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ABSTRACT: We use the ab initio ring polymer molecular dynamics (RPMD) approach to
investigate tunneling-controlled reactions in methylhydroxycarbene. Nuclear tunneling effects
enable molecules to overcome the barriers which cannot be overcome classically. Under low-
temperature conditions, intrinsic quantum tunneling effects can facilitate the chemical reaction
in a pathway that is favored neither thermodynamically nor kinetically. This behavior is
referred to as the tunneling-controlled chemical reaction and is regarded as the third paradigm
of chemical reaction controls. In this work, we use the ab initio RPMD approach to
incorporate the tunneling effects in our quantum dynamics simulations and investigate the
reaction kinetics of two competitive reaction pathways at various temperatures. The reaction
rate constants obtained here agree extremely well with the experimentally measured rates. We
demonstrate the feasibility of using ab initio RPMD rate calculations in a realistic molecular
system and provide an interesting and important example for future investigations of reaction
mechanisms dominated by quantum tunneling effects.

Nuclear quantum effects (NQEs), such as quantum
tunneling and zero-point energy (ZPE), have been

shown to play a crucial role in various chemical processes,1,2

including hydrogen bonding,3−7 proton transfer reactions,8−10

hydride transfer reactions,11,12 proton-coupled electron trans-
fer (PCET) reactions,13−16 and catalytic reactions.17−20 NQEs
enable molecules to directly tunnel through the potential
energy barriers that are otherwise formidably high classically.21

Although the importance of tunneling effects in chemistry has
long been acknowledged,22 the attention on the ability to
actively use tunneling to control chemical reaction directions
has only begun to emerge recently.23−26 Tunneling control
refers to the scenarios where a kinetically or thermodynami-
cally less favored reaction pathway becomes the dominating
one due to reaction enhancement by intrinsic quantum
tunneling effects.23−26 This phenomenon has been recently
regarded as the third paradigm of chemical reaction control,
beyond the traditional thermodynamic and kinetic controls.26

Methylhydroxycarbene (MHC), a hydroxycarbene deriva-
tive, has emerged as an excellent example of tunneling-
controlled reactions.23,27 There are two hydrogen atom
transfer pathways to the divalent carbon atom in MHC, as
illustrated in Figure 1. We denote reaction pathway A as the
hydrogen atom transfer from the methyl group to the carbine
center, forming vinyl alcohol; and reaction pathway B as the
transfer of the hydrogen atom in the hydroxy group to the
carbine center, resulting in acetaldehyde. Both reactions cause
the decay of the MHC molecule. At low temperatures, the
decay of MHC results in acetaldehyde through reaction B,
forming a product that is favored neither kinetically nor
thermodynamically. This leads to a completely tunneling-

controlled product.23−26 Many more recent examples of
tunneling-controlled reactions can be found in a recent review
in ref 26. Accurately simulating the tunneling-controlled
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Figure 1. Classical (solid lines) and quantum (dashed lines) free
energy profiles F(ξ) as a function of the reaction coordinate ξ at 200
K for both reaction pathways A (blue) and B (red). The geometries in
the top panel correspond to vinyl alcohol (product A), methylhy-
droxycarbene (reactant), and acetaldehyde (product B), respectively.
The arrows show the transferring direction of the hydrogen atoms.
Note that to indicate the HAT direction of reaction A, −ξA is used as
the x-axis in this plot.
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chemical reaction requires an explicit description of the NQEs,
which is beyond classical rate constant theory or classical
molecular dynamics simulation.
In this work, we use ring polymer molecular dynamics

(RPMD)10,28−31 to compute the reaction rate constants for
two competing reaction paths in the MHC molecule. RPMD is
an approximate quantum dynamics approach based on
Feynman’s imaginary-time path-integral formalism,32 which
provides exact quantum statistics and approximate yet accurate
quantum dynamics.28,33,34 In this formalism, each atom is
represented by a ring polymer of n beads (imaginary-time
slices), with a harmonic spring connecting the adjacent
beads.35

Quantum reaction rate constants can be accurately evaluated
using the RPMD flux-side correlation function formalism,
which has been extensively discussed in the previous
literature.11,13,29−31,36 Here, we demonstrate perhaps the first
ab initio RPMD rate constant calculation. We combine RPMD
with ab initio on-the-fly simulations at the level of Kohn−
Sham DFT (with the BLYP functional37−39 and in its singlet
state) using a plane-wave basis to investigate the competing
hydrogen atom transfer (HAT) reactions in MHC. The
computational details are provided in the section Theoretical
and Computational Approaches.
For a molecular system with total nuclear degrees of

freedom (DOF) (or 1
3

total number of atoms), the

corresponding ring polymer Hamiltonian is expressed as
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where n is the total number of copies (beads) of the original
s y s t e m , a n d = {[ ] [ ] [ ] }q q qq , , ..,j j j j1 2 a n d

= {[ ] [ ] [ ] }p p pp , , ..,j j j j1 2 are the position and momentum

vectors of the j t h bead, respectively, with mass
= { }M M MM , , ..,1 2 . Further, V(qj) is the adiabatic

potential energy surface for the nuclei, and the interbead
ring polymer frequency is ωn = n/βℏ.
The approximate quantum mechanical rate constant is

calculated as the plateau value of the RPMD flux-side
correlation function.10,28,31 To facilitate numerical simulations,
we apply the Bennett−Chandler scheme40 that expresses the
rate constant as follows10,13,36

κ= ·
→

k t klim ( )
t t

QTST
p (2)

where tp refers to the plateau time of the flux-side correlation
function, kQTST is the RPMD-Transition State Theory (TST)
rate constant which has been shown to be equivalent to the
quantum TST (QTST) rate constant,41 and κ(t) is the
transmission coefficient that captures the dynamical recrossing
effect. The details of kTST are provided in the section
Theoretical and Computational Approaches at the end of
this Letter, and κ(t) is expressed as follows

κ
ξ ξ

ξ
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where ̅ = ∑p p
n j j
1 and ̅ = ∑q q

n j j
1 are the centroids of the

momenta and positions, respectively. The 0 and t subscripts in

q indicate the initial time and time t. In addition, h is the side
operator, which is a Heaviside function of the reaction
coordinate ξ that differentiates the reactant versus the product,
and is the flux operator which is the time derivative of the
side operator ξ̅ ̅ = [̇ ̅ ]hq p q( , ) ( )0 0 0 . Further, ⟨···⟩c denotes the
ensemble average over trajectories that are initially constrained
on the dividing surface ξ‡. The dividing surface is chosen as the
collective coordinate that maximizes the potential of mean
force.10,40 Note that the RPMD rate is proven to be dividing
surface independent.30,31

The transmission coefficients as well as the free energy
profiles are evaluated with the ring polymer trajectories
governed by the RPMD Hamiltonian Ĥn in eq 1, whereas
the potential V(qj) is evaluated through ab initio on-the-fly
simulations. The largest κ(t) simulation of this work requires
the on-the-fly propagation of a × = * =n 7 64 4481

3
-atom

fictitious molecular ring-polymer for up to 103 trajectories,
with at least 450 electronic structure calculations along every
single ring polymer trajectory. Additional details of the
numerical simulations are provided in the section Theoretical
and Computational Approaches. Using the ab initio RPMD
approach combined with the enhanced sampling technique
(the blue moon ensemble approach,42−44 see details in the
Supporting Information), we can directly compute the classical
(when using n = 1) and quantum mechanical free energy
profiles (potential of mean force).
The RPMD rate is closely connected with the instanton rate

constant, which has been extensively discussed by Althorpe
and co-workers.45,46 The instanton rate constant can be
derived on the basis of a steepest descent approximation of the
quantum flux-side correlation function,46−48 resulting in

= − ℏk A einst inst
/ , whe re A i n s t i s a p re f a c to r and
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imaginary time τ and τ̇ =q dq d/ ) measured along the
instanton trajectory q(τ). The ring-polymer potential
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discretized version of S/ℏ. For a symmetric system, the ring
polymer beads at the dividing surface describe a finite-
difference approximation to the “instanton” trajectory, which is
a periodic orbit in imaginary time on the inverted potential
surface.45,46 The instanton theory also qualitatively explains the
tunneling-controlled reactivities: If two mechanisms are
competing, the one that minimizes the value of will
dominate the product, not necessarily the one with a lower
potential barrier as predicted by classical TST.46 Only under
the classical limit (high temperature or low barrier frequency)
does kinst reduce to the classical TST rate and the potential
barrier dictate the rate.46

We note that molecular reactions of the MHC molecule
have been investigated with the instanton theory in ref 27. The
instanton theory employed in that work is based on a steepest
descent approximation (harmonic approximations for the
thermal fluctuations) for all nuclear DOFs. The steepest-
descent approximation used in the instanton theory is not valid
for systems with large anharmonicity.47 This potential issue of
steepest descent can be partially addressed by using the so-
called free energy instanton theory,45,49,50 where the steepest
descent approximation is only applied to the reaction
coordinate. However, this approach requires computing the
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quantum free energy profile, with the computational cost
equivalent to the RPMD-TST rate constant calculation.50 As
extensively investigated in ref 50., the RPMD-TST rate is
generally more accurate than the free energy instanton
calculation over all temperatures, especially for multidimen-
sional molecular systems. In this paper, explicit dynamical
recrossing is also considered by computing the transmission
coefficient. For these reasons, RPMD is the most widely
applicable of these path-integral rate methods.46

Figure 1 presents the classical potential of mean force (solid
curves) and the quantum potential of mean force (dashed
curve) F(ξ) (defined in eq 5) at T = 200 K, along the reaction
coordinate ξ (defined in eq 4) for both reaction A (blue) and
B (red). It is clear that the classical free energy barrier of
pathway B is higher than reaction A but also thinner than
pathway A. Compared with the classical free energy barrier, the
quantum free energy barriers are significantly lower for both
reaction pathways. Further, reaction B is now having an even
lower free energy barrier than reaction A. This is because the
NQEs start to dominate the reaction mechanism below the

crossover temperatures45 = ωℏ
π

‡
T

kC 2 B
where ω‡ is the imaginary

barrier frequency at the transition state (TS), and tunneling is
more sensitive to the barrier width, rather than the potential
barrier height. The crossover temperatures were reported to be
321 and 462 K for pathways A and B, respectively.27 Since
tunneling effects are essential to the reaction mechanism below
the crossover temperature, this highlights the importance of
using a method which includes tunneling effects in the
simulations of this system.
Figure 2A provides the typical configurations of the

molecular ring polymer along the reaction coordinate of
reaction B. The labels for each configuration indicate a
particular value of ξB in panel B. At the transition state
ensemble, the ring polymer spans over the barrier into the
reactant and product sides. The reaction pathway B allows
most of the beads to reach lower potential positions, due to a
thinner potential barrier. Since the ring polymer radius is
particularly large when T is small (due to the lower ωn in Hn of
eq 1), this effect plays an essential role at low temperatures in
lowering the effective potential that the ring polymer feels,
resulting in a lower free energy barrier.
Figure 2B presents free energy profiles F(ξ) at 200 K of

reaction pathway B, computed with the classical ab initio MD
(AIMD) with n = 1 (red) and the quantum RPMD with n = 32
(blue). Apparently, without considering NQEs, classical AIMD
overestimates the free energy barrier height by more than 10
kcal/mol.
After reaching the TS configuration (II in Figure 2A), the

molecular ring polymer goes into a “sliding downhill” process,
as it appears that it directly cuts through the barrier. This is
because at such a low temperature, the ring polymer is
overstretched (III in Figure 2A), and the top of the free energy
barrier, based on the centroid coordinate, is no longer able to
represent an optimized dividing surface that minimizes
recrossing.19,45 This causes the maximum of the free energy
to deviate from the maximum of the potential energy surface
for an asymmetric double-well system.45 We emphasize that
this is a well-known feature of RPMD, which does not
significantly influence the accuracy of the rate constant so long
as κ(t) (which accounts for the recrossing) is also explicitly
included in the rate constant.45

Figure 2C presents the classical and quantum time-
dependent transmission coefficients κ(t) at 200 K for the
reaction pathway B. At short times, there is a “tug of war” on
the centroid between the vibrating ring polymer beads in the
reactant and product wells, which results in a pronounced
oscillation in the transmission coefficient.51 The plateau value
κ(tp) is lower in the quantum simulation compared with the
classical one.11,13

To investigate the temperature dependence of the rate
constant, we also perform the simulations at T = 400, 300, and
120 K for reaction pathway B. Similarly, we computed these
quantities for reaction pathway A. These additional results are
provided in the Supporting Information (Figure S1). Figure 3A
presents the ring polymer transition state configurations at four
temperatures. The radius of the ring polymer for all atoms
increases as the temperature decreases, because the spring
constant of the ring polymer becomes weaker (ωn ∝ T). As a
result, the ring polymer of the transferring hydrogen atom
becomes more stretched on the top of the potential barrier,
indicating a stronger tunneling effect.
Figure 3B presents the temperature dependence of the free

energy profile along the reaction coordinate ξB. As we
expected, the free energy barrier becomes lower at a lower
temperature. As we have discussed previously, when the
temperature is below T1

2 c (half of the crossover temperature),

there is a clear “edge cutting” behavior along the reaction
coordinate, which originates from evaluating the free energy
profile with a centroid coordinate.19,45

Figure 3C presents the transmission coefficients κ(t)
computed under four different temperatures. Not surprisingly,
the plateau value κ(tp) decreases at as temperature drops

Figure 2. Simulation results for reaction pathway B at 200 K. (A) The
typical ring polymer configurations of the reactant (I), TS (II),
product (IV), as well as a configuration (III) between the TS and
product. (B) The classical (red) and quantum (blue) free energy
profiles F(ξ) as a function of the reaction coordinate B ξB. (C) The
classical (red) and quantum (blue) transmission coefficients κ(t).

The Journal of Physical Chemistry Letters pubs.acs.org/JPCL Letter

https://doi.org/10.1021/acs.jpclett.1c01630
J. Phys. Chem. Lett. 2021, 12, 6714−6721

6716

https://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.1c01630/suppl_file/jz1c01630_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.1c01630?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.1c01630?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.1c01630?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.1c01630?fig=fig2&ref=pdf
pubs.acs.org/JPCL?ref=pdf
https://doi.org/10.1021/acs.jpclett.1c01630?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


because of lowered barriers and the complex motion of the
overstretched ring polymer in the intermediate time, which
leads to more recrossing events. The relatively low value of
κ(tp) at 200 K and below also clearly indicates that the top of
the free energy barrier based on the centroid coordinate is no
longer an optimized dividing surface that minimize recross-
ing.45,50

Figure 4 presents the plots of the rate constant for the
reaction pathway A (blue) and B (red), obtained by plugging

kTST computed from the free energy barrier heights and the
plateau value of the transmission coefficients κ(tp) into eq 2.
There exists a crossover of the two rate constants in the
temperature range between 200 and 300 K, indicating a switch
in the preferred reaction mechanism. Under the high-
temperature limit, the free energy barrier of reaction pathway
A is much lower than the barrier of pathway B (by around 5
kcal/mol at T = 400 K). Consequently, the reaction rate of
pathway A is higher in this case, making vinyl alcohol the
preferred product.
Under lower-temperature conditions, the quantum free

energy barriers for both pathways decrease. However, as
shown in Figure 1, the barrier of the pathway B drops much
faster than that of pathway A. As a result, tunneling effects
reduce the effective free energy barrier of pathway B more
significantly. Given the fact that κ(tp) of both pathways are at
the same magnitude at the same temperature (see Figure 3C
and Figure S1B in the Supporting Information), the preferred
pathway will be reverted to pathway B at low temperatures.
Figure 4 also clearly demonstrates that for T < 200 K,

nuclear quantum effects start to dominate the reaction rate.
Recall that the classical TST theory (Eyring equation) gives

= − · + +Δ Δ‡ ‡
ln lnk

T
H

k T
S

k
k
h

1

B B

B , where h = 2πℏ is the Planck

constant, and ΔH‡ and ΔS‡ are the activation enthalpy and

entropy (per molecule), respectively. Hence, − Δ ‡H
kB

gives the

effective slope of the Eyring plot and +Δ ‡
lnS

k
k
hB

B is the

intercept on the y axis. Thus, if the reaction is dominated by
the classical thermal activation process, log k will be a linear

function of 1/T, with the slope of− Δ ‡H
kB

. Apparently, this is not

the case for the rate constant presented in this figure, as the
log k starts to plateau with a larger 1/T, which is a common
indicator of the tunneling dominate regime.25,52,53

Our theoretical results of the rate constant at a very low
temperature T = 120 K agree with the experimental
observations that acetaldehyde is the preferred product,
which is measured under T = 11 K within three different
hosting matrices (Ar, Kr, and Xe), with corresponding rate
constants (black dashed lines) presented in Figure 4. Although
we are comparing our 120 K results with the experimental data
at 11 K, T = 120 K is already far below T1

2 c, half of the

crossover temperatures of both pathways. This means that the
thermally induced contribution to the reaction rate is minimal
and further decreasing the temperature will not change the
reaction rate, hence log k should plateau as a function of 1/T
as we have discussed previously. This is why our numerical
results have already shown the trend of approaching the
plateau value in Figure 4. Interestingly, the ratio of the two rate
constants in the plateau region of deep tunneling from our
calculation is log kB/kA = 3.7, in a good agreement with the
experimentally23 measured value 3.3 under T = 11 K.
Simulating lower temperature results (T < 120 K) requires

even more beads (n > 64) in the ring polymer and,
consequently, more computational resources. In the future,
this can be addressed by incorporating the ring polymer
contraction scheme,54,55 where the full ring polymer beads
potential is evaluated with some lower level electronic
structure calculations (such as the Density Functional based
Tight Binding) as a “reference” system, while a contracted ring
polymer is evaluated with the higher level theory (such as KS-

Figure 3. Temperature-dependence of reaction pathway B. (A) The
representative ring polymer TS configurations at four different
temperatures. (B) The quantum free energy profiles F(ξ) as a
function of the reaction coordinate B ξB at four temperatures
corresponding to panel A. The free energy barrier ΔF(ξ‡) decreases as
the temperature decreases. (C) The time-dependent transmission
coefficient κ(t) plots at four different temperatures. The plateau value
κ(tp) decreases as the temperature decreases.

Figure 4. Temperature dependence of the rate constants k for
pathway A (blue) and pathway B (red). Note that the base-10
logarithm is used for plotting log k. Three horizontal black dotted
lines present experimentally measured rates at 11 K in three different
hosting matrices.23 The top panels show the typical ring polymer
configurations of pathways A and B, respectively.
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DFT), hence saving a huge amount of computational efforts, as
demonstrated in the recent state-of-the-art AIMD-RPMD
simulation of water.54,55 Another potential challenge arises
from the fact that the centroid coordinate deviates from the
optimal dividing surface for low temperatures, resulting in a
numerically small plateau value of κ(tp) (that might even be
close to 0), which requires a large number of trajectories to
converge. This can be potentially addressed by incorporating
the knowledge from other noncentroid modes into the
collective coordinate.30,31,45

In conclusion, we have reported, to the best of our
knowledge, the first ab initio on-the-fly RPMD rate constant
calculation. We use it to investigate tunneling-controlled
reactions in methylhydroxycarbene. We computed the free
energy profiles and reaction rate constants of two hydrogen
transfer pathways in methylhydroxycarbene. Our results
suggest that below the crossover temperature, intrinsic
quantum tunneling effects can facilitate the chemical reaction
in a pathway that is neither favored thermodynamically nor
kinetically, opening up new possibilities to enable chemical
transformations. Further, our ab initio RPMD rate constant
calculations provide accurate rate constants of the reactions
that are in excellent agreement with the experimental
measurements.23 We demonstrated that RPMD can be
conveniently combined with ab initio on-the-fly simulations
to investigate a realistic hydrogen atom transfer system under
the tunneling-controlled reaction regime. This work provides
an interesting and important example of using ab initio RPMD
to investigate reactions dominated by quantum tunneling
effects26 to provide detailed mechanistic insights.

■ THEORETICAL AND COMPUTATIONAL
APPROACHES

All simulations, including the free energy profile and
transmission coefficient calculations, are performed with an
in-house modified version of the CPMD56 package version
3.15.3. The molecule is simulated with the BLYP func-
tional37−39 in its singlet electronic ground state. The molecule
is placed in an isolated simulation box of 8 Å which is treated
with Martyna−Tuckerman formalism,57 and a plane-wave basis
with a cutoff of 80 Ry. The core electrons were treated with
Troullier−Martins pseudopotentials.58 The normal mode
representation of the ring polymer is used to propagate the
trajectories in all simulations.59

To characterize the progress of the reaction, we use the
following reaction coordinate

ξ =
·

| |
=

− · −
| − |

q
R R

R

q q q q

q q
( )

( ) ( )DH DA

DA

H D A D

A D (4)

where H, D, and A denote the transferring hydrogen atom, the
donor atom, and the acceptor atom, respectively. This reaction
coordinate19 measures the length of the projection of vector
RDH onto the axis that connects the hydrogen donor and
acceptor atoms. The larger the reaction coordinate is, the
closer the transferring hydrogen is to the acceptor atom. For

the RPMD simulations, the centroid coordinate ̅ = ∑q q
n j j
1 is

used in the above expression.
The potential of mean force (PMF) F(ξ) at reaction

coordinate ξi is defined as

∫ξ
β

δ ξ ξ= − −β−F
C

Q N V T
d d ep q( )

1
ln

( , , )
( )i H ip q( , )n

Ä
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ÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑ
(5)

where Hn(p, q) is the ring polymer Hamiltonian defined in eq

1, =
!

C
h

1
( / 3)

, and ∫= β−Q N V T d d ep q( , , ) H p q( , )n is the

ring polymer canonical partition function. The PMF is
computed using path-integral Car−Parrinello molecular
dynamics (CPMD) simulations. The fictitious electron mass
m = 400 au is used in the CPMD-PIMD simulations. A massive
Nose−́Hoover chain thermostat60 on every nuclear DOF is
used to maintain a NVT ensemble in the simulation box. The
path-integral molecular dynamics (PIMD)61 propagation is
used for the nuclei, using fictitious nuclear masses (Parrinello−
Rahman mass) that are 4 times their respective physical masses
to facilitate the sampling of the ring polymer configurations.
We have carefully checked that the CPMD generated PMF is
identical to the Born−Oppenheimer MD generated PMF for
both the classical dynamics and the PIMD dynamics, with
results provided in the Supporting Information. Since the free
energy barriers for both pathways are much higher compared
to thermal fluctuations,23 the blue moon ensemble ap-
proach42−44 (an enhanced sampling technique) is used to
facilitate the free energy calculations in the canonical (NVT)
ensemble. The details of the blue moon ensemble simulation
are provided in the Supporting Information. A set of 40
constrained MD simulations are performed along the reaction
coordinate from the reactant to the product in the NVT
ensemble. The time step is set to be 0.072 fs. Each trajectory is
then equilibrated for at least 0.5 ps, followed by a production
run of at least 1 ps.
A rough estimation of the number of beads needed can be

obtained using n > ℏωmax/kBT, where ωmax is the maximum
frequency of the molecule. Normal mode analysis at the level
of B3LYP/cc-pVTZ using Gaussian 09 package62 gives ωmax =
3826 cm−1 (the O−H bond stretching frequency) for the
MHC molecule. This leads to n = 28 for T = 200 K and n = 46
for T = 120 K. The number of beads n used for nuclei
quantization in the actual simulations at various temperatures
are listed in Table 1. We have carefully checked the bead
convergence, with details provided in the Supporting
Information.

The ring polymer molecular dynamics transition state theory
(RPMD-TST) rate constant kTST accounts for the rate
component purely dictated by quantum statistics (quantum
free energy barrier height). It has been shown that kTST
coincide with the quantum mechanical TST rate theory,41

explaining the success of the RPMD rate theory. The RPMD-
TST rate kTST is expressed as

∫πβ ξ
= ⟨ ⟩ξ

β ξ

ξ β ξ

− Δ

−∞
− Δ

‡

‡k g
e

e d

1
2

F

F
TST c

( )

( )
(6)

where ξ q̅( ) denotes the centroid reaction coordinate (defined
in eq 4), ξ‡ denotes the value of the dividing surface along the

Table 1. Number of Beads Used at Different Temperatures
in Our Simulations

T (K) 400 300 200 120
n 16 16 64 64
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reaction coordinate, which is obtained at the highest value of
ξ ̅F q( ( )) along ξ q̅( ), and ΔF(ξ‡) represents the free energy

barrier height from the bottom of the reactant well to the top
of the free energy barrier at ξ = ξ‡ . Further,

̅ = ∑ξ
ξ

=
∂ ̅

∂ ̅
g q( ) i M q

q
1

1 ( )
2

i i

i
k
jjj

y
{
zzz , where i is the index of the nuclear

DOF,Mi is the corresponding mass, and is the total number
of DOF. This quantity serves as the square root of the inverse
reduced mass of the reaction coordinate.
To compute κ(t) in eq 3, one needs to define the following

side operator h, which is a Heaviside function of the reaction
coordinate ξ defined as

ξ
ξ ξ

ξ ξ
[ ̅ ] =

⩾

<

‡

‡
h q( )

1, if

0, if .
t

l
m
ooo
n
ooo (7)

The flux operator is the time derivative of the side operator,
expressed as

∑ξ δ ξ ξ ξ
̅ ̅ = [̇ ̅ ] = −

̅
̅

=

‡h
d
dq

pq p q( , ) ( ) ( )
i i

i0 0 0
1 (8)

A constrained canonical ensemble on the dividing surface ξ
= ξ‡ is generated to calculate the transmission coefficient κ. In
our simulations, these configurations are generated by
propagating a sampling trajectory constrained on the ring
polymer centroid dividing surface ξ ξ̅ = ̅

‡q q( ) ( ), through the
SHAKE algorithm implemented in the CPMD package.63,64

The constrained geometries are picked at every 0.36 ps from
the sampling trajectory.
The transmission coefficient κ is calculated using the

aforementioned configurations as the initial configurations
and by releasing them from the dividing surface at ξ q̅( ). The
initial velocities are sampled from the Maxwell−Boltzmann
distribution. The dynamics is propagated in the NVE ensemble
(without any thermostat), using RPMD in the normal mode
representation with the physical masses of the nuclei. Due to
the fact that the highest normal-mode frequency ωn = n/βℏ in
RPMD will be close to the fictitious electronic frequencies in
CPMD, the adiabaticity condition in CPMD method is no
longer valid. As a result, all the trajectories for computing κ(t)
are simulated with Born−Oppenheimer molecular dynamics
(BOMD) as implemented in the CPMD package. Between 500
and 1200 trajectories are released from the dividing surfaces,
where each RPMD trajectory is evolved for 100 fs (during
which the flux-side correlation function is guaranteed to reach
the plateau value) with a time step of 0.24 fs.
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