (mapping
trajectories). The same numerical result is also obtained by
using a single mapping trajectory with focused initial
conditions.65

Under the above simplifications, QD-PLDM equations
generate exactly the same results as obtained by numerically
solving TDSE.56,57 Thus, we directly compare the results
obtained from QD-PLDM with the numerical solution of
TDSE in the adiabatic representation to validate the accuracy of
the QD propagation scheme.

■ RESULTS AND DISCUSSIONS

Figure 2 presents the results of Tully’s three nonadiabatic
scattering systems5 with (a) single avoided crossing (Tully’s

model I), (b) dual avoided crossing (Tully’s model II), and (c)
extended coupling with reflection (Tully’s model III). These
results are obtained from diabatic PLDM propagation, QD-
PLDM, and numerical exact split-operator Fourier transform
method. Initial nuclear conditions are sampled from a Gaussian
wavepacket, with Γ = 1 au, R0 = −9.0 au, and P0 = 30. a.u.
Figure 2a−c provides both population (ρ11(t) in red and ρ22(t)
in green), as well as electronic coherence (Re[ρ12(t)] in
magenta and Im[ρ12(t)] in blue). QD-PLDM gives the same
results as those obtained from PLDM, both of which are almost
identical with the numerical exact results. Finally, Figure 2d
presents the asymptotic diabatic population of Tully’s model II
as a function of the center momenta P0 = ℏk for the initial
nuclear wavepacket. Again, QD-PLDM provides the same

Figure 2. Diabatic state population of Tully’s nonadiabatic scattering
models with (a) model I, (b) model II, and (c) model III. Results are
obtained from PLDM (open circles), QD-PLDM (solid), and
numerical exact calculations (dash). (d) Asymptotic diabatic
population of model II as a function of various center momenta P0
= ℏk of the initial nuclear wavepacket.

Figure 3. (Left) Diabatic potentials for photodissociation models with
black arrows indicating the vertical Franck−Condon photoexcitations.
(Right) The corresponding diabatic state populations, obtained from
PLDM (open circles), QD-PLDM (solid lines), and numerical exact
calculations (dashed lines).

Figure 4. Quantum dynamics in a conical intersection model of
pyrazine with (a) diabatic population of state |2⟩, (b) average
momentum of the 6a mode, (c) average momentum of the symmetric
mode, and (d) average position of the 6a mode. Results are obtained
from PLDM (open circles), QD-PLDM (solid lines), and numerical
exact calculations (dashed lines).
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results as the diabatic PLDM, and both are close to the
numerical exact ones.
Figure 3 presents the results of photodissociation dynamics

of three coupled Morse potentials.80,81 The left panels provide
the diabatic potentials, with state |1⟩ in red, |2⟩ in green, and |3⟩
in blue. The vertical arrows indicate the positions of
photoexcitations that promote the ground state wavepacket
up to the diabatic state |1⟩. Figure 3a−c on the right-hand side
presents the population dynamics obtained from PLDM, QD-
PLDM, and numerical exact calculations, with the same color
coding used in the potential curves on the left-hand side. In all
three test cases, QD-PLDM yields the same results as PLDM,
both of which are close to the numerical exact results.
Figure 4 presents the results for a two-state, three-mode

conical intersection model.82−84 Here, the three modes are
indicated as Rj ∈ {R1, R6a, R10a}, and the model Hamiltonian
has the following form

∑ ∑ ∑ω α α

λ

̂ = + + + | ⟩⟨ |

+ | ⟩⟨ | + | ⟩⟨ |

α
α

α
⎡
⎣
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⎤
⎦
⎥⎥H P R E c R

R

1
2

[ ]

[ 1 2 2 1 ]

j
j j j

j
j j

a

2 2 2

10

All of the parameters are provided in the Supporting
Information. The nonadiabat ic coupl ing element

⟨Φ | |Φ ⟩∂
∂t tR R( ( )) ( ( ))

t1 2 and derivative coupling vector diverge

near the conical intersection, creating numerical challenges for
directly solving TDSE (eq 24). The QD scheme avoids this
challenge because it only requires ⟨Φ1(R(t1))|Φ2(R(t2)⟩ for the
basis transformation during the dynamical propagation. Figure
4 demonstrates that QD-PLDM exactly reproduces the diabatic
PLDM results, with (a) the diabatic population of state |2⟩ and
(b)−(d) expectation values of the nuclear positions and
momenta. In addition, both PLDM and QD-PLDM provide
reasonable accuracy compared to the numerical exact results.
To test the QD scheme for condensed-phase simulations,

now we move to a spin-boson Hamiltonian expressed as Ĥ =
∑j[P̂j

2/2 + ωj
2R̂j

2/2 + cjR̂j σ̂z] + ϵ σ̂z/2+Δσ̂x, with electronic bias
ϵ, electronic coupling Δ, and the system-bath coupling cj for a

given spectral density ω δ ω ω= ∑ −π
ω

J( ) ( )j
c

j2
j

j

2

. Here, we use

100 discretized harmonic modes to sample the spectral density
ω ξω= π ω ω−J e( )

2
/ c, where ξ is the Kondo parameter and ωc is

the cutoff frequency (peak of the spectral density). For the
model calculations in this paper, we use Δ = 1 and ωc = 2.5
(Figure 5a−c) or ωc = 1 (Figure 5d). The Wigner distribution
for the bath modes is centered around R0j = −cj/ωj

2 and P0 = 0.
Figure 5 presents the results of spin-boson model with

various electronic biases and temperatures. QD-PLDM
provides identical results compared to PLDM in all cases,
which are close to the exact results obtained from quasi-
adiabatic propagator path integral (QUAPI) calculations.85,86

The most significant deviation between QD-PLDM and exact
result can be seen in panel (c), where linearization
approximation becomes less accurate at low temperature.
However, we can always systematically improve the accuracy of
the results with an iterative propagation scheme,14,23 which can
be easily implemented in the QD representation.
Figure 6 presents the quantum dynamics results for an

excitation energy transfer (EET) model system.87 This Frenkel
exciton model is expressed as Ĥ = Ĥe+ Ĥep. The electronic part
of the Hamiltonian is Ĥe = ∑αϵα|α⟩⟨α| + ∑α≠γΔαγ|α⟩⟨γ|, with

singlet excitation energy ϵα on chromophore α and electronic
coupling Δαγ between two single excitations |α⟩ and |γ⟩. The
electron−phonon interaction Hamiltonian is

∑ ∑ ω α α̂ = ̂ + ̂ + ̂ | ⟩⟨ |
α α

α α α α α

⎡
⎣⎢

⎤
⎦⎥H P R c R

1
2

( )
j

j j j j jep
2 2 2

where each state |α⟩ is coupled to a set of independent
harmonic bath modes {Rjα}. Here, we use the model parameters
of the Fenna−Matthews−Olson (FMO) complex that contains
seven chromophores.87 In addition, we use 60 modes to sample
the spectral density J(ω) = 2λωτ/(1 + (ωτ)2) for each bath,
where the reorganization energy is λ = 35 cm−1, and the solvent
response time is τ = 50 fs. The parameters for Ĥe as well as the
sampling procedure for the spectral density are provided in the
Supporting Information. The Wigner distribution for each bath
mode is centered around R0 = 0 and P0 = 0. In Figure 6, the
diabatic state population obtained from PLDM and QD-PLDM
are compared to the exact results obtained from hierarchy
equations of motion (HEOM) approach,87,88 with initial
excitation from (a) state |1⟩ and (b) state |6⟩. As can be

Figure 5. Quantum dynamics for spin-boson model with various bias ϵ
and temperature with (a) ϵ = 0, (kBT)

−1 = 0.1, ξ = 0.09, (b) ϵ = 0,
(kBT)

−1 = 0.4, ξ = 0.13, (c) ϵ = 1, (kBT)
−1 = 5.0, ξ = 0.1, and (d) ϵ = 1,

(kBT)
−1 = 0.25, ξ = 0.1. Results are obtained from PLDM (open

circles), QD-PLDM (solid lines), and numerical exact calculations
(filled circles).

Figure 6. Population dynamics for excitation energy transfer (EET)
process in a model Fenna−Matthews−Olson (FMO) complex.
Diabatic state populations with an initial excitation on (a) state |1⟩
or (b) state |6⟩ are presented. Results are obtained from PLDM (open
circles), QD-PLDM (solid lines), and numerical exact calculations
(dashed lines).

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.7b01178
J. Chem. Theory Comput. 2018, 14, 1828−1840

1835

http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.7b01178/suppl_file/ct7b01178_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.7b01178/suppl_file/ct7b01178_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.7b01178/suppl_file/ct7b01178_si_001.pdf
http://dx.doi.org/10.1021/acs.jctc.7b01178


clearly seen, QD-PLDM exactly reproduces PLDM results,
which are almost identical to the numerical exact results.
Finally, Figure 7 presents the results of the on-the-fly

quantum dynamics in a model phthalocyanine dimer/fullerene
(2H2Pc/C60) system. This system was recently explored as a
model to understand photoinduced charge transfer dynamics in
organic photovoltaics.89,90 Figure 7a presents the time-depend-
ent MO energies of LUMO to LUMO+6, computed from a
single nuclear trajectory. Figure 7b presents the MO
populations (adiabatic populations) obtained from QD-
PLDM (solid lines) and numerical solution of TDSE (open
circles), with details presented in Appendix A. The QD-PLDM
scheme provides identical results compared to TDSE, as
expected under this single trajectory, classical path limit. Figure
7c presents the electron density of the most populated MO at a
given time, with boxes that have the same color coding in panel
(a) to indicate the corresponding MOs. Figure 7d presents the
time-dependent charge population (eq 21) on each H2Pc
molecule as well as on C60 moiety computed from the QD-
PLDM scheme (solid lines), which is same as obtained from
the numerical solution of TDSE (open circles). Note that the
single nuclear trajectory result presented here is not physically
meaningful; the purpose of this calculation is to validate the
accuracy of QD propagation scheme.

■ CONCLUSIONS

We have developed a quasi-diabatic (QD) scheme that allows
interfacing diabatic quantum dynamics approaches with
commonly used adiabatic electronic structure calculations.
This scheme uses crude adiabatic states as the quasi-diabatic
basis during a short-time quantum propagation, thus taking
advantage of both the compactness of QD basis obtained from
adiabatic electronic structure calculations as well as the diabatic

nature of the QD basis for quantum dynamics propagation.
Between two consecutive short-time propagations, the
electronic state basis is transformed from the old to the new
QD representation. Using a partial linearized path integral
approach as one particular example, we have demonstrated the
accuracy of the QD scheme with a wide range of model
nonadiabatic problems as well as the on-the-fly model
calculations. This study opens the possibility to combine
accurate diabatic quantum dynamics methods with adiabatic
electronic structure calculations for on-the-fly quantum
dynamics propagation.

■ APPENDIX A: NUMERICAL METHODS FOR
SOLVING TIME-DEPENDENT SCHRÖDINGER
EQUATION

Here, we provide the numerical method for solving the time-
dependent Schrödinger equation (TDSE) in the adiabatic
representation. For atomistic calculations in this paper, TDSE is
governed by a predetermined nuclear trajectory R(t), with

ℏ ∂
∂

|Ψ ⟩ = ̂ ̂ |Ψ ⟩i
t

t t V t t tr R r R r R( ; ( ), ) ( ; ( )) ( ; ( ), )
(22)

To obtain the numerical solution of the above equation, we
assume that this time-dependent wave function can be
expanded as a linear combination of the instantaneous
molecular orbitals (adiabatic state, single particle basis)

∑|Ψ ⟩ = |Φ ⟩t t c t tr R r R( ; ( ), ) ( ) ( ; ( ))
i

i i
(23)

where ci(t) is the time-dependent expansion coefficient.
Plugging the above ansatz into TDSE (eq 22), we have the
following differential equation for the time-dependent
expansion coefficients

Figure 7. (a) Time-dependent MO energies (LUMO to LUMO+6) in a 2H2 Pc/C60 model system. (b) MO populations of the corresponding
orbitals with the same color coding as in panel (a), obtained from QD-PLDM (solid lines) and the numerical integration of TDSE (open circles). (c)
The electron density of the most populated MO at a given time, with boxes that have the same color coding as in panel (a) to indicate the
corresponding MOs. (d) Time-dependent charge populations (eq 21) on each H2PC molecule (red and green) and C60 moiety (blue) computed
with QD-PLDM (solid lines) and the numerical integration of TDSE (open circles).
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∑

̇ = −
ℏ

− ⟨Φ | ∂
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Φ ⟩

c t
i

c t E t

c t t
t

t

R

r R r R

( ) ( ) ( ( ))

( ) ( ; ( )) ( ; ( ))

j j j

i
i j i
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Note that the nonadiabatic coupling elements

⟨Φ | ∂
∂

Φ ⟩t
t

tr R r R( ; ( )) ( ; ( ))j i

are related to the derivative coupling vectors through following
relation

⟨Φ | ∂
∂

Φ ⟩ = ⟨Φ |∇|Φ ⟩ ̇t
t

t t tR r R r R r R R( ( )) ( ; ( )) ( ; ( )) ( ; ( ))j i j i

(25)

Here, we directly solve eq 24 with the fourth-order Runge−
Kutta numerical integration method.
To compute the nonadiabatic couplings (eq 25), we adapt a

well-established approximation40

τ
τ τ⟨Φ| ∂

∂
Φ⟩ = ⟨Φ |Φ + ⟩ − ⟨Φ + |Φ ⟩⎡⎣ ⎤⎦t

t t t t
1

2
( ) ( ) ( ) ( )j i j i j i

(26)

where we use the shorthand notation |Φj(t)⟩ ≡ |Φj(r; R(t))⟩.
This quantity needs to be carefully calculated by following the
random phases generated from electronic structure calculations
for the MOs.26,27,91 We should note that there is a recently
developed norm-preserving interpolation scheme37,38 which
outperforms the linear interpolation scheme presented above
and provides a more stable integration of TDSE.
We perform DFTB calculations to obtain the time-depend-

ent MOs. These MOs are expressed as linear combinations of
the atomic orb i ta l s (AOs) as |Φ i(r ; R( t))⟩ =
∑μCμi(R(t))|φμ(r,R)), with Cμi(R(t)) obtained from solving
DFTB eigenequations. Thus, the overlap between two adiabatic
basis in eq 26 can be computed as

∑
τ

τ τ

⟨Φ + |Φ ⟩

= + +
μν

μ ν μν

t t

C t C t S t t

r R r R

R R

( ; ( )) ( ; ( ))

( ( )) ( ( )) ( , )

j i

j i
(27)

Here, Sμν(t + τ, t) is the overlap between two atomic orbitals
(AOs) at two different time steps

τ φ τ φ+ = ⟨ + | ⟩μν μ νS t t t tr R r R( , ) ( , ( )) ( , ( )) (28)

These AO overlap integrals are explicitly evaluated with our in-
house version of DFTB+ code.
In addition, we provide an alternative numerical procedure

that explicitly avoids computing nonadiabatic couplings in eq
26. Starting with an ansatz that propagates the wave function
from t1 to t2 with a duration τ = t2 − t1

|Ψ ⟩ = |Ψ ⟩τ− ℏ ̂ ̂t t t tr R r R( ; ( ), ) e ( ; ( ), )i V tr R
2 2

/ ( ; ( ))
1 1

1 (29)

and plugging the time-dependent wave function (eq 23) into
the above equation, we have

∑|Ψ ⟩ = |Φ ⟩τ− ℏ ̂ ̂t t c t tr R r R( ; ( ), ) e ( ) ( ; ( ))i V t

i
i i

r R
2 2

/ ( ; ( ))
1 1

1

(30)

Operating V̂(r;̂ R(t1)) on |Φi(r; R(t1))⟩ and projecting ⟨Φj(r;
R(t2))| on both sides of the equation, we obtain the time-
dependent expansion coefficients as follows

∑= ⟨Φ |Φ ⟩τ− ℏc t c t t tr R r R( ) ( )e ( ; ( )) ( ; ( ))j
i

i
i E t

j i
R

2 1
/ ( ( ))

2 1
i 1

(31)

A symmetric version of this scheme has been previously
developed to solve TDSE,25−28 which is closely related to the
Magnus expansion25,41 and the QD scheme30 for integrating
TDSE. This scheme removes all possible singularities associated
with the nonadiabatic couplings by using ⟨Φj(r; R(t2))|Φi(r;
R ( t 1 ) ) ⟩ , i n s t e a d o f e x p l i c i t l y e v a l u a t i n g

⟨Φ | Φ ⟩∂
∂t tR r R( ( )) ( ; ( ))j t i . Thus, it provides a more stable

integration of TDSE when nonadiabatic couplings are highly
peaked. Both schemes provide the same numerical results for
the model presented in this paper, with a 0.1 fs time step.
We briefly comment on two crucial aspects of the

propagation scheme outlined in eqs 30 and 31. First, it is
easy to show that this short-time propagation scheme is
equivalent to the direct numerical solution of the TDSE. Let t1
= t, t2 = t + τ and expand the terms e−iτ/ℏEi(R(t)) and ⟨Φj(r; R(t +
τ))| of eq 31 up to the linear order with respect to τ as follows

∑τ τ

τ

+ = −
ℏ

× ⟨Φ | + ∂
∂

Φ |Φ ⟩

⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

c t c t
i

E t

t
t

t t

R

r R r R r R

( ) ( ) 1 ( ( ))

( ; ( )) ( ; ( )) ( ; ( ))

j
i

i i

j j i

(32)

Also notice the fact that

δ∂
∂
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∂
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t
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which leads to
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In addition, using the relations cj̇(t) = [cj(t + τ) − cj(t)]/τ and
⟨Φj(r; R(t))|Φi(r; R(t))⟩ = δij, eq 32 can be rewritten (up to
linear order of τ) as eq 24.
Second, this propagation scheme is closely related to the

mapping variables propagation in the QD-PLDM scheme that
we have introduced in the main text. Based on the MMST

mapping relation, we have = +( )c q ip / 2j j j . Plugging this

expression into eq 31, we have the following equations for
mapping variables
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(34)

Under the limit τ → 0, Vij(R) → 0, the classical mapping
Hamiltonian used in QD-PLDM becomes

∑= +h E p qR p q R( , , )
1
2

( )( )
i

i i im
2 2
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The mapping variables will evolve as free harmonic oscillators
(due to the zero electronic coupling elements) with the
corresponding time-dependent evolution appearing in the
square brackets of eq 34. The rest of the expressions
correspond to the basis transform performed in step 7 of the
QD-PLDM scheme in the main text.

■ APPENDIX B: MMST HAMILTONIAN IN ADIABATIC
REPRESENTATION

Here, we briefly outline the adiabatic MMST Hamiltonian.
Applying mapping representation for the adiabatic states
|Ψi(R)⟩⟨Ψj(R)| → a ̂†i aĵ, the “vibronic Hamiltonian” operator

in eq 3 can be written as23 ̂ = + ̂̂
H h

M
P

2 m

2

, where
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(35)

Note that the vibronic Hamiltonian in eq 3 can also be
written as22

∑

∑ δ
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where the second-derivative coupling does not explicitly appear
but will indeed arise22 through the noncommutivity between P̂
and dij(R). Directly applying mapping representation for the
adiabatic states of the above vibronic Hamiltonian in eq 36
leads to the standard adiabatic MMST Hamiltonian8,22 as
follows

∑ ∑̂ = + ̂ ̂ + ̂ + ̂ −
⎛
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⎞
⎠
⎟⎟H
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1
2
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1
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ij

i j ij
i

i i im

2

2 2

(37)

Approximate quantum dynamics approaches developed in
the adiabatic mapping Hamiltonian will contain dij(R) and
Dij(R) terms. For example, after evaluating the path-integral
expression of the quantum propagator with the Hamiltonian in
eq 35 or eq 37 and performing the linearization approximation,
the forces that act on the nuclear DOF will contain ∇hm or
∇Hm, which requires the evaluation of the dij(R) and Dij(R), or
the gradients of them.
Thus, the MMST theory in the adiabatic representation

significantly increases the complexity for quantum dynamics
propagations. Recent theoretical developments have shown
encouraging progress to remove these terms in the nuclear
force expression through kinematic momentum transforma-
tion22 or quantum-classical Liouville formalism.24 In the QD
propagation scheme, these derivative couplings vanish due to
the diabatic nature of quasi-diabatic states, providing a
convenient framework for quantum dynamics propagation.
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