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ABSTRACT: We apply a recently proposed ring polymer
surface hopping (RPSH) approach to investigate the real-time
nonadiabatic dynamics with explicit nuclear quantum effects.
The nonadibatic electronic transitions are described through
Tully’s fewest-switches surface hopping algorithm and the
motion of the nuclei are quantized through the ring polymer
Hamiltonian in the extended phase space. Applying the RPSH
method to simulate Tully’s avoided crossing models, we
demonstrate the critical role of the nuclear tunneling effect and
zero-point energy for accurately describing the transmission
and reflection probabilities with low initial momenta. In
addition, in Tully’s extended coupling model, we show that the ring polymer quantization effectively captures decoherence,
yielding more accurate reflection probabilities. These promising results demonstrate the potential of using RPSH as an accurate
and efficient method to incorporate nuclear quantum effects into nonadiabatic dynamics simulations.

Q uantum mechanical effects, such as electronic non-
adiabatic transitions and nuclear quantum effects, play

an important role in a wide range of chemical reactions. For
example, the rate and mechanism of proton-coupled electron
transfer (PCET) reactions1−9 are significantly influenced by
these quantum effects. As a result, classical molecular dynamics
simulations are not capable of describing such processes.
Despite impressive recent progress in numerically exact
quantum dynamics methods, simulating these processes in
large complex systems remains computationally challenging.
The alternative approach is to develop approximated,
trajectory-based quantum dynamics methods that are capable
of accurately describing these quantum effects.
Electronic nonadiabatic effects have been successfully

incorporated in the mixed quantum−classical approaches,
including Ehrenfest dynamics,10−12 fewest-switches surface
hopping (FSSH),13,14 and mixed quantum−classical Liouville
dynamics (MQCL).15,16 Continuous efforts are also being
made on incorporating these effects into the semiclassical initial
value representation (SC-IVR)17 and its linearized ver-
sions.18−23 FSSH turned out to be one of the most widely
used methods24−26 because it is computationally efficient and
conceptually simple,13 representing a quantum wavepacket with
an ensemble of independent classical trajectories. The classical
trajectories are propagated on one single adiabatic surface,
except instantaneous nonadiabatic transitions (hops) to the
other surfaces based on the fewest-switches criterion.13 The
probability of hopping is determined with the quantum
amplitudes obtained from the time-dependent Shrödinger
equation along the motion of the classical trajectories.13

Despite the success of FSSH in studying nonadiabatic
dynamics, it has well-known shortcomings.25,26 First, the

classical trajectories can not properly describe nuclear quantum
effects such as nuclear tunneling and zero-point energy (ZPE).
Second, FSSH suffers from neglecting decoherence.27−31

Although there have been a considerable number of attempts
to resolve these shortcomings,31−38 the classical trajectories
used in these methods still hamper the accurate description of
quantum dynamics when nuclear quantum effects play an
important role.
Imaginary-time path-integral approaches, including centroid

molecular dynamics (CMD)39,40 and ring polymer molecular
dynamics (RPMD),41 have been successfully developed and
applied to investigate nuclear quantum effects and electronic
nonadiabatic dynamics in large-scale condensed-phase simu-
lations.42 In these methods, nuclear quantum effects are
captured with the Feynman’s imaginary-time path-integral
formalism, leading to a ring polymer classical isomorphism
that describes ZPE and tunneling effects in the extended
classical phase space.42 Despite its success in describing
quantum effects in the condensed phase, the regular RPMD
approach is limited to one-electron nonadiabatic dynamics or
nuclear quantization,5,42 as well as the lack of the real-time
electronic coherence effects.42,43 To address these challenges,
recent efforts have been focused on developing CMD44 and
RPMD approaches with the many-electronic-states representa-
tion.45−50

Among the recently developed state-dependent RPMD
approaches, ring polymer surface hopping (RPSH)45,51 is one
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of the potentially promising methods for simulating non-
adiabatic dynamics. In RPSH method, the nonadiabatic
electronic transitions are described by the FSSH algorithm,
and the nuclear quantum effects are incorporated through ring
polymer quantization, thus making RPSH a well-tailored
theoretical tool for describing the electronic and nuclear
quantum dynamics. This method has been demonstrated to
give an accurate rate constant for a model barrier crossing
problem when nuclear quantization plays an essential role.45

Hence, we apply the RPSH method45 to investigate electronic
nonadiabatic dynamics in Tully’s Model systems with explicit
nuclear quantization.
We begin with a brief summary of the RPSH algorithm with

the centroid approximation.45 In this algorithm, the entire ring
polymer moves on a single adiabatic state |α;Ri⟩, with the
corresponding Hamiltonian expressed in the extended classical
phase space
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Here, n is the total number of beads, ωn = n/βℏ, β = 1/kBT is
the reciprocal temperature, and Vα(Ri) = ⟨α;Ri|V̂|α;Ri⟩ is the
potential energy surface (PES) for the adiabatic state |α;Ri⟩.
The corresponding Hamilton’s equations of motion for the ring
polymer are then expressed as follows
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The centroid of the ring polymer position and momentum
are defined as
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and the time-dependent Shrödinger’s equation is numerically
integrated along the motion of the ring polymer centroid. This
gives the electronic coefficients cα associated with each adiabatic
state based on the following equation

∑ℏ ̇ = ̅ − ℏ ̅̇ · ̅α α α
γ

αγ γc t V c t c tR R d Ri ( ) ( ) ( ) i ( ) ( )
(4)

From now on, we use the atomic units such that ℏ = 1. The
energy of the adiabatic state Vα(R̅) = ⟨α;R̅|V̂|α;R̅⟩ depends on
the centroid position R̅, and the nonadiabatic coupling vector
between the two adiabatic states α and γ is

α γ̅ = ⟨ ̅ |∇ | ̅ ⟩αγ ̅d R R R( ) ; ;R (5)

According to the “fewest-switches” algorithm, the probability of
switching from the current state α to all of the other states γ
during the time interval between t and t + δt is

ρ δ

ρ
=

− * ̅̇ · ̅
αγ

γα γα

αα
g

tR d R2Re( ( ))

(6)

where ραγ = cαcγ* is the electronic density matrix element. The
nonadiabatic transition, that is, the stochastic switch to any
other state γ, is determined by comparing gαγ to a randomly
generated number between 0 and 1. The transition occurs if the
probability flux gαγ is greater than the random number.

If a transition occurs, the entire ring polymer hops to the new
adiabatic state γ, while the velocity of each bead in the ring
polymer is rescaled along the direction of the centroid
nonadiabatc coupling vector dαγ(R̅) in order to conserve energy

λ̇ ′ = ̇ − ̅αγ αγ MR R d R( )/i i (7)

The universal scaling constant λαγ is calculated with the smallest
magnitude obtained from the following expression14,52

λ = ± +αγ
αγ

αγ αγ αγ αγa
b b a c

1
[ 2 ]2

(8)

where aαγ = dαγ
2(R̅)/M, = ̅̇ · ̅αγ αγb R d R( ), and cαγ = Vα(R̅) −

Vγ(R̅). It should be noted that this velocity algorithm conserves
the energy at the centroid level, and the results presented in this
Letter were obtained with this algorithm. Alternatively, one can
conserve the energy for the entire ring polymer45 using

= ∑ − ∑αγ α γc V VR R( ) ( )
n i n ii i
1 1 . Additional results for veloc-

ity rescaling based on ring polymer energy conservation are
presented in the Supporting Information.
The nonadiabatic transition (hop) will be rejected if there is

not enough kinetic energy to compensate for the change of
potential energy, and then the ring polymer will continue to
evolve on the adiabatic state α without any velocity reversal
procedure.53

We emphasize that in the one-bead or high-temperature
limit, RPSH reduces back to the original FSSH, which
accurately captures the electronic nonadiabatic transitions in
most of the scenarios. On the other hand, in the limit of
adiabatic reactions, RPSH reduces back to the conventional
RPMD method, which is capable of capturing nuclear quantum
effects. Thus, RPSH is a promising method for studying
processes that are highly impacted by the interplay between
nonadiabatic and nuclear quantum effects, such as PCET
reactions.3,5,7

To investigate the capability of the RPSH method for
describing nonadabatic dynamics, we compute the branching
probabilities with Tully’s Models I−III in the original FSSH
paper.13 Additional results are also obtained from the FSSH as
well as the numerical exact split-operator Fourier transform
method in order to compare and assess the accuracy of RPSH.
The initial wave function for all three model calculations is a

Gaussian wavepacket on the lower electronic adiabatic surface
with the following form

α
π

α= − − + −⎜ ⎟⎛
⎝

⎞
⎠G R R R k R R( )

2
exp( ( ) i ( ))

1/4

0
2

0 (9)

Here, the width of the wavepacket is α = 0.25 au, and R0 = −15
au, ensuring that the initial wavepacket is far from the
nonadiabatic coupling region; the nuclear mass is M = 2000
au, and k is the incoming momentum. In FSSH and RPSH
calculations, this wave function is represented with a Gaussian
distribution of nuclear position with the width σ α= 1/ 2R .33

For results at each k, the calculations start with a distribution of
the initial position around R0 and a deterministic momen-
tum13,33 for both FSSH and PRSH methods, ensuring a fair
comparison. The choice of the deterministic momentum for the
initial condition33,54 allows us to investigate the role of nuclear
quantization without any impact from initial momentum
distribution.
To make sure that ring polymer quantization during

dynamical propagation plays an essential role for recovering
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correct quantum scattering probabilities, we also perform FSSH
calculations with the same initial distribution of the centroid in
RPSH, as well as with an initial distribution sampled from the
Wigner transformed wavepacket in eq 9. These results,
provided in the Supporting Information, emphasize that
including nuclear quantization through RPMD is indeed the
key for improving the transmission and reflection probabilities
and cannot be attributed only to the initial conditions of the
trajectories.
In addition, we want to comment on a widely used procedure

that samples the Wigner initial distribution for FSSH
calculations.55,56 The Wigner initial distribution can indeed
improve FSSH results in certain special cases, such as the low-
momentum regime in Tully’s Model I.56 However, it does not
always guarantee to improve the results, such as in Tully’s
Model II. Additional results that demonstrate this point are
presented in Figure S3 of the Supporting Information. On top
of that, we also want to emphasize that in practical simulations,
using Wigner distributions can bring additional technical
difficulties. First, Wigner distribution is difficult to compute
for complex systems.57−59 Second, a classical propagation
scheme does not preserve the Wigner distribution60 and might
lead to a ZPE leaking problem.61 On the other hand,
incorporating nuclear quantization through dynamical prop-
agation of the ring polymer provides consistent improvement of
the results, as will be demonstrated later, as well as a practical
way to avoid nontrivial quantum distribution calculations and
ZPE leaking problems.61

The RPSH Hamiltonian requires a temperature for
propagating quantum dynamics. For the model calculations
under microcanonical conditions in this study, we choose a
fictitious temperature that matches the total initial energy of the
system through T = ℏk/kB, based on the procedure outlined in
a previous study using MV-RPMD.49 Despite this ad hoc
choice, it is shown that this fictitious temperature can provide
accurate results for photoinitiated dynamics.49 Further
theoretical justification is necessary. However, we do not
expect it to become an issue for any real system with a physical
temperature, which will be used in the RPSH calculations.
The converged results are obtained with 20000 trajectories in

both FSSH and RPSH methods. The bead convergence
criterion for RPSH calculations is set to be the convergence
of the long-time adiabatic populations. For Model I, n = 4 beads
will converge the results, for Model II, n = 8 beads, and for
Model III, depending on the initial momentum, up to 32 beads
are needed. Examples of the convergence with respect to the
number of beads are provided in the Supporting Information.
Figure 1 presents the branching probabilities as a function of

the initial momentum k for Tully’s Model I, a single avoided
crossing model with FSSH, RPSH, and the numerical exact
method. Here, Figure 1a presents the results of transmission
probabilities T1 (on lower surface) and T2 (on upper surface)
as well as reflection probability R1 (on lower surface) for three
different parameter regions, with k = 2−6.5, 6.5−10, and 10−60
au. Reflection on the upper state R2 is omitted in this plot for
clarity purposes due to its zero value for all three methods. In
the third region where k = 10−60 au, the incoming momentum
is high, and the electronic nonadiabatic dynamics between the
lower and upper adiabatic surfaces can be well captured by
using classical trajectories. Both FSSH and RPSH reproduce
the numerical exact results, similar to most of the mixed
quantum−classical methods. Thus, we shall only focus on the
first two regions where the incoming momentum is low.

In the first region of Figure 1a where k = 2−6.5, the
incoming momentum is so low that the scattering process
occurs adiabatically. The exact results show that in this regime
the wavepacket either gets transmitted (T1) or reflected (R1)
on the lower adiabatic surface, with the relative magnitudes of
T1 and R1 being determined by the quantum mechanical
tunneling process at the given incoming momentum k. FSSH or
any other classical trajectory-based method fails to accurately
describe the smooth transition between T1 and R1 when using
the deterministic initial momentum for the ensemble of
trajectories.33,56 Instead, FSSH (in this case, classical adiabatic
dynamics) predicts 100% reflection whenever the trajectories
do not have enough kinetic energy to surmount the energy
barrier. This limitation is schematically illustrated in Figure 1b
where a classical trajectory does not have enough momentum
to reach the energy barrier top and thus gets reflected. After k =
4.5, however, the classical trajectories have enough kinetic
energy to cross the lower adiabatic potential barrier, leading to
100% transmission and a sudden switch of the T1 and R1
coefficients.
RPSH, which is reduced to the adiabatic RPMD in this low-

momentum region, incorporates nuclear quantum effects
through the extended ring polymer phase space and correctly
describes quantum tunneling through the barrier. Thus, RPSH
recovers the correct physical behavior in this regime and
captures the trend of the smooth transition between R1 and
T1, despite small quantitative differences with the numerical
exact results. The schematic representation in Figure 1c shows
that the ring polymer spans over the top of the ground-state
adiabatic potential and effectively reduces the energy barrier.
This allows the ring polymer to manifest the quantum
mechanical tunneling behavior. In fact, it is well-known that
RPMD can successfully describe quantum tunneling dynamics
in this electronically adiabatic regime.62,63 However, this is a
challenging regime for the mixed quantum−classical methods
due to the classical description of the trajectories.

Figure 1. (a) Branching probabilities as a function of the initial
momentum k for Model I with FSSH (open diamond), RPSH (filled
circle), and the numerical exact method (dashed lines). (b) Schematic
trajectory of FSSH in the region of k = 2−6.5. (c) Schematic trajectory
of RPSH in the same region.
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Figure 2 presents a magnified branching probabilities plot
that corresponds to the second region of Figure 1, where k =

6.5−10 au. In this region, the interplay between nuclear
quantum effects and electronic nonadiabatic transitions has an
important role in determining the quantum dynamics. The
exact results (dash lines) in Figure 2a show a small increase and
then decrease of R1 (red) and a steady increase of T2 (blue) in
this region. This behavior is due to the fact that with low
incoming momentum and after nonadiabatic transition to the
upper surface, the wavepacket gets trapped in the upper
potential well and finally comes down to the lower surface,
bifurcating to reflecting and transmitting wavepackets, thus
leading to an initially increased R1 in this region.33 However, as
the incoming momentum increases, the wavepacket will escape
from this well and remain transmitted on the upper surface,
leading to a smooth increase of T2 (blue) at the expense of the
decrease in T1 (green in Figure 1) and R1 (red).
FSSH (open diamonds in Figure 2), fails to reproduce these

results. In the region of k < 7.7, the classical trajectories do not
have enough kinetic energy to jump to the upper adiabatic
surface, leading to 100% transmission on the lower surface
without any reflection, contradictory to what the exact quantum
dynamics predicts. In the region of 7.7 < k < 8.9, classical
trajectories have enough kinetic energy to jump to the upper
adiabatic surface but not enough to climb out of the potential
well on that surface, leading to transitions back to the lower
surface, as indicated by the schematic illustration in Figure 2b.
Consequently, we find a sudden increase of R1 (red) from 0 to
a finite value accompanied by a similar sudden decrease of T1
(shown in the Supporting Information) at k = 7.7. In the region
of k > 8.9, the classical trajectories are able to climb out of the
upper adiabatic potential well, leading to a stark increase of T2
(blue) from 0 to a finite value, which is in contrast to the
smooth increase of T2 predicted by the quantum exact results.
RPSH (filled circles in Figure 2), on the other hand, captures

the smooth increase of R1 (red) in the region of k < 7.7 due to
the higher kinetic energy of the ring polymer centroid

compared to the classical trajectory. Just like the situation in
the exact calculations, the ring polymer successfully hops to the
upper surface but gets trapped in the upper potential well and
later hops back to the lower surface getting either reflected or
transmitted. In the region of 7.7 < k < 8.9, RPSH recovers the
correct quantum behavior by capturing ZPE in the upper
surface, effectively filling the potential well and allowing the
ring polymer to escape, as indicated by the schematic
illustration in Figure 2c. Thus, in this region, RPSH recovers
the smooth increase of T2 (blue). Like the exact results, the
increasing trend of T2 in RPSH smoothly continues to the
region of k > 8.9.
Figure 3 presents the results for Tully’s Model II, a dual

avoided crossings model. The branching probabilities of Model

II are illustrated in Figure 3a, with a magnified plot of k = 9.0−
21 au region in Figure 3b. As can be seen, at high momenta,
where k > 21 au, both FSSH and RPSH yield results close to
the exact ones, though RPSH seems to produce slightly better
results. In the region of k = 9.0−21 au, on the other hand,
capturing the nuclear quantum effects is essential for accurately
describing nonadiabatic dynamics.
Figure 3b presents the results with the incoming momentum

of k = 9.0−21 au. In the region of k = 9.0−12 au, the numerical
exact calculations suggest that the dynamics is purely adiabatic
where the wavepacket mainly crosses the potential well on the
lower surface and gets transmitted. This leads to a near unity
T1 (green lines in Figure 3a) and a very small magnitude of the
reflection coefficient R1 (red lines in Figure 3b) on the lower
surface. In the region of k = 12−21 au, apart from a negligible
amount of R1, the wavepacket gets transmitted either on the
lower or on the upper surfaces, with the relative magnitude of

Figure 2. (a) Magnified plot of branching probabilities R1 (red) and
T2 (blue) for Model I with incoming momentum k = 6.5−10 with
FSSH (open diamond), RPSH (filled circle), and the numerical exact
method (dashed lines). (b) Schematic trajectory of FSSH in the region
of k = 6.5−10. (c) Schematic trajectory of RPSH in the same region.

Figure 3. (a) Branching probabilities as a function of the initial
momentum k for Model II, with FSSH (open diamond), RPSH (filled
circle), and the numerical exact method (dashed lines). (b) Magnified
plot for T2 and R1 in the low-momentum regime with k = 9.0−21 au.
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T1 (green lines in Figure 3a) and T2 (blue lines in Figure 3a)
being determined by quantum mechanical effects.
FSSH results in Figure 3, in contrast, show a steady increase

of R1 in the region of k = 9.0−12 au (adiabatic regime),
significantly overestimating the reflection probability compared
to the numerical exact results. The increase of the FSSH-
calculated R1 continues beyond k = 12 au until a sudden
decrease to zero at k = 14.2 au, being replaced by a finite value
of T2. This behavior indicates that before k = 14.2 au the
classical trajectories that jump to the upper surface get trapped
there and finally come down to the lower state, being either
reflected or transmitted. Beyond k = 14.2, the trajectories have
enough kinetic energy to climb out of the upper potential well
and get transmitted on that surface. These results clearly
demonstrate that FSSH fails to capture the gradual increasing
and then decreasing feature of the T2 in the region of k = 12−
21 au predicted by exact quantum dynamics.34

RPSH, on the other hand, yields smaller values of R1 in the
adiabatic regime (k = 9.0−12 au) and, at the same time,
captures a similar trend of the changes of R1 and T2 in the
region of k = 12−21 au compared to exact results. The
improved results of RPSH compared to FSSH can be mainly
related to enforcing ZPE through the extended ring polymer
phase space. This results in a shallower potential well on the
lower surface of Tully’s Model II, which helps the transmission
of RPSH trajectories in the region of k = 9.0−12 au, leading to
a higher T1 and lower R1 compared to FSSH results. Further,
ring polymer quantization also helps with transmission on the
upper surface in the region of k = 12−21 au, improving T2
coefficients. Similar improvements were also reported by using
the Liouville space FSSH (LS-FSSH) method38 that benefits
from propagating classical trajectories on coherent surfaces

+V V( )1
2 1 2 .15 These improvements have also been observed for

both 1D and 2D versions of Tully’s Model II using the phase-
corrected surface hopping method.34 On the other hand,
simultaneous trajectory surface hopping (STSH)33 can improve
the magnitude of R1 and T2 compared to FSSH but still has
the unphysical sudden switch between these two coefficients at
k = 14.2 au.
We have also calculated the RPSH branching probabilities for

Models I and II with a distribution obtained from the Wigner
transformed wavepacket49 instead of using a deterministic
initial momentum.13,33 The results, provided in the Supporting
Information, do not show significant improvements compared
to the results based on the deterministic momentum presented
in the main text. This emphasizes that incorporating nuclear
quantum effects through the dynamical propagation of the ring
polymer is the predominant contributing factor for capturing
the correct quantum dynamics in the RPSH method, not the
initial conditions.
Figure 4 presents the exact, FSSH, and RPSH results for

Tully’s Model III, a model of extended coupling with reflection.
The wavepacket is initially prepared on the far left side of the
lower surface. As it travels to the right-hand side of the
potential, it goes through a region of high nonadiabatic
coupling and gets bifurcated. At low incoming momenta, the
wavepacket that moves on the upper surface gets reflected
while the wavepacket on the lower surface gets transmitted.
The exact results show that the reflected wavepacket on the
upper surface gets bifurcated once again upon going through
the nonadiabatic coupling region, giving two wavepackets
traveling with different momenta on both surfaces. As a result,

the whole wavepacket experiences a strong decoherence that
the FSSH algorithm fails to capture.
FSSH results presented in Figure 4a do not give a smooth

change of R1 and R2 coefficients when increasing the incoming
momentum; instead, it shows a highly oscillatory behavior due
to artificially generated electronic coherence, commonly known
as the “over-coherent problem” of FSSH.13

Figure 4b demonstrates RPSH branching probabilities for
Model III. In contrast to the FSSH method, RPSH yields
smooth R1 and R2 that closely follow the exact results,
demonstrating the capability of the method to capture
decoherence. We emphasize that improvement of reflection
probabilities in the RPSH approach is observed using
deterministic initial momenta and not a distribution of
momenta. In RPSH, due to the extended phase space
description of the nucleus through the ring polymer, the
momentum of each bead gradually differs through the
dynamical propagation, resulting in a broader centroid
momentum distribution compared to the distribution in
FSSH. Therefore, different reflected ring polymer trajectories
gain different phases. Over an ensemble of the ring polymer
trajectories, the high-frequency oscillations in reflection
coefficients wash out, even with the deterministic initial
momenta. These unphysical oscillations can also be removed
by introducing decoherence corrections into the surface
hopping algorithm, such as the decoherence-induced surface
hopping (DISH)35 method. Similar improvements are also
reported using STSH,33 mean-field surface hopping,27 and
augmented FSSH (A-FSSH)31 algorithms.
The time-dependent electronic state populations can also be

reliably obtained from RPSH. In the Supporting Information,
we provide the time-dependent adiabatic and diabatic
populations. With nuclear quantization, RPSH is not only
capable of capturing long-time scattering probabilities but also

Figure 4. Branching probabilities as a function of the initial k
calculated for Model III using (a) FSSH (open diamond) and (b)
RPSH (filled circle) methods. The numerical exact results are
presented in both panels with dashed lines.
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shows an improved short-time population compared to FSSH.
Further, with a three-state Morse potential model calculation,
we demonstrate a more stable bead convergence for the
population dynamics compared to the previously developed
state-dependent RPMD method.49

Recent theoretical progress suggests that RPMD can be
rigorously derived from Matsubara dynamics with a generalized
kubo-transformed time correlation function formalism.64,65 In
addition, surface hoping has also been mathematically derived
from the mixed quantum−classical Liouville equation.16,66 We
thus envision deriving RPSH in the nonadiabatic Matsubara
dynamics framework67 with MQCL16 as one of our future
goals.
RPSH can be widely used to investigate reactions when

nuclear quantum effects and electronic nonadiabatic transitions
play a dominant role in determining reaction mechanisms, such
as condensed-phase and photoinduced PCET reactions.3,7

Compared to the commonly used FSSH with vibronic-state
representation,7,68 RPSH avoids calculating a massive number
of vibronic states for the proton yet provides accurate nuclear
tunneling effects, thus making it possible to describe multiple
proton transfer reactions. On the other hand, compared to the
regular RPMD approach that treats an electron in its coordinate
representation with the ring polymer quantization5,69 and thus
is limited to only one-electron nonadiabatic reactions,42 RPSH
can go beyond this limitation and describe multiple electron
transfer reactions with the many-electron adiabatic representa-
tion.
Finally, this work will inspire engineering new approximated

quantum dynamics methods that are capable of accounting for
both electronic nonadiabatic transitions and nuclear quantum
effects, just like RPSH. This proposal is summarized in Figure
5. With the methods along the x-axis, one can gradually

increase the accuracy for describing electronic nonadiabatic
effects. With the methods along the y-axis, one can gradually
increase the accuracy for describing nuclear quantum effects.
The purple shaded area indicates approximated methods that
can capture both effects. More accurate but potentially
numerically demanding methods can be engineered.
In summary, we applied the RPSH approach to investigate

the real-time nonadiabatic dynamics with explicit nuclear
quantum effects in Tully’s Model systems. With explicit nuclear
quantization through the ring polymer extended phase space
description, we demonstrated that RPSH can properly describe
tunneling, nuclear ZPE, and decoherence. By including the
above essential physics, RPSH can provide more accurate
nonadiabatic dynamics compared to FSSH. RPSH can be
widely used to investigate photoinduced PCET reactions or

nonadiabatic proton transfer reactions, where the interplay of
quantum transitions and proton tunneling determines the
reaction mechanism.
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