Mechanism of Polariton Decoherence in the Collective Light-Matter Couplings Regime

Benjamin X. K. Chng,† Wenxiang Ying,† Yifan Lai,† A. Nickolas Vamivakas,†,¶ Steven T. Cundiff,§ Todd D. Krauss,‡,∥ and Pengfei Huo*,†,∥

†Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, U.S.A.
‡Department of Chemistry, University of Rochester, Rochester, NY 14627, U.S.A.
¶The Institute of Optics, Hajim School of Engineering, University of Rochester, Rochester, NY 14627, U.S.A.
§Department of Physics, University of Michigan, Ann Arbor, MI 48109, U.S.A.
∥The Institute of Optics, Hajim School of Engineering, University of Rochester, Rochester, NY 14627, U.S.A.

E-mail: pengfei.huo@rochester.edu

Abstract

Molecular polaritons, the hybridization of electronic states in molecules with photonic excitation inside a cavity, play an important role in fundamental quantum science and technology. Understanding the decoherence mechanism of molecular polaritons is among the most significant fundamental questions. We theoretically demonstrate that hybridizing many molecular excitons in a cavity protects the overall quantum coherence of phonon-induced decoherence originating from the collective light-matter couplings. The polariton coherence time can be prolonged up to 100 fs with a realistic Rabi splitting and quality factor at room temperature, compared to the typical electronic coherence time which is around 15 fs. Our numerically exact simulations and analytic theory suggest that the dominant decoherence mechanism is the population transfer from the upper polariton state to the dark state manifold. Increasing the collective coupling strength will increase the energy gap between these two sets of states, and thus prolong the coherence lifetime. We further derived valuable scaling relations of how polariton coherence depends on the number of molecules, Rabi splittings, and light-matter detunings.
Novel quantum systems are an emerging technology that promises significant advancement and understanding in the fields of quantum computing, quantum information science, and fundamental quantum optics research. A quantum system of significant interest is the optical cavity polariton,\(^1\text{–}^3\) which are formed from interactions between electronic states in matter systems and the quantized radiation field in a cavity. Properties of such optical cavity polaritons have been exploited to realize phenomena such as polariton lasing,\(^4\text{–}^6\) Bose-Einstein condensation,\(^7\text{–}^{11}\) making integrated circuit elements that can be optically switched,\(^12\text{–}^{14}\) and achieving long-range polariton transport.\(^15\text{–}^{18}\)

In particular, forming polaritons with molecules or nanoparticles has garnered much attention recently, and the resulting hybridized states are known as molecular polaritons.\(^19\text{–}^{22}\) Like polaritons formed from an atom’s electronic states, these molecular polaritons exhibit properties that are derived from both the matter excitations and the photonic components inside a cavity. However, these molecular polaritons possess additional vibrational states from their matter excitations that affect transduction between the matter and photonic degrees of freedom (DOF). These additional states offer new opportunities in the fields of quantum chemistry and quantum materials, as the physical properties of the constituent molecules can be tuned via strong light-matter interactions. For instance, the potential energy surfaces of molecules coupled to a cavity photon can be modified by changing its light-matter coupling strength or the frequency of the cavity mode,\(^23\text{–}^{25}\) hence, providing new pathways for chemical reactions to occur.

To exploit the desired properties of molecular polaritons, we need to preserve the hybridized state for the duration of the relevant quantum process. The key measure is therefore the degree of quantum coherence, which characterizes how long the quantum states involved can interfere with each other.\(^26\) It has been shown that interactions of the molecules with the environment, such as cavity loss or phonon-induced decoherence,\(^27\text{,}^{28}\) occur rapidly on a timescale of several femtoseconds and this constrains the ability of the molecular polariton to last throughout the desired quantum processes.\(^29\) However, previous work has shown that coupling a single molecule to a cavity significantly enhances the coherence lifetime of the hybrid light-matter system.\(^30\text{,}^{31}\) Furthermore, recent work has established that coupling many molecules into a cavity reduces the effective reorganization energy of the polariton states.\(^32\text{–}^{34}\) This collective coupling effect reduces the coupling strength between the molecular electronic states and their respective phonon modes,\(^35\) and thus impacts their coherence lifetimes.

In this letter, we address the effect of coupling many molecules into a cavity on the coherence lifetimes of the polaritonic states. The coherences of a model light-matter Hamiltonian with many molecules were examined and exact quantum dynamics, based on the hierarchical equation of motion (HEOM) formalism,\(^36\text{–}^{38}\) is performed on this model Hamiltonian. We demonstrate through numerical results from HEOM that the coherence lifetimes increase with the collective light-matter coupling strength. Moreover, we explain the enhancement in the polariton’s coherence lifetime using Fermi’s golden rule (FGR) argument in the frequency domain, and this accounts for the scaling of the coherence lifetimes with respect to the number of molecules and the single molecule light-matter coupling strength.

To model the collective light-matter coupling between \(N\) molecules and a quantized cavity mode, we use the Holstein-Tavis-Cummings (HTC) Hamiltonian\(^39\text{–}^{42}\)

\[
\hat{H}_{\text{HTC}} = \hat{H}_M + \hat{H}_{\text{ph}} + \hat{H}_{\text{LM}},
\]

where \(\hat{H}_M\) is the matter Hamiltonian that describes \(N\) identical and non-interacting molecules, \(\hat{H}_{\text{ph}}\) describes the photon field Hamiltonian, and \(\hat{H}_{\text{LM}}\) describes the light-matter interactions.

For the matter Hamiltonian, we consider \(N\) identical molecules, each containing two electronic states \(|g\rangle, |e\rangle\}, where \(|g\rangle\) and \(|e\rangle\) are the ground and excited states of the molecule respectively. We further denote the exciton raising and lowering operators

\[
\hat{\sigma}_n^+ = |e_n\rangle\langle g_n|; \quad \hat{\sigma}_n = |g_n\rangle\langle e_n|
\]

which create and annihilate an exciton on the \(n\)th molecule. The matter Hamiltonian is expressed as

\[
\hat{H}_M = \sum_{n=0}^{N-1} \left[(\omega_n + \lambda)\hat{\sigma}_n^+\hat{\sigma}_n + \sum_{\alpha} \omega_{\alpha}(\hat{b}_{\alpha,n}^+\hat{b}_{\alpha,n} + \frac{1}{2}) \right] + \hat{\sigma}_n^+\hat{\sigma}_n \sum_{\alpha} c_{\alpha} \left(\hat{b}_{\alpha,n}^+ + \hat{b}_{\alpha,n} \right)
\]

Further, \(\lambda\) is the reorganization energy, due to the exciton-phonon coupling, where the diabatic exci-
tation energy between the two states is $\hbar\omega_x = E_c - E_a$ (and throughout the work, we will set $\hbar = 1$) for all $n \in [0, N-1]$ molecules. Each molecule contains a set of phonon vibrations. The phonon DOFs of the molecules are considered as the bath Hamiltonian, which couple to the system through the system-bath (exciton-phonon) coupling, expressed as follows (c.f. Eq. 2)

$$\hat{H}_b = \sum_{n=0}^{N-1} \sum_{\alpha} \omega_{\alpha}(\hat{b}_{\alpha,n}^\dagger \hat{b}_{\alpha,n} + \frac{1}{2})$$

$$\hat{H}_{sb} = \sum_{n=0}^{N-1} \sum_{\alpha} \sigma_n \hat{c}_\alpha (\hat{b}_{\alpha,n}^\dagger + \hat{b}_{\alpha,n}),$$

where ω_α are the frequencies for the α-th phonon mode, $\hat{b}_{\alpha,n}$ and $\hat{b}_{\alpha,n}^\dagger$ are the bath phonon creation and annihilation operators that satisfy the bosonic commutation relations. \hat{H}_{sb} describes the system-bath interaction, where c_α denotes the coupling strength between the molecules and the α-th bath phonon mode. The system-bath interactions are determined by the spectral density

$$J_\nu(\omega) = \pi \sum_{\alpha} c_\alpha^2 \delta(\omega - \omega_\alpha) = \frac{2\lambda \gamma \omega}{\gamma^2 + \omega^2}$$

where in this work we use the Drude-Lorentz model, γ is the bath characteristic frequency, and the reorganization energy (inside \hat{H}_M) is $\lambda = \sum_\alpha c_\alpha^2 / \omega_\alpha = (1/\pi) \int_0^{\infty} \omega J(\omega) / \omega$ for all molecules. In this work, we use the following parameters: excitation energy $\omega_x = 2.0$ eV, the bath reorganization energy $\lambda = 30$ meV, and the bath characteristic frequency $\gamma = 24.8$ meV, which are the typical parameters for CdSe Nanoplatelets (see schematic illustration in Fig. 1a) which has been shown to couple strongly to a dielectric optical cavity.

Further, \hat{H}_c describes a single quantized radiation mode inside the cavity

$$\hat{H}_c = \omega_c (\hat{a}^\dagger \hat{a} + \frac{1}{2}),$$

where ω_c is the photon frequency of the cavity mode, and \hat{a}^\dagger and \hat{a} are the creation and annihilation operators for a photon in the cavity mode. For the light-matter interaction term \hat{H}_{LM}, we assume that each molecule is coupled to the quantized radiation field with the same light-matter coupling strength g_c. Under the rotating wave approxima-

Note that when entering into the ultra-strong coupling regime $\sqrt{Ng_c}/\omega_c > 0.1$, one needs to incorporate the counter-rotating wave terms ($\hat{a}^\dagger \hat{\sigma}_n^\dagger$ and $\hat{\sigma}_n$) and dipole-self energies to accurately describe the light-matter interaction. In this work, we restrict our parameters away from the ultra-strong coupling regime.

In this work, we consider the single excitation subspace

$$|G, 1\rangle = |g_0 \rangle \otimes \cdots |g_n \rangle \otimes \cdots |g_{N-1} \rangle \otimes |1\rangle$$

$$|E_n, 0\rangle = |g_0 \rangle \otimes \cdots |e_n \rangle \otimes \cdots |g_{N-1} \rangle \otimes |0\rangle,$$

where $|G, 1\rangle$ represent the 1-photon-dressed ground state, and $|E_n, 0\rangle$ represent the single excited state for the n-th molecule. In the above single excitation manifold, the collective “bright” excitonic state is

$$|\rangle = \frac{1}{\sqrt{\mathcal{N}}} \sum_{n=0}^{N-1} |E_n, 0\rangle,$$

which couples to the $|G, 1\rangle$ state through the light-matter interaction term \hat{H}_{LM}, resulting in the light-matter hybridized states that are known as polaritons.

We further define the following diabatic Polari-

in the first excitation subspace (because there are $N + 1$ basis states, see Eq. 8), among which there are two bright polariton states, commonly referred to as the Upper polariton (UP) state $|+\rangle$ and the Lower polariton (LP) state $|\rangle -\rangle$, expressed as

$$|+\rangle = \cos \Theta_N |\rangle B + \sin \Theta_N |G, 1\rangle,$$

$$|-\rangle = -\sin \Theta_N |\rangle B + \cos \Theta_N |G, 1\rangle,$$

where Θ_N is the mixing angle between light and
When $\Delta = 0$, the mixing angle becomes $\Theta_N = \pi/4$, the polariton states become $|\pm\rangle = \frac{1}{\sqrt{2}} \left[|G, 1\rangle \pm |B\rangle \right]$, (14)

and the Rabi splitting (energy gap) between the $|+\rangle$ and $|−\rangle$ is

$$\Omega_R = 2\sqrt{N}g_c. \quad (15)$$

The remaining $N - 1$ eigenstates are referred to as the “Dark states”, expressed as

$$|D_k\rangle = \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} \exp\left(-2\pi i\frac{n k}{N}\right) |E_n, 0\rangle, \quad (16)$$

where the coefficients $\sum_{n=0}^{N-1} \exp(-2\pi i\frac{n k}{N}) = 0$. These Dark states also satisfy $\langle G, 0 | \tilde{\mu} | D_k \rangle = 0$ due to the zero-sum property of the expansion coefficients, and as such, direct optical transition is not allowed and they are thus dark in spectra. Note that the $|\pm\rangle$ polariton states and the dark states manifold $\{ |D_k\rangle \}$ are “diabatic” states in their nature because they are the eigenstates of \hat{H}_B (Eq. 10), and their character do not change as a function of nuclear configuration $\hat{R}_{\alpha,n} = (\hat{b}_{\alpha,n} + \hat{b}_{\alpha,n}^\dagger)/\sqrt{2}$. On the other hand, one can also define polariton states as the eigenvector of the adiabatic polariton Hamiltonian41,45 $\hat{H}_{pl} = \hat{H} - \hat{T}_R$, where \hat{T}_R is the nuclear kinetic energy operator (for all phonons). The eigenstates of \hat{H}_{pl} can be viewed as the adiabatic version of the polariton and dark states because the state character explicitly depends on nuclear configuration $\{ \hat{R}_{\alpha,n} \}$, and it has been used to interpret the photoluminescence spectra31,45,48,49 or investigate coherences in polariton transport.17,50,51

Our focus is the coherence between $|+\rangle$ and $|−\rangle$ states, which is directly related to the off-diagonal beating in 2DES spectra and has been experimentally explored (see Fig. 1b).35 To probe the polariton coherences, we compute the off-diagonal matrix elements of the system-reduced density matrix (RDM), defined as

$$\rho_{+-}(t) = \langle + | \hat{\rho}_s(t) | − \rangle = \langle + | \text{Tr}_B[\hat{\rho}(t)] | − \rangle \quad (17)$$

where $\hat{\rho}$ denotes the full density operator and $\hat{\rho}_s$ is the RDM operator for the system by tracing out the bath DOF. Note that the coherence in this definition is basis-dependent and can lead to qualitatively different results with a change of basis when analyzing decoherence dynamics. Purity, $\text{Tr}_B[\rho_s^2(t)]$ on the other hand, is representation-independent. Here, we investigate $\rho_{+-}(t)$ because it is closely connected with the 2DES spectra measured experimentally (off-diagonal beating signals which correspond to the cross peak of $|+\rangle$ and $|−\rangle$ states).
We also present the results of purity in Sec. IV of the Supporting Information. The population and coherence are obtained by performing exact quantum dynamics simulation using the HEOM method. The system Hamiltonian H_s is represented in the single excitation subspace (Eq. 8), and the bath and system-bath part $\hat{H}_b + \hat{H}_{sb}$ are described by the spectral density (Eq. 5). The details of the simulations are provided in Sec. III of the Supporting Information.

For all simulations (except in Fig. 7), we consider a resonant condition of light-matter interaction $\Delta = 0$ (see expression in Eq. 13). The initial condition is assumed to be separable as

$$\hat{\rho}(0) = \hat{\rho}_s(0) \otimes \hat{\rho}_b(0) = |\Psi(0)\rangle \langle \Psi(0)| \otimes \frac{1}{Z_b} e^{-\beta \hat{H}_b},$$ (18)

where the system is initially prepared in a pure state

$$|\Psi(0)\rangle = |B\rangle = \frac{1}{\sqrt{2}} (|+\rangle - |-\rangle).$$ (19)

The bath is assumed to be in thermal equilibrium, where $Z_b = \text{Tr}[e^{-\beta \hat{H}_b}]$ is the partition function, with $\beta = 1/k_BT$ and we consider $T = 300$ K throughout this work. To compare the decoherence dynamics outside the cavity, we take the $g_c = 0^+ \text{ limit}$, such that the mixing angle $\lim_{g_c \to 0^+} \Theta_N = \pi/4$ under the resonant condition (see Eq. 12). Thus, the initial condition $|\Psi(0)\rangle$ for the outside cavity case can still be interpreted in Eq. 19, and under the $g_c = 0^+ \text{ limit}$ one still have well-defined states $|\pm\rangle = \frac{1}{\sqrt{2}} (|G, 1\rangle \pm |B\rangle)$ to probe their coherence. The meaning of the $g_c \to 0^+ \text{ limit}$ is actually the decoherence among $|E_n, 0\rangle$ in the $|B\rangle = \frac{1}{\sqrt{N}} |E_n, 0\rangle$ state, due to the coupling of $|E_n, 0\rangle$ with its own individual bath. We return to detailed discussions of the above in Sec. VII of the Supporting Information.

Fig. 2 presents $\text{Re}[\rho_{+\!-}(t)]$, the real part of the coherence between the $|+\rangle$ and $|-\rangle$ states, in a lossless cavity (no photon decay). Here, we fix the number of molecules $N = 10$, and the collective coupling strength $\sqrt{N}g_c$ varies from 100 meV to 200 meV by changing g_c. The black solid line corresponds to the coherence under the limit of $g_c = 0^+$ (outside the cavity), where $\rho_{+\!-}(t)$ decays with a Gaussian profile which is consistent with the established result of Gaussian coherence decay. Panel (a)-(c) preset the decoherence process with $\rho_{+\!-}(t)$ by gradually increasing the light-matter coupling strength g_c.

One can see that an increase in $\sqrt{N}g_c$ can significantly prolong the coherence time. An interesting feature we observed is that $\rho_{+\!-}(t)$ switches from a Gaussian decay to an exponential decay (Markovian limit). To extract the coherence lifetimes τ, we fit $\text{Re}[\rho_{+\!-}(t)]$ to the product of a cosine function and a single exponential decay function

$$\text{Re}[\rho_{+\!-}(t)] = \frac{1}{2} \cos(\Omega_R \cdot t) \cdot e^{-t/T_2},$$ (20)

where the coherence oscillates with a frequency of the Rabi splitting $\Omega_R = 2\sqrt{N}g_c$ (for an isolated two-level system), the coherence decay follows an exponential behavior with the characteristic time T_2 (due to coupling to phonons), and the coherence beatings last until ~ 150 fs. Eq. 20 fits the HEOM data exceptionally well, which are plotted as colored cross markers in each panel, and give the decoherence time T_2 as 61.2 fs (panel a), 100.9 fs (panel b), and 146.5 fs (panel c). For comparison, the coherence lifetime for $\lim_{g_c \to 0^+} \text{Re}[\rho_{+\!-}(t)]$ is $T_2 = 15.7$ fs when fitted to a Gaussian decay profile, which is the typical electronic coherence time.

ORCID: https://orcid.org/0000-0002-8639-9299
The number of molecules is varied from $N = 5$ (panel a) to $N = 10$ (panel b) and $N = 20$ (panel c), such that the collective coupling strength is (a) $\sqrt{N} g_c = 100$ meV, (b) $\sqrt{N} g_c = 141.4$ meV and (c) $\sqrt{N} g_c = 200$ meV, identical or similar to those presented in Fig. 2. Most of the experimental setups in molecular polaritons are similar to this case, where the individual coupling to each molecule is fixed and the collective Rabi splitting $\Omega_R = 2 \sqrt{N} g_c$ is increased due to an increase in N. The decoherence dynamics can also be fitted very well using Eq. 20, with extracted coherence lifetime as (a) $T_2 = 67.2$ fs, (b) $T_2 = 94.2$ fs, and (c) $T_2 = 141.4$ fs. For comparison, we also extract the coherence lifetime for $\lim_{g_c \to 0^+} \text{Re}[\rho_{+\rightarrow}(t)]$ (with a Gaussian fitting), resulting in (a) $T_2 = 16.7$ fs, (b) $T_2 = 15.7$ fs, and (c) $T_2 = 15.2$ fs. Thus, under the collective coupling regime and with an increasing N, $\text{Re}[\rho_{+\rightarrow}(t)]$ decay at a slower rate and the coherence lifetimes for the coupled states are about 4 to 9.3 times greater than the coherence lifetime for the uncoupled system. Further, comparing to Fig. 2, one observes that the decoherence dynamics are nearly identical with each other, as long as the collective coupling strength $\sqrt{N} g_c$ is the same. To be clear, the Hamiltonian in Fig. 2 is different compared to Fig. 3. The former is fixing N and varying g_c, and the latter one is fixing g_c and varying N. Nevertheless, it seems that the decoherence dynamics is only sensitive to $\sqrt{N} g_c$, agreeing with the empirical rule in the early numerical simulations with Lindblad dynamics.56

To understand the decoherence mechanism under the collective coupling regime and make sense of the exact numerical results presented in Figs. 2-3, we focus on the population dynamics presented in Fig. 4. One can see that there is a significant population transfer from the $|+\rangle$ state to the dark state manifold $\{|D_k\}$, such that the decoherence mechanism is not pure-dephasing (which does not have any population transfer). This also makes the decoherence mechanism for the collective coupling case ($N \neq 1$) fundamentally different from the single molecule case ($N = 1$), because the latter does not have any dark state. For the collective coupling regime, the main contribution for the $\rho_{+\rightarrow}(t)$ decoherence, as shown in Fig. 4, is the population transfer from $|+\rangle$ state to the dark states manifold $\{|D_k\}$. In Fig. 4c (where $N = 20$), we can see that $\rho_{++}(t)$ population gradually decay from 1/2 and the dark state population $\rho_{DD}(t)$ gradually increase, whereas the $\rho_{--}(t)$ population oscillates under room temperature. Coupling to a cavity can significantly prolong T_2 to ~ 60 fs with a realistic collective coupling parameter.53,54 $\sqrt{N} g_c = 100$ meV. In the 2DES experiments of molecular polariton,35 the largest Rabi splitting achieved was $\Omega_R = 380$ meV (or $\sqrt{N} g_c \approx 190$ meV). The record-high Rabi splitting that we are aware of is the squaraine dye molecules coupled to the cavity,35,55 generating $\Omega_R = 420$ meV (or $\sqrt{N} g_c \approx 210$ meV). Results in Fig. 2 suggest that under the collective coupling of a few molecules with the cavity when N is fixed and increasing g_c, the coherence $\rho_{+\rightarrow}(t)$ will be increased. This is also the case when $N = 1$, and with an increasing g_c one can significantly prolong the coherence $\rho_{+\rightarrow}(t)$, as shown in Fig. S3 in the Supporting Information. We note that the decoherence mechanism when $N = 1$ is fundamentally different than when $N > 1$ because the former case does not contain any dark state.

Fig. 3 presents the decoherence dynamics with a fixed light-matter coupling strength $g_c = 44.7$ meV and only increases the number of molecules N. As such, the coupling strength between the cavity and a single molecule is fixed, but the collective coupling strength $\sqrt{N} g_c$ is increased, due to more molecules being collectively coupled to the cavity mode. The number of molecules used is (a) $N = 5$ (red), (b) $N = 10$ (green), and (c) $N = 20$ (blue). The results are obtained from the HEOM simulations (solid curve) as well as the fitting with Eq. 20 (crossed markers).

Figure 3: $\text{Re}[\rho_{+\rightarrow}(t)]$ for a fixed g_c while varying N. The single molecule coupling strength is $g_c = 44.7$ meV. The number of molecules used is (a) $N = 5$ (red), (b) $N = 10$ (green), and (c) $N = 20$ (blue). The results are obtained from the HEOM simulations (solid curve) as well as the fitting with Eq. 20 (crossed markers).
the mixing angle is \(\Theta_N = \pi/4 \), \(\hat{\mathcal{H}}_- \) and \(\hat{\mathcal{H}}_{(\pm,D)} \) are expressed as follows

\[
\hat{\mathcal{H}}_\pm = \frac{1}{2} \left(|+\rangle\langle+| + |–\rangle\langle–| \right) \otimes \sum_{\alpha} \frac{c_\alpha}{\sqrt{N}} (\hat{b}_{\alpha,0} + \hat{b}^\dagger_{\alpha,0}) \\
- \frac{1}{2} \left(|+\rangle\langle–| + |–\rangle\langle+| \right) \otimes \sum_{\alpha} \frac{c_\alpha}{\sqrt{N}} (\hat{b}_{\alpha,0} + \hat{b}^\dagger_{\alpha,0}),
\]

(21a)

\[
\hat{\mathcal{H}}_{(\pm,D)} = \sum_{k=1}^{N-1} |D_k,0\rangle\langle+| \otimes \sum_{\alpha} \frac{c_\alpha}{\sqrt{2N}} (\hat{b}_{\alpha,k} + \hat{b}^\dagger_{\alpha,-k}) \\
- \sum_{k=1}^{N-1} |D_k,0\rangle\langle–| \otimes \sum_{\alpha} \frac{c_\alpha}{\sqrt{2N}} (\hat{b}_{\alpha,-k} + \hat{b}^\dagger_{\alpha,k}) + \text{h.c.},
\]

(21b)

where h.c. stands for the Hermitian Conjugate, and the general expression with an arbitrary \(\Theta_N \) is provided in Sec. I of the Supporting Information. In the above expressions, \(\hat{b}_{\alpha,k} = \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} \exp(-2\pi i \frac{k}{N}) \hat{b}_{\alpha,n} \) and \(\hat{b}^\dagger_{\alpha,k} = \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} \exp(-2\pi i \frac{k}{N}) \hat{b}^\dagger_{\alpha,n} \) are the creation and annihilation operators of the \(\alpha \)th bath phonon mode for the \(k \)th eigenstates of \(\hat{H}_s \). The special symmetrical phonon modes are \(\hat{b}_{\alpha,0} = \frac{1}{\sqrt{N}} \sum_{n=1}^{N} \hat{b}_{\alpha,n} \) and \(\hat{b}^\dagger_{\alpha,0} = \frac{1}{\sqrt{N}} \sum_{n=1}^{N} \hat{b}^\dagger_{\alpha,n} \), which only couple to the \(|\pm\rangle\) states (see Eq. 21a).

From Eq. 21a, one can see that both \(|+\rangle\) state and \(|–\rangle\) state are coupled to the phonon modes \(\hat{R}_{\alpha,0} = (\hat{b}_{\alpha,0} + \hat{b}^\dagger_{\alpha,0})/\sqrt{2 \omega_\alpha} \), for both the diagonal term (Holstein coupling) and off-diagonal term (Peierls coupling), with a re-scaled coupling strength \(c_\alpha/\sqrt{N} \). Note that the displacement between the \(|G,0\rangle\) and the \(|\pm\rangle\) states is given by \(R_{\alpha,0} = R_{\alpha,0}/\sqrt{N} \), where \(R_{\alpha,0} = \sqrt{2 c_\alpha^2/\omega_\alpha^2} \) is the displacement between the \(|E_n,0\rangle\) and \(|G,0\rangle\) states. Thus, the effective reorganization energy \(\lambda_N = \frac{1}{2} \sum_\alpha \omega_\alpha^2 R_{\alpha,0}^2 \) between the \(|G,0\rangle\) state and the \(|\pm\rangle\) states is

\[
\lambda_N = \frac{\lambda}{4N}.
\]

(22)

This means that under the \(N \to \infty \) limit (in real experiments, \(N \sim 10^6 - 10^{12} \)), the direct phonon couplings are completely decoupled from the \(|\pm\rangle\) states.\(^{39}\) As such, the optical lineshape (such as polariton absorption) that corresponds to \(|G,0\rangle \to |\pm\rangle\) optical transition will become much narrower than systems outside the cavities,\(^{39}\) and this will also present itself in the diagonal peaks of the 2DES spectra.\(^{35}\) However, polaron decoupling (Eq. 22) is not responsible for a longer \(\rho_{+–}(t) \) co-
herence time when increasing $\sqrt{N}g_c$ as we have observed in Figs. 2-3. This is because although both $|+\rangle$ and $|-\rangle$ have a relative shift $R_{\alpha,0}$ with respect to $|G,0\rangle$ (polaron decoupling), there is no absolute shift amongst $|+\rangle$ and $|-\rangle$ states on the diagonal term as can be seen from the first line of Eq. 21a. Instead, what could contribute to the pure decoherence is the off-diagonal Peierls term that will be discussed later (see Eq. 24), although this is not the main contribution.

The main contribution of the decoherence of ρ_{+-}, on the other hand, originates from the population transfer from the $|+\rangle$ state to the dark states manifold $\{|D_k\}\}$. This population transfer process happens within the same timescale of the $\rho_{+-}(t)$ decoherence process, as shown in Fig. 3c and Fig. 4c. This transition is caused by the phonon coupling term $\mathcal{H}_{\{\pm,D\}}$ in Eq. 21b. One can estimate the transition rate constant for the process $|+\rangle \rightarrow \{|D_k\}\}$ using Fermi’s Golden Rule (FGR), which gives

$$k_{+-\rightarrow D} = \frac{N-1}{N} \cdot J_\nu(\sqrt{N}g_c) \cdot \left[\bar{n}(\sqrt{N}g_c) + 1 \right],$$

(23)

where $J_\nu(\omega)$ is the phonon spectral density expressed in Eq. 5, and $\bar{n}(\omega) = 1/(e^{\hbar\omega/k_B T} - 1)$ is the Bose-Einstein distribution function of the phonon. Note that the energy gap between $|+\rangle$ and $|D_k\rangle$ is $\omega_+ - \omega_D = \Omega_R/2 = \sqrt{N}g_c$, which appears in $J_\nu(\omega)$ and $\bar{n}(\omega)$ of the FGR expression. For an arbitrary detuning case, there will be an additional factor $[1 + \cos(2\Theta_N)]$ in the FGR expression, see Eq. S21c in the Supporting Information. The scaling $(N-1)/N$ in Eq. 23 is well known, but because there are $N-1$ dark state to transfer to, and the $1/N$ is originated from the re-scaled phonon coupling c_0/\sqrt{N}. Further, $k_{+-\rightarrow D}$ can already explain the similarity of the decoherence dynamics we observed in Figs. 2-3. This is because when N is sufficiently large, $(N-1)/N \sim 1$, and the relaxation rate for the $|+\rangle \rightarrow \{|D_k\}\}$ process is completely dictated by $\sqrt{N}g_c$ as this is the only quantity shown in $k_{+-\rightarrow D}$ (Eq. 23). As such, even though the Hamiltonians used in Fig. 2 and Fig. 3 are different (especially for the number of the dark states), the reduced system dynamics in the $\{|+\rangle, |D_k\rangle\}$ are isomorphic to each other as long as $\sqrt{N}g_c$ is identical and N is sufficiently large, and if the dynamics is largely dictated by $|+\rangle \rightarrow \{|D_k\}\}$ transition.

The off-diagonal Peierls coupling in Eq. 21a, on the other hand, is the main cause of pure decoherence when one does not consider population transfer between $|+\rangle$ and $|-\rangle$ or population transfer to the dark states. This term is also the main cause of decoherence when $N = 1$ (as there is no dark state in this case). One can also estimate the rate constant for the process of $|+\rangle \rightarrow |-\rangle$ using FGR, and this rate constant is

$$k_{+-\rightarrow -} = \frac{1}{2N} \cdot J_\nu(2\sqrt{N}g_c) \cdot \left[\bar{n}(2\sqrt{N}g_c) + 1 \right].$$

(24)

Note that the energy gap is $\omega_+ - \omega_- = \Omega_R = 2\sqrt{N}g_c$, which shows up in the $J_\nu(\omega)$ and $\bar{n}(\omega)$ expressions of the FGR. Further, compared to $k_{+-\rightarrow D}$, the overall scaling is just $1/N$.

Figure 5: Fundamental scaling relation of the coherence lifetime T_2 with respect to N and g_c for various systems. The results are obtained from HEOM exact simulation (red dots), and compared to the fitting line (blue solid lines) and from FGR estimations (green dotted line). (a) T_2 as a function of N when $\sqrt{N}g_c = 180$ meV is fixed (such that when N increase, g_c decreases accordingly). (b) T_2 as a function of N for fixed $g_c = 44.7$ meV. (c) T_2 as a function of g_c for fixed N.

https://doi.org/10.26434/chemrxiv-2024-w70hr ORCID: https://orcid.org/0000-0002-8639-9299 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0
total coherence lifetime T_2 as

$$\frac{1}{T_2} = \frac{1}{2T_1} + \frac{1}{T_2^*} \approx \frac{1}{2k_{+\rightarrow D}} + \frac{1}{2k_{+\rightarrow -}} \quad (25)$$

where $1/T_1 = k_{+\rightarrow D}$, and we assume that for the pure decoherence rate it is half of the population transfer rate between $|+\rangle$ and $|-\rangle$ states (which is indeed valid under the Markovian approximation and this can be seen from the Lindblad master equations58,59). Under the large N limit (or collective strong coupling limit), $\sqrt{N}g_c \gg \gamma$, the spectral density $J_\nu(\sqrt{N}g_c) \sim 1/\sqrt{N}g_c$ (c.f. Eq. 5), and we find the following fundamental scalings

$$T_1 \sim N^{3/2}g_c/(N - 1), \quad T_2^* \sim N^{3/2}g_c. \quad (26)$$

Note that in the above scaling law, we explicitly assumed that $\beta\sqrt{N}g_c \gg 1$, such that $1 + \tilde{n} \approx 1$. This is indeed the case for exciton-polaritons under room temperature conditions $k_B T \approx 26$ meV and $\sqrt{N}g_c > 50$ meV. For lower temperature or vibrational strong coupling cases (where usually $\sqrt{N}g_c < 10$ meV) one also needs to explicitly consider the scaling coming from $\tilde{n}(\sqrt{N}g_c)$ and $\tilde{n}(2\sqrt{N}g_c)$. Further, the scaling in Eq. 26 will depend upon the detailed form of the spectral density $J_\nu(\omega)$, but one is guaranteed to figure out this scaling once the detailed form of $J_\nu(\omega)$ is known. Thus, for large N, $T_2^* \gg 2T_1$, and we see that the contribution of the coherence decay rate between $|+\rangle$ and $|-\rangle$ state to T_2 is negligible; the decoherence time for the collective coupling case is

$$\frac{1}{T_2} \approx \frac{1}{2T_1} \sim \frac{N - 1}{N^{3/2}g_c}, \quad (27)$$

which is the first key result of this letter. On the other hand, when $N = 1$ (single molecule case), $T_1 \sim \infty$ (c.f. Eq. 26) because there is no dark state at all, and the decoherence mechanism is dominated by population transfer between $|+\rangle$ and $|-\rangle$ as shown in Fig. 4a. As such, for the single molecule case

$$\frac{1}{T_2} \approx \frac{1}{T_2^*} \sim \frac{1}{2k_{+\rightarrow D}} \sim \frac{1}{2\gamma^2 + 4g_c^2} [\tilde{n}(2g_c) + 1] \sim \frac{1}{g_c}, \quad (28)$$

which reflects a simple fact that as $\omega_{+\rightarrow -} = \omega_{+\rightarrow +} = 2g_c$ gets larger, the phonon in J_ν cannot efficiently mediate the transition $|+\rangle \rightarrow |-\rangle$ unless there is a high frequency phonon that matches $\omega_{+\rightarrow -}$. Note that the simple scaling at the end of Eq. 28 only works when $g_c \gg \gamma$, otherwise $1/T_2^*$ will exhibit a turnover, dictated by the form of $J_\nu(2g_c)$ (c.f. Eq. 5). Nevertheless, we have observed this from direct theoretical simulations of 2DES spectra of a single molecule strongly coupled to the cavity,31 and indeed find that the longer coherence time can be achieved by increasing g_c. Further, earlier theoretical work also suggests that one can prolong the ρ_{+-} coherence by increasing g_c from the potential energy surface hybridization perspective.30 Additional numerical results are provided in Sec. VI of the Supporting Information to characterize the ρ_{+-} decoherence for $N = 1$ with increasing g_c. However, we emphasize that the fundamental mechanism for decoherence in the $N = 1$ case (Eq. 28) is different compared to the collective coupling case (Eq. 27).

Fig. 5 presents a numerical check of the scaling predicted by Eq. 27, where we have simulated three cases: (a) fixing the collective coupling $\sqrt{N}g_c = 180$ meV while increasing N (and thus decrease g_c accordingly), (b) fixing $g_c = 44.7$ meV while increasing N, and (c) fixing $N = 10$ while increasing g_c. The results are obtained from HEOM simulations and extracted using Eq. 20 (red dots), the least square fitting using the corresponding scaling (blue curve), as well as from FGR using Eq. 25 (green).

According to the scaling predicted by FGR, $2T_1$ scales as $N/(N - 1)$ when $\sqrt{N}g_c$ is fixed, scales as $N^{3/2}/(N - 1)$ when g_c is fixed, and scales as g_c when N is fixed. As one can see, the least square fittings match the HEOM data for all three panels in Fig. 5 and show that our scaling arguments are correct. Furthermore, we see that the FGR expression overestimates the T_2 value by only 40 fs, likely due to ignoring the other contribution of decoherence (that further reduces T_2.) Thus, we note that Eqs. (23) and (24) not only reproduce the scaling of T_2 with respect to the system parameters, but they also provide a reasonable estimate for the actual coherence lifetimes predicted by exact quantum dynamics. We expect these equations to be of use in interpreting experimental results that couple many molecules strongly to a cavity, such as polariton spectral linewidth.31,35

Further, we demonstrate the robustness of the prolonged coherence $\rho_{+-}(t)$ when explicitly considering cavity loss. To incorporate the cavity loss effect, we couple the cavity mode with a lossy environmental DOF corresponding to the photonic modes outside the cavity (far field modes).60,61
This part of the Hamiltonian is expressed as
\[\hat{H}_{\text{loss}} = \sum_{\alpha} \left(\frac{\hat{P}^2_{\alpha}}{2} + \frac{1}{2} \alpha^2 \left[\hat{Q}_{\alpha} + \frac{C_{\alpha}}{\omega_{\alpha}} \left(\hat{a}^\dagger + \hat{a} \right) \right] \right)^2, \]

where \(\bar{\omega}_{\alpha} \) is the frequency of the modes, and \(C_{\alpha} \) is the coupling strength between the cavity mode and the photon loss bath. The photon loss bath is modeled with a Drude-Lorentz spectral density
\[J_{\text{loss}}(\omega) = \frac{\pi}{2} \sum_{\alpha} \frac{C_{\alpha}^2}{\bar{\omega}_{\alpha}^3} \delta(\omega - \bar{\omega}_{\alpha}) = \frac{2\gamma_c \omega_c}{\omega^2 + \gamma_c^2} \]

Using the expression for the cavity loss rate, \(\frac{1}{\tau_c^{-1}} = J_{\text{loss}}(\omega_c)/[\omega_c(1 - e^{-\gamma_c})] \), (29)

and the cavity quality factor is defined as \(Q = \omega_c \tau_c \).

Here, we choose the parameters \(\lambda_c = 5.15 \text{ meV} \) and \(\gamma_c = 800 \text{ meV} \) for the cavity loss bath, corresponding to a cavity loss rate \(\tau_c^{-1} = 8.83 \text{ meV} \) (c.f. Eq. 29) or a quality factor of \(Q \approx 266 \) (when \(\omega_c = 2 \text{ eV} \)), which is a typical experimental loss rate in a distributed Bragg reflector (DBR) cavity.\(^{41}\) This loss spectral density \(J_{\text{loss}}(\omega) \) in Eq. 29 is included in the HEOM exact quantum dynamics simulations. Of course, cavity loss also significantly contributes to the population decay of the \(|+\rangle \) state, and one can estimate the decoherence rate as \(\frac{1}{\tau_c} \approx \frac{1}{2} k_{+\rightarrow D} + \frac{1}{2} \tau_c^{-1} \), where 1/2 of the character of \(|+\rangle \) is the photonic character \(|G, 1\rangle \), and the decoherence rate due to cavity loss is 1/2 of the photonic population decay rate \(\tau_c^{-1} \).

Fig. 6 presents the \(\rho_{++}(t) \) in a lossy cavity for fixed \(g_c \), same as those in Fig. 3, except with the inclusion of cavity loss in the HEOM simulation. The extracted coherence lifetimes (using Eq. 20) are: (a) \(T_2 = 46.6 \text{ fs} \) for \(\sqrt{N}g_c = 100 \text{ meV} \), (b) \(T_2 = 58.9 \text{ fs} \) for \(\sqrt{N}g_c = 141.4 \text{ meV} \), and (c) \(T_2 = 77.6 \text{ fs} \) for \(\sqrt{N}g_c = 200 \text{ meV} \). One can see that \(\text{Re}[\rho_{++}(t)] \) indeed decays faster in a lossy cavity compared to a perfect cavity, but coherence between \(|+\rangle \) and \(|-\rangle \) still lasts much longer compared to the typical value of electronic decoherence rate. For example, when \(\sqrt{N}g_c = 200 \text{ meV} \) (Fig. 6c) the decoherence time is 77.6 fs when having a cavity loss rate of \(\tau_c^{-1} = 8.83 \text{ meV} \), which is about 3 times longer than the outside cavity case. Thus, the presence of strong collective light-matter coupling still enhances the quantum coherence of the bright polaritonic states even in the presence of cavity loss.

Fig. 7 shows the coherence lifetimes \(T_2 \) for a finite light-matter detuning \(\Delta = \omega_c - (\omega_k + \lambda) \). We consider the coherences in both lossless and lossy cavities, and for lossy cavities we have quality factors from \(Q = 167 \) to \(Q = 1500 \) that are representative of experimentally realizable optical cavities.\(^{18,41}\) For positive \(\Delta \), \(T_2 \) increases with increasing \(\Delta \) until it reaches a turnover point where \(T_2 \) decreases with further increases in \(\Delta \). From our FGR analysis, this turnover is caused by the competition between the population transfer from \(|+\rangle \rightarrow \{|D_k\}\rangle \) given by the rate \(k_{+\rightarrow D} \), and the population transfer from \(|-\rangle \rightarrow \{|D_k\}\rangle \) given by the rate \(k_{-\rightarrow D} \). We also include the photonic loss to the \(|G, 1\rangle \) state from the \(|\pm\rangle \) states. Combining all contributions to the decoherence rate, we have the second key result of this letter

\[\frac{1}{T_2} \approx \frac{2(N - 1)}{N} \left[- \frac{\partial \Delta E_+}{\partial \Delta} \cdot J_\nu(\Delta E_+) \cdot \hat{n}(\Delta E_+) + 1 \right] \]

\[+ \frac{\partial \Delta E_-}{\partial \Delta} \cdot J_\nu(\Delta E_-) \cdot \hat{n}(\Delta E_-) \] + \frac{1}{2} \tau_c^{-1} \]

(30)

where the energy gap between \(|+\rangle \) and dark state as well as between dark state to \(|-\rangle \) is

\[\Delta E_+ = \pm \frac{\Delta}{2} + \frac{1}{2} \sqrt{\Delta^2 + 4Ng_c^2}, \]

(31)
and

\[\pm \frac{\partial \Delta E_{\pm}}{\partial \Delta} = \frac{1}{2} \left(1 \pm \frac{\Delta}{\sqrt{\Delta^2 + 4N g_c^2}} \right), \tag{32} \]

are the Hopfield coefficients.\(^8,41\) In Eq. 30, we have explicitly ignored the \(1/T_2^2\) contribution (c.f. Eq. 23 and Eq. 25). With a larger light-matter detuning \(\Delta\), the first term in Eq. 31 decreases due to a reduced \(J_\nu(\Delta E_{\pm})\) originated from a larger energy gap between \(|+\rangle\) state and the dark states manifold. On the other hand, the second term in Eq. 31 increases because of increased \(J_\nu(\Delta E_{\pm})\) with a smaller energy gap between \(|-\rangle\) state and the dark states manifold. As such, there will be a turnover of \(1/T_2\) as one increases the light-matter detuning \(\Delta = \omega_c - (\omega_x + \lambda)\) from zero value to positive values. The impact of cavity loss, which affects both \(|\pm\rangle\) states, is to cause additional decoherence from population transfer to the \(|G, 1\rangle\) state. Fig. 7 verify such a turnover of \(T_2\) as a function of the detuning obtained from HEOM simulations, at various cavity quality factors from \(Q = 167\) to \(Q = 1500\). Further analysis of the turnover using the formalism of Eq. 30 is provided in Sec. VIII of the Supporting Information.

In this letter, we theoretically demonstrate that the coherence lifetime between the upper and lower polariton states in the collective coupling regime increases with an increasing collective Rabi splitting \(2\sqrt{N g_c}\). This is confirmed by computing \(\rho_{+-}(t)\) using exact quantum dynamics simulation through the HEOM approach, as well as through analytic rate theory using Fermi’s Golden Rule. We found that the main mechanism for decoherence under this collective coupling regime at resonance condition largely comes from population transfer from the upper polariton state to the dark states manifold, a departure from the pure dephasing limit that does not involve any population transfer. Using analytic theory based on FGR expression, we showed that polariton decoherence can be mitigated by reducing exciton-phonon couplings. An enlarged energy gap between the polariton states and the dark states further reduces the population relaxation rate from \(|+\rangle\) to the dark state manifold, as well as the decoherence rate. Further, we showed that this enhancement in coherence is robust even in the presence of cavity loss, with a range of quality factors that can be achieved using the state-of-the-art FP cavities.\(^41,45\) By investigating the coherence enhancements with varying light-matter detunings, we further demonstrated the importance of the dark states in mediating the coherences between the polaritonic states and theoretically predicted and explained the turnover in \(T_2\) for positive \(\Delta\) as a consequence of competition between transitions from \(|+\rangle\) \(\rightarrow\) \(|\{D_k\}\rangle\) and \(|-\rangle\) \(\rightarrow\) \(|\{\bar{D}_k\}\rangle\). The results in this letter use parameters that are representative of those used in recent polariton experiments using CdSe NPL coupled to DBR FP cavities.\(^41,45\) We thus expect that these theoretical predictions can be directly verified experimentally and will provide crucial insights into understanding polariton 2D spectroscopy data.\(^35\)

Supporting Information. The Supporting Information is available free of charge at [url]. Details of the HTC system in the polaritonic basis; FGR rates for polariton transitions; details of HEOM simulations; purity results for a fixed number of molecules; coherence data for a fixed number of molecules in a lossy cavity; coherence data for single molecule case \((N = 1)\); discussion of Gaussian to Markovian transition in the collective coupling regime; FGR analysis of the decoherence turnover with increasing positive detunings.

Acknowledgements. This work was supported by the Department of Energy Award under Grant DE-SC0022171. The work of FGR theory and decoherence scaling investigations by B. X. K. C. was supported by...
the Air Force Office of Scientific Research under AFOSR Award No. FA9550-23-1-0438. W. Y. and Y. L. were supported by the National Science Foundation under Grant No. CHE-2244683. P. H. appreciates the support of the Cottrell Scholar Award (a program by the Research Corporation for Science Advancement). Computational resources were provided by the Center for Integrated Research Computing (CIRC) at the University of Rochester. B. X. K. C. thanks Elious Mondal and Eric Koessler for their valuable comments on the manuscript.

References

(3) Pekar, S. The theory of electromagnetic waves in a crystal in which excitons are produced. Sov. Phys. JETP 1958, 6, 785.

(10) Ghosh, S.; Liew, T. C. Quantum computing with exciton-polariton condensates. npj Quantum Information 2020, 6, 16.

