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A new partially linearized approximate approach to non-adiabatic quantum dynamics is derived based on
linearizing the path difference for nuclear degrees of freedom (DOF) in the classical mapping Hamiltonian while
keeping quantum interference effects inherent in the forward and backward propagators for the electronic DOF.
With this new approach, the non-adiabatic force that acts on the nuclear DOF is a mean force rather than a state
dependent force as found in some alternative approaches. Various benchmark examples are explored to test the
accuracy of this new approach, and compare its performance with other approaches for a wide range of physical
phenomena including: non-adiabatic scattering, excited state conical intersection dynamics, excited state
photoisomerization, and excitation energy transfer in realistic condensed phase model systems. Results indicate
that, even though the method is based on a ‘‘mean trajectory’’-like scheme, it can accurately capture electronic
population branching through multiple avoided crossing regions and that the approach offers a robust and
reliable way to treat quantum dynamical phenomena in a wide range of condensed phase applications.

Keywords: non-adiabatic dynamics; mapping Hamiltonian; quantum dynamics; linearized semi-classical
dynamics

1. Introduction

The mixed quantum-classical strategy for modeling

systems in which quantum coherent dynamics and

electronically non-adiabatic transitions play important

roles describes the nuclear degrees of freedom (DOF)

classically or semi-classically, while treating the elec-

tronic DOF quantum mechanically with an evolution

operator parameterized by trajectories of the nuclear

DOF [1]. Though many schemes for implementing this

idea have been developed [2,3], fundamental questions

arise about the accuracy of dynamics methods that

treat the electronic and nuclear DOF on different

dynamical footings [4–6]. To overcome this difficulty,

the mapping Hamiltonian idea that exactly maps

discrete quantum states onto continuous coordinates

was proposed by Miller and co-workers [7–9] and

enables a consistent treatment for all DOF. This idea

replaces the evolution of the electronic subsystem by

the dynamics of a system of fictitious mapping

harmonic oscillators. With this approach e.g., the

quantum amplitude transfer operator transforms as

j�ih�j ! ây�â�, where â� ¼
1ffiffiffiffi
2�h
p q̂� � ip̂�ð Þ, and a general

electronic Hamiltonian in the diabatic representation,
ĥel ¼

P
�,� j�ih�jĥelðR̂Þj�ih�j, can be rewritten as:

ĥmapðR̂Þ ¼
1

2�h

X
�

h�,�ðR̂Þðq̂
2
� þ p̂2� � �hÞ

þ
1

2�h

X
�6¼�

h��ðR̂Þðq̂�q̂� þ p̂�p̂�Þ ð1Þ

where ðP̂, R̂Þ and ðp̂�, q̂�Þ represent the nuclear, and
mapping oscillator phase space DOF, respectively.
Direct implementation of this mapping Hamiltonian
by the stationary phase approximation and classical
trajectories encounters a fatal problem when
q2� þ p2�5 �h, since some of the classical DOF can
evolve on an inverted potential surface, proportional
to �h�,�(R) arising from the first term in Equation (1)
[10,11]. Moreover, the population, ��� ¼ ây�â� ¼
1
2�h ðq̂

2
� þ p̂2� � �hÞ, is not guaranteed to have a positive

expected value when the approach is implemented
approximately, e.g., with the linearized semi-classical
initial value representation (LSC-IVR) applied to
multi-state systems [11,12]. This is due to the
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unphysical flow of zero point energy of the mapping
harmonic oscillators in the classical limit [13,14]. On
the other hand, LSC-IVR linearizes in the difference
between forward and backward paths for both the
mapping and nuclear DOF. To overcome all these
problems, in this paper we outline a method that
employs the coherent state representation of the
mapping DOF [15,16] and linearize only in the nuclear
DOF, allowing different mapping variable paths for
the forward and backward propagators, i.e., partial
linearization.

The paper is organized as follows: First, in
Section 2, the basic theory that underlies the propaga-
tion of the density matrix written in terms of discrete
quantum states for the electronic subsystem and
continuous coordinates for the nuclear DOF is devel-
oped in the mapping Hamiltonian formulation giving a
path-integral expression that we linearize in the differ-
ence between the forward and backward paths of the
nuclear DOF to obtain our expressions for the partial
linearized density matrix (PLDM) propagation
approach. Details of this theoretical development can
be found in reference [17]. Next, in Section 3, we
explore the accuracy, reliability, and efficiency of the
approach by comparing results from different calcula-
tions on various model benchmark systems including:
multi-state Morse potential models of non-adiabatic
molecular photodissociation, various models of excited
state conical intersection dynamics applicable to
excited state spectroscopy, and a cis-trans photoisome-
rization reaction in solution, as well as multi-state
‘‘spin-boson’’-like models of electron and excitation
energy transfer in condensed phase systems, thus
demonstrating the broad applicability of the approach
and exploring its limitations for different applications.
Finally, our findings are summarized and concluding
remarks are presented in Section 4. Appendices are
included that offer summaries of various approaches
for implementing the mapping Hamiltonian for quan-
tum dynamics enabling theoretical comparison of the
present PLDM propagation method to various other
techniques.

2. Theory

The quantity of interest is the evolution of the density
matrix involving forward and backward propagation:

hRt,ntj�̂jR
0
t,n
0
ti¼

X
n0,n

0
0

Z
dR0dR

0
0hRt,ntje

� i
�hĤtjR0,n0i

�hR0,n0j�̂ð0ÞjR
0
0,n
0
0ihR

0
0,n
0
0je

i
�hĤtjR0t,n

0
ti

ð2Þ

where the total Hamiltonian is Ĥ ¼ P̂2=2Mþ
hmapðR̂, p̂, q̂Þ, and nt labels the basis states at time t.
The propagator matrix elements in discrete path
integral form are:

hRN, ntje
� i

�hĤtjR0, n0i ¼

Z YN�1
k¼1

dRk
dPk

2��h

dPN

2��h
e
i
�hS0

� hntje
� i

�h�ĥmapðRN�1Þ � � � e�
i
�h�ĥmapðR0Þjn0i

ð3Þ

where � is a time step, the nuclear kinetic action is

S0 ¼ �
XN
k¼1

Pk
ðRk � Rk�1Þ

�
�

P2
k

2M

� �

and T½nt,n0� ¼ hntje
� i

�h�ĥmapðRN�1Þ � � � e�
i
�h�ĥmapðR0Þjn0i is the

nuclear path dependent quantum transition amplitude.
In the coherent state representation (with coherent

state width parameter, �¼ 1/2 and setting units so that
h�¼ 1), the transition amplitude can be expressed
as [15,16]:

T½nt,n0� ¼

Z
dq0dp0

1

4
ðqnt þ ipntÞðqn0 � ipn0 Þcte

iS1ðtÞ

� e
� i

2

P
�
ðq�tp�t�q�0p�0Þe

�1
2

P
�
ðq2
�0
þp2

�0
Þ

ð4Þ

where ct ¼ e
� i

2�h

R t

0
d�
P

�
ĥ��ðRÞ, S1ðtÞ ¼

R t
0 L1ð�Þd�, with

L1 ¼ Lcl
1 þ

1
2

P
� h��ðRÞ, L

cl
1 ¼

P
� p� _q� � hclmapðRÞ and

hclmapðR, p, qÞ ¼
1

2

X
�

h��ðRÞ p2� þ q2�

� �

þ
1

2

X
� 6¼�

h��ðRÞ p�p� þ q�q�
� �

: ð5Þ

The term �h
2

P
� h��ðRÞ in the action, S1, that gives rise to

the problem of inverting the potential can be elimi-
nated as this term is canceled exactly by the prefactor,
ct [15,16] leaving Scl

1 ðtÞ ¼
R t
0 L

cl
1 ð�Þd� in the phase.

An important difference between the approach
outlined here and the quasi-classical approximation
presented in references [29,30] is that in the quasi-
classical method the �h� factor in the first term of the
full mapping Hamiltonian in Equation (1) is replaced
by an ad hoc adjustable parameter that attempts to
model the zero point energy flow between the quantum
and classical subsystems. Subsequently the quasi-
classical approach treats all degrees of freedom in the
resulting Hamiltonian classically. With the PLDM
approach presented here, however, the troublesome
�h� factor is exactly canceled due to the particular
choice of coherent state width parameter and the
forward and backward mapping variable paths are
treated explicitly. This choice of coherent state width
parameter, while providing a numerically stable way of
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implementing this approach may, however, influence

the accuracy due the approximation underlying partial

linearization and may lead to an inaccurate description

of the zero point energy flow.
The combined forward and backward propagators

in Equation (2) can lead to phase cancellation that can

cause problems for numerical implementation.

Approximate schemes such as Forward Backward

(FB) SC-IVR [18] can alleviate these difficulties.

Alternatively, here we use the idea of partial lineari-

zation [19–21] in the nuclear DOF that involves

transforming the forward and backward nuclear path

variables, R and R0, to mean and difference variables:
�R ¼ ðRþ R0Þ=2 and Z¼ (R�R0) respectively (with

similar definitions for the mean and difference nuclear

momenta, �P and Y respectively). The nuclear kinetic

action difference becomes: ðS0 � S00Þ ¼
�PNZN � �P1Z0�PN�1

k¼1 ð
�Pkþ1 � �PkÞZk �

PN
k¼1½

�
m

�Pk � ð �Rk � �Rk�1Þ�Yk.

The central approximation with this approach involves

truncating the phase difference in the combined tran-

sition amplitude terms to linear order in Z, based on

the assumption that for short times, forward and

backward nuclear paths will remain close to each

other. This may appear to be a restrictive approxima-

tion that will only be valid for very short times for high

dimensional problems but such linearization approxi-

mations have been shown to be reliable even when

forward and backward paths differ significantly in

some degrees of freedom [22]. With the linearization

approximation, the key term is the classical mapping

Hamiltonian difference DHcl
map ¼ ½h

cl
mapðR, p, qÞ�

hclmapðR
0, p0, q0Þ� which can be written as

DHcl
map¼

h
hclmapð

�R,p,qÞ�hclmapð
�R,p0,q0Þ�

þ
1

2
r �Rh

cl
mapð

�R,p,qÞþr �Rh
cl
mapð

�R,p0,q0Þ
� �

ZþOðZ2Þ:

ð6Þ

Using this to expand the action difference in Z, and

propagating p and q with hclmapð
�R, p, qÞ (instead of

hclmapðR, p, qÞ or h
cl
mapðR

0, p0, q0Þ), we obtain the following

expression:
P

� p� _q� � hclmapð
�R, p, qÞ ¼ 1

2
d
d�

�P
� p�q�

�
,

and the transition amplitude phase difference,

DScl
1 ¼ ðS

cl
1 ½RðtÞ, qðtÞ, pðtÞ� � Scl

1 ½R
0ðtÞ, q0ðtÞ, p0ðtÞ�Þ can

be expanded as

DScl
1 ¼

Z t

0

�
1

2

d

d�

X
�

ðp��q���p0��q
0
��Þ

þ
1

2
r �Rh

cl
mapð

�R�,p� ,q�Þþr �Rh
cl
mapð

�R� ,p
0
�,q
0
�Þ

� �
Z�

�
d�

þOðZ2
�Þ: ð7Þ

With this result the first term in Equation (7) cancels

the boundary terms in T½nt, n0� given in Equation (4)

and similarly for the backward path transition

amplitude, T 0½n0
0
, n0t�

.
Combining the forward and backward phase

factors (ei=�hðS0�S
0
0
ÞT½nt,n0�T

0
½n0

0
, n0t�

) and performing the

integrals over Z0, . . . ,ZN�1, gives our approximation

for �nt,n0t ðR,R
0, tÞ ¼ h �RN þ

ZN

2 , ntj�̂ðtÞj �RN �
ZN

2 i as

�nt,n0tðR,R
0,tÞ ¼

X
n0,n

0
0

Z
d �R0dq0dp0dq

0
0dp
0
0G0G

0
0

1

4
ðqn0 � ipn0Þ

�ðq0n0
0
þ ip0n0

0
Þ

�

Z YN�1
k¼1

d �Rk
d �Pk

2��h

d �PN

2��h
ð�̂Þ

n0,n
0
0

W ð �R0, �P1Þ
1

4

�ðqnt þ ipntÞðq
0
n0t
� ip0n0t Þ

�
YN�1
k¼1

	
�Pkþ1� �Pk

�
�Fk

	 


�
YN
k¼1

	
�Pk

M
�

�Rk� �Rk�1

�

	 

e
i
�h

�PNZN : ð8Þ

Here, G0 ¼ e
�1

2

P
�
ðq2
�0
þp2

�0
Þ
and G00 ¼ e

�1
2

P
�0
ðq02
�00
þp02

�00
Þ
are

the initial distributions for the forward and backward

mapping variables that satisfy _qnt ¼ @h
cl
mapð

�RtÞ=@pnt and
_pnt ¼ �@h

cl
mapð

�RtÞ=@qnt , and the nuclear trajectories are

determined by a ‘‘mean field’’-like force resulting from

the different forward and backward mapping paths:

Fk ¼ �
1

2
r �Rk

hclmapð
�Rk, pk, qkÞ þ hclmapð

�Rk, p
0
k, q
0
kÞ

h i
: ð9Þ

The mean nuclear DOF initial distribution is the

partial Wigner transform: ð�̂Þ
n0,n

0
0

W ð �R0, �P1Þ ¼
R
dZ0h �R0þ

Z0

2 , n0j�̂j �R0 �
Z0

2 , n00ie
� i

�h
�P1Z0 . We use factorized initial

conditions, �0 ¼ �
eq
bathðRÞ�sys, though the non-separable

case can be treated [23,24].
Numerical implementation of Equation (8) involves

sampling initial nuclear DOF from ð�̂Þ
n0,n

0
0

W ð �R0, �P1Þ, and

mapping variables from the Gaussian functions.

However, with the ‘‘focused mapping initial condi-

tion’’ [15], the numerical convergence will be improved

and typically only requires �104 trajectories. The

accuracy of the focused initial condition sampling

will be discussed in detail later in the result section. The

product of 	-functions in Equation (8) gives a time-

stepping prescription for evolving the mean nuclear

DOF with the force in Equation (9). Finally quantum

expectation values are computed using Equation (8)

and the state projected Wigner distribution:

ð�̂Þ
nt,n

0
t

W ð
�RN, �PtÞ¼

Z
dZNe

� i
�h

�PtZN

�
�RNþ

ZN

2
,nt
���̂�� �RN�

ZN

2
,n0t


:

ð10Þ
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We refer to the approach presented above as Partial

Linearized Density Matrix (PLDM) propagation [17].
The PLDM propagation scheme is a ‘‘mean trajec-

tory’’ approach, but according to Equation (9) it is

different from ‘‘Ehrenfest’’ or LSC-IVR dynamics

where the force on the nuclear DOF depends only on

one set of mapping variables as FEh ¼ �
P

�
1
2�h ½ðq

2
�þ

p2� � 1ÞrRh�,� þ
P

�6¼�ðq�q� þ p�p�ÞrRh�,�� [18,25]. The

PLDM force in Equation (9) is governed by both

forward and backward mapping DOF, however, the

scaling of the computational cost of the PLDM

approach with increasing number of classical degrees

of freedom is linear, similar to the LSC-IVR approach.

The relationship between these different semi-classical

schemes is outlined in Appendix B.
By following a different sequence of canceling and

linearizing in the phase difference, an alternative

scheme known as the linearized approach to non-

adiabatic dynamics in the mapping Hamiltonian for-

mulation, or LAND-map, has been developed [15,16].

As outlined in Appendix B, this LAND-map approach

results in a force (see Equation B5) that depends on the

states that label the density matrix elements being

propagated rather than the mean force of Equation (9)

that arises in the present PLDM approach. The

linearized approximation within the LAND-map for-

mulation must break down for longer time propaga-

tion but it can been used as a short time approximation

that can be iterated yielding a ‘‘surface hopping’’ (SH)-

like version of the approach known as Iterative

Linearized Density Matrix (ILDM) propagation (see

the Appendix for details) that can in principle be

applied for accurate longer time propagation. This

approach has been tested for various model quantum

dynamical problems [26,27]. While ILDM uses a

surface hopping like linearized expression as a short

time approximation that is iterated to treat longer

times, its convergence with large numbers of iterations

can be problematic. The LAND-map approach [15,16]

uses this same linearized approximation but without

iteration. LAND-map has improved statistical conver-

gence over the ILDM propagation approach but the

linearized propagator underlying these methods is

generally only reliable for short times and a balance

between many iterations and statistical convergence

must be considered. The mean trajectory linearized

approximation underlying the PLDM scheme devel-

oped here, however, seems to be generally accurate for

much longer times as demonstrated in the example

applications presented below. The PLDM approach

thus offers a significant improvement in statistical

convergence while preserving high accuracy, even at

long times.

3. Results

In this section, we present the results of calculations
using the approach outlined above to compute differ-
ent properties for a variety of model problems that

provide stringent tests of the approximations underly-
ing the method. Thus, results obtained for both
electronic and nuclear properties computed with the
PLDM approach are compared with exact benchmark

calculations and results from other approximate the-
oretical approaches to explore the reliability and
relative efficiency of these various calculations.

The first series of models treat one dimensional
anharmonic molecular vibration and dissociation over
a number of non-adiabatically coupled electronic
surfaces described by a series of displaced and coupled

Morse potentials. At low energies where the trajecto-
ries oscillate over the coupled surfaces and distribute
their population amongst the different electronic states
we demonstrate that the PLDM approach effectively
solves the inverting potential problem of the original

mapping Hamiltonian model [10,28], while at higher
energies we show for similar models of molecular
photodissociation on multiple surfaces [11,15,26] that
the PLDM approach gives accurate, stable positive
definite branching probabilities unlike the linearized

semi-classical initial value representation (LSC-IVR)
approach that can give unphysical negative popula-
tions when used to implement the mapping
Hamiltonian formulation of the non-adiabatic dynam-
ics problem.

The applicability of the PLDM approach for

treating more complex non-adiabatic intramolecular
vibrational dynamics such as in the regions of conical
intersections is explored in a three-mode model of the
vibrational dynamics in the conical intersection
between the S1 and S2 states of pyrazine where results

are compared with the time dependent self-consistent
field (TDSCF) approach and quasi-classical mapping
Hamiltonian (QC-map) methods, and exact multi-
configuration time dependent Hartree (MCTDH) cal-
culations. Despite the fact that the QC-map approach

incorporates zero point energy corrections [13,25] we
find that it gives unphysical negative adiabatic popu-
lations. The PLDM and TDSCF approaches do not
suffer from this problem and can reproduce much of
the qualitative behavior observed in the exact results

for this model. Finally, we explore the conical inter-
section dynamics in a model cis-trans photoisomeriza-
tion reaction [73–76], and study the dependence of the
results on the initial torsional angle distribution.

Next we explore the performance of the approach
for a condensed phase application involving a

multi-state model of the dissipative quantum dynamics

1038 P. Huo and D.F. Coker



of excitation energy transfer in the Fenna–

Mathews–Olsen (FMO) photosynthetic light harvest-

ing complex where we show that the approach can

capture both short time coherent dynamics and the

thermal equilibration at longer times [12,27].

Comparison with exact results demonstrate that the

approach is superior to alternative trajectory based,

mixed quantum-classical methods, and that the

approach is extremely efficient, giving results compa-
rable to exact calculation with a small fraction of the

computational effort.

3.1. Low dimensional multi-state models

3.1.1. Coupled Morse potential models

First, we focus on a one dimensional multi-state

problem involving motion over a set of coupled
electronic surfaces modeled by strongly anharmonic

Morse potentials where each surface gives rise to a

state dependent infinite repulsive wall at short bond-

lengths. This is a classic situation for modeling non-

adiabatic molecular photodissociation and vibrational

dynamics leading to population redistribution over

different electronic states as can occur in intersystem

crossing processes. The potential inversion problem
outlined above is particularly acute for these types of

model multi-state processes. In previous work [10,28],

Bonella and Coker showed that even for a single-state

Morse potential with an initial incoming wave packet

moving toward the infinite potential wall [10], the

original mapping Hamiltonian, unless special problem

dependent measures are taken, will indeed give unsta-

ble trajectories running on the inverse potential that

can dominate the semi-classical trajectory ensemble
resulting in noisy, highly-oscillatory, non-physical

wave packets [10]. Here, we use the PLDM approach

to describe strongly anharmonic motion over a set of

coupled Morse surfaces [15,28], with Hamiltonian of

the form:

H��ðRÞ ¼ D�ð1� e�a�ðR�b�ÞÞ2 þ E�

H��ðRÞ ¼ A��e
�c��ðR�d��Þ

2 ð11Þ

with D1¼ 0.0278, a1¼ 0.675, b1¼ 1.890, E1¼ 0 and
D2¼ 0.01025, a2¼ 0.453, b2¼ 3.212 and E2¼ 0.0038.

Here, we work in atomic units and consider a proton

mass moving over the coupled surfaces as displayed in

the left panel of Figure 1. According to the lineariza-

tion approach (see the results under Equation 9) the

trajectory ensemble initial conditions must be sampled

from the Wigner transform of the initial nuclear

density e.g., �i,i(R, R
0, t¼ 0)¼hRj
ih
jR0i on electronic

surface i. In these calculations we assume an initial
Gaussian wave packet of the form:


ðRÞ ¼
2�

�

	 
1=4

e�
�
2ðR�R0Þ

2
þ i

�hP0ðR�R0Þ ð12Þ

with �¼ 1, R0¼ 4, and P0¼ 0, prepared on the initially
excited potential surface 1, as presented in the left
panel in Figure 1. With this particular initial condition,
the problem is highly non-adiabatic since the wave
packet travels back and forth through the coupling
region many times. Also, the classical turning points of
the motion on the different surfaces are well up on the
inner walls so the original semi-classical implementa-
tion of the mapping Hamiltonian dynamics will gen-
erate trajectories running on a highly unphysical
inverse potential in this region. The effects of these
trajectories should in fact cancel each other out
through interference of phase factors in a converged
computation but achieving convergence in this situa-
tion for the semi-classical implementation can be very
difficult.

The results of our PLDM calculations for this
model are presented in the right panel of Figure 1
where we compare the time dependence of the
expectation value of the population difference operator
h�̂ziðtÞ ¼

R
dR½�11ðR,R, tÞ � �22ðR,R, tÞ� computed

with the PLDM approach, the LAND-map approxi-
mation, and exact results obtained from fast Fourier
transform split operator propagation. The LAND-map
calculations give reasonable results only at short times
as they assume that the dynamics proceeds on a single
diabatic surface. The mean surface propagation under-
lying the PLDM approach, however, gives a reliable,
semi-quantitative description of the dynamics out to
much longer times, accurately capturing the high
frequency oscillations corresponding to non-adiabatic
dynamics between diabatic states 1 and 2, as well as the
low frequency modulation associated with the nuclear
motion over the coupled surfaces.

Next, we explore the reliability of different trajec-
tory based methods for treating excited state dissocia-
tive dynamics using various three-coupled Morse
potential surface models of non-adiabatic photodisso-
ciation dynamics [11,26]. The diabatic potentials and
the couplings for the different models are presented in
the left panels of Figure 2. In each case an initial wave
packet with the same form as Equation (12) is prepared
on diabatic state 1, and centered at the location
indicated by the red arrow. The wave packet is given
initial momentum P0¼ 0 to mimic a Franck–Condon
excitation from some lower lying ground electronic
state into the excited state manifold of the three
coupled electronic states in which subsequent
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non-adiabatic molecular photodissociation takes place.
The parameters for the potentials and the initial wave
packet can be found in Ref. [11].

By initially preparing the system in a wave packet
centered high on the repulsive wall of a single excited
state potential the packet should rapidly move out
from this region and dissociate thus avoiding the
inverting potential problems with the standard SC-
IVR mapping Hamiltonian implementation. Despite
these more favorable conditions for the standard
implementation, earlier work using the SC-IVR
approach for these problems [11] reported that the
‘‘barrier-like motion’’ still persists and generates
approximately 1% problematic trajectories that have
unphysically large prefactors (�108) that represent
dominant noise and have to be discarded from the
ensemble to extract any useful signal. Moreover, the
results obtained with these methods must be renorma-
lized due to population leakage arising from the need
to discard highly unstable trajectories. The renorma-
lized SC-IVR results, however, agree well with the
exact results once filtered in this way [11].

The right panel in Figure 2 compares exact calcu-
lations of the populations for different three-state
dissociative models with results computed with the
PLDM approach (Present), and the linearized approx-
imate theory (LSC-IVR). For the model reported in
the middle panels we see that the initial wave packet
prepared in the strongly repulsive region on surface 1
very rapidly passes through the two closely spaced
coupling regions and gives results that are in reason-

able agreement with exact results and those of the
PLDM calculations. This observation is consistent

with the suggestion that moving rapidly to dissociation
avoids problems with motion on the inverted potential.
In the upper and bottom panels, on the other hand, we
see that when the LSC-IVR approach moves more
slowly through coupling regions difficulties analogous
to the inverting potential problem cause serious inac-
curacy in the LSC-IVR calculations. The case pre-
sented in the upper panel shows an unphysical
situation where one of the populations actually goes
negative with the LSC-IVR implementation due to the
term �iiðtÞ � p2i þ q2i �

1
2

� �
, while the lower panel shows

that the approach can yield a highly inaccurate
representation of the dynamics in the case of slower
passage through regions of stronger coupling.
Generally, however, we find that across a wide range
of parameters for this model non-adiabatic photodis-
sociation problem the present PLDM propagation
approach captures the population relaxation dynamics
quite accurately and our approach that employs the
classical mapping Hamiltonian of the model [10,15,28]
never suffers from problems related to potential
inversion [11].

We should mention that for the nuclear DOF, the
distribution of coordinates [49] or momenta [18]
generated by the LSC-IVR approach must lose accu-
racy in representing the quantum mechanical features
associated with the branching between different alter-
native surfaces due to the ‘‘mean surface’’ Ehrenfest-
like forces employed with the approach. In contrast the
Forward Backward IVR (FB-IVR) can capture this
behavior accurately [18,49,50] and the approach can be
implemented efficiently. With the current PLDM
propagation approach, a mean surface type force is

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0  2  4  6  8  10  12  14

E
 / 

au

R / au

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2000  4000  6000  8000  10000

Present Eqn
LANDmap

Exact

Figure 1. Left panel: Coupled Morse model potential surfaces: Red and green curves give the internuclear separation dependence
of diagonal Morse potential surfaces for diabatic electronic states 1 and 2, and the blue Gaussian curve centered at the crossing
point of the Morse potentials gives the bond-length dependence of the off-diagonal electronic coupling between these states
[28,43]. The initial wave packet density (magenta Gaussian centered at 4 au) is also displayed. Right panel: h�̂zi versus time (in
au) computed using PLDM propagation (solid red curve), the LAND-map results (green dash curve), and exact results obtained
with FFT split operator propagation (blue dotted curve).

1040 P. Huo and D.F. Coker



used to drive the nuclear DOF, so although it seems to
be an optimal mean surface approach it must suffer
from an inability to capture the back reaction effects of
the non-adiabatic branching on the nuclear DOF.

This is a well-known disadvantage of ‘‘Ehrenfest
mean field type dynamics’’ compared to, for example,
surface hopping dynamics [2,3,64], that can capture
different nuclear alternatives by stochastic hops
between different surfaces. A surface hopping version
of the LAND-map approach, known as iterative
linearized density matrix (ILDM) propagation (see
Appendix B and reference [26]) can capture these

branching processes. Exploratory studies of the itera-
tive implementation of the present PLDM propagation
approach suggest that this may be a productive way to
combine the superior convergence properties of the
PLDM approach with the more accurate surface
hopping characteristics of ILDM propagation.

3.1.2. Model conical intersection dynamics in photo-
excited pyrazine

In this section, we extend our exploration of the
PLDM approach for multi-surface non-adiabatic
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quantum dynamics beyond the limits of a single

nuclear DOF and use the approach to study a

simplified model of the S1–S2 conical intersection

dynamics in pyrazine [13,30,42], which is a well studied

benchmark system for exploring the reliability of semi-

classical and other approximate theories [42] for higher

dimensional non-adiabatic problems. Here, we adopt a

two-state, three-mode pyrazine model from Ref.

[13,14]. The model Hamiltonian is:

Ĥ ¼
XS2

�¼S1

E� þ
X

j¼1,6a,10a

1

2
P2
j þ !

2
j R

2
j

h i
þ c�j Rj

" #
j�ih�j

þ
X

j¼1,6a,10a

�jRj jS1ihS2j þ jS2ihS1j½ � ð13Þ

where ES1
¼ 3.94 eV, ES2

¼ 4.84 eV; !1¼ 0.126 eV,

!6a¼ 0.074 eV, !10a¼ 0.118 eV, cS1

1 ¼ 0.037 eV, cS1

1 ¼

�0.037 eV, cS1

6a ¼�0.105 eV, cS2

6a ¼ 0.105 eV, �10a¼
0.262 eV, and �j¼ 0 for all other system–bath bilinear

coupling constants.
This model has a similar form to the system–bath

Hamiltonian in Equation (15) below, which we use to

describe excitation energy transfer in model photosyn-

thetic systems. There are however two major differ-

ences: (1) In the excitation energy transfer model of

Section 3.2.1 each state, involving the excitation

localized in a different region of space, has its own

independent bath, whereas in the pyrazine model

outlined here, the bath oscillators are the vibrational

modes of the molecule and are thus the same for each

quantum state; they may just couple with different

strengths. (2) The other important difference concerns

the off-diagonal electronic coupling, which in the case

of the excitation energy transfer model considered in

Section 3.2.1, is a constant independent of bath

coordinates. In contrast, for the conical intersection

problem considered here, the electronic coupling

between the S1 and S2 states depends linearly on the

bath coordinate R10a. We have recently explored the

influence of such bath dependent electronic coupling

terms on the excitation energy transfer in a variety of

generalized models for protein-pigment photosynthetic

light harvesting systems [40].
In Figure 3, left panels (A) and (B), we present a

comparison of the diabatic and adiabatic population

computed with PLDM propagation, the time depen-

dent self-consistent field (TDSCF) method [14], the

quasi-classical mapping equation (which is the same as

the LSC-IVR approach with full zero point energy

correction [13]), and the exact quantum results for this

model. The PLDM propagation results are found to be

close, but not identical to the TDSCF results, and

reproduce the basic dynamical features seen in the full

quantum calculations though the amplitudes of the
oscillatory features in full quantum results are more
pronounced, for example, for the diabatic populations
presented in Figure 3 (A). This suggests that for this
model the PLDM approach has similar shortcomings
in treating zero point energy flow between the quan-
tum and classical degrees of freedom to the TDSCF
approach.

The adiabatic populations computed with the
PLDM and TDSCF methods, however, tend to
different long time asymptotic values than the full
quantum results suggesting that the wave packet
propagated with these mean field methods give differ-
ent quality results depending on the representation
employed. Despite these problems, the PLDM
approach and the TDSCF method both give positive
definite populations in contrast to the situation
observed, for example, with the adiabatic populations
obtained with the quasi-classical mapping Hamiltonian
approach, which behaves similarly to the LSC-IVR
implementation of the mapping Hamiltonian and can
give unphysical negative populations.

The right panels of Figure 3 compare trajectories of
average positions and momenta of various nuclear
modes computed with the different methods. For this
multi-dimensional conical intersection model we see
that both the PLDM and TDSCF approaches repro-
duce the exact results with high fidelity, though the
phase of the oscillations begins to walk off by about
350 fs. The QC-mapping equation approach gives
slightly better agreement with the full quantum results
for the first couple of periods but then approaches
different asymptotic values and gives incorrect phases
for longer times. These results mirror the situation
observed with the diabatic populations in the left
panel (A).

3.1.3. Model conical intersection dynamics in
photoisomerization

The final intramolecular non-adiabatic dynamical
model we consider here explores the conical intersec-
tion dynamics associated with a photoisomerization
reaction. The two-state, three-mode model of cis-trans
photoisomerization [73–76] is described by the follow-
ing Hamiltonian:

H¼
L2
’

2I
þ
X
j¼c,t

!j

2
ðp2j þq2j Þ

þ

�0þ
1

2
W0ð1�cos’Þ �qc

�qc �1þ
1

2
W1ð1� cos’Þþqt

2
64

3
75
ð14Þ
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where ’, qc, qt are the torsional, coupling and tuning
modes respectively, and L’ ¼ �i

@
@’ is the angular

momentum for the torsional mode. In this
Hamiltonian, all the nuclear DOF are unitless and
the parameters (in eV) are [73–76]: !t¼ 0.1, ¼ 0.15,
!c¼ 0.085, �¼ 0.17, I�1¼ 5.5� 10�4, "0¼�2.5, "1¼ 0,
W0¼ 2.25, W1¼�2.25.

In Figure 4, results from the PLDM dynamics
approach are compared with those from exact quan-
tum calculations and QC-mapping Hamiltonian
dynamics (�¼ 0.5). In all these calculations the
system is initially prepared in the jS1i electronic excited
state and different initial conditions for the torsional
mode are employed; in particular we consider three
different energy regimes: (a) E4 0: an initial wave

packet centered at ’¼ 0 with an additional kinetic
energy of T¼ 0.15 eV, (b) E¼ 0: symmetric prepara-
tion of the system at ’¼ 0 without initial kinetic
energy, and (c) E5 0: an initial wave packet centered
at ’¼ 0.4� with a kinetic energy of T¼ 0.15 eV. Both
the electronic diabatic state population PjS1i ¼ jS1ihS1j

and the probability of the system to be found
near where it starts in the cis configuration
Pcis¼ 1-�(j’j ��/2), regardless of electronic state, are
present in the top and bottom panels of Figure 4
respectively. In all cases, our PLDM results are found
to agree closely with the results of the QC-mapping
(�¼ 0.5) calculations. The agreement with the full
quantum result is better for the cases when E¼ 0
or E4 0.
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Figure 3. Three-mode pyrazine model. Left panels: comparison with PLDM (red solid), exact results (green long dash), TDSCF
(blue short dash), and the quasi-classical mapping expression (magenta dotted) for (A) diabatic and (B) adiabatic populations.
The exact, TDSCF and QC-mapping result are reproduced from Refs. [13,14]. Right panels: comparison of mean position and
momentum of various bath modes computed with different methods. The line types are the same as for the left panels.
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Generally we see that for this photoisomerization
model the approximate mean field methods give
coherent oscillatory features that wash out too quickly
compared with the longer lived, larger amplitude
oscillatory features found in the full quantum results.
This is largely due to the quasi-classical mean field
treatment of the nuclear DOF with these approximate
methods. Nevertheless the qualitative behavior is
reasonably well captured by such approaches at
higher energies. A detailed analysis of the oscillatory
behavior observed in different regimes is presented
in Ref. [73].

3.2. High dimensional multi-state models of
condensed phase systems

Understanding how quantum effects such as coher-
ence, dispersion, and tunneling survive in many-body
condensed phase systems is a considerable challenge to
modern theory. Many important properties such as
excitation energy transfer, electron transport, and
other non-equilibrium properties of nanostructured
materials may depend critically on the survival of these
quantum effects so methods that can reliably handle

quantum behavior in large-scale systems such as the
PLDM propagation approach and other approximate
methods explored in this paper are of great practical
importance. Thus, as demonstrated in the low dimen-
sional model problems of the previous sections, while
these methods often provide qualitatively reliable
treatment of quantum effects in such a few DOF
systems, their ability to treat such phenomena in large-
scale systems where application of exact quantum
dynamics methods is intractable often provides the
only way forward. With this view in mind, in the final
two subsections of results we explore several model
condensed phase systems where benchmark calcula-
tions can be run and demonstrate that the PLDM
propagation approach offers a highly efficient and
extremely reliable way of treating such challenging
high dimensional problems. The benchmark models
make assumptions about the Hamiltonian (e.g., a
bilinearly coupled harmonic bath with a simplified
spectral density). Such approximations are necessary
so that exact benchmark calculations for these high
dimensional complex problems can be conducted;
however, the PLDM propagation approach does not
require such simplifications to the Hamiltonian and
once the reliability of the approach has been
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demonstrated in these benchmark studies it can be
readily applied beyond the limits of these simple
models.

3.2.1. Multiple interacting quantum states coupled to
independent baths: Excitation energy transfer
in light harvesting

Recently there has been considerable interest in the
experimental observation of long lived quantum
coherent dynamics in nanostructured materials
composed of excitable chromophores embedded in
polymers [55–58]. Understanding the origins and
significance of this coherence for excitation energy
transfer and transformation in photosynthetic light
harvesting, with applications to design of new mate-
rials for solar energy, has attracted considerable
interest from theory and experimental groups alike.
These systems operate in regimes where the approxi-
mations underlying many of the standard approaches
like Redfield theory and Forster resonance energy
transfer (FRET) theory breakdown [41]. Thus new
theoretical methods that can handle simultaneously
strong system–bath and electronic coupling, non-
Markovian spectral densities and dynamics beyond
the secular approximation where populations and
coherence terms in the evolution equations strongly
influence one another are of great importance. Below
we show that the PLDM propagation approach
developed in this paper provides a highly accurate,
and computationally efficient method for studying
both the quantum coherent dynamics and long time
evolution to thermal equilibrium in these technologi-
cally interesting quantum dissipative excitation energy
transfer systems.

The model that has become the paradigm for
treating such systems, which captures the basic physics
of this dissipative multi-chromophore excitation
energy transfer problem, involves a set of electronically
coupled two-level systems that each interact with its
own independent bath of harmonic oscillators. The
Hamiltonian for this model thus has the following
form:

Ĥ ¼
XNstate

�¼1

��j�ih�j þ
XNstate

�6¼�

D�,�½j�ih�j þ j�ih�j�

þ
XNstate

�¼1

Xnð�Þ
i¼1

1

2

h
P
ð�Þ2
i þ !ð�Þ2i R

ð�Þ2
i

i
þ c
ð�Þ
i R

ð�Þ
i

� �
j�ih�j

ð15Þ

and typical parameterizations for realistic models of
photosynthetic light harvesting systems can be found
in the references [12,27,31,41]. For the particular model

considered here the system–bath interactions are
determined by the Debye spectral density,
Jð�Þð!Þ ¼ 2�ð�Þ!�ð�Þc =ð1þ !

2�ð�Þ2c Þ, and a modified
sampling approach is employed.2 With this model
there are different independent baths of oscillators,
each with, in principle, a different spectral density,
J(�)(!), labeled by state index, �.

Photosynthetic excitation energy transfer networks
often include at least one pair of chromophores that
are strongly electronically coupled forming a dimer,
and excitation energy is observed to coherently oscil-
late between the two coupled states or ‘‘sites’’ of the
dimer. In typical photosynthetic light harvesting net-
works these dimers are weakly electronically coupled
to other monomer chromophores in the network so
excitation energy in the dimer can be both dissipated to
the local bath environment or transferred to these
other chromophores. In this section we use typical
parameters for such networks and explore the ability of
various approximate quantum dynamics methods to
capture the interplay between coherent energy transfer
between the component chromophores in dimers,
subsequent population transfer to monomers and
dissipation of excitation energy from the chromophore
network to the surrounding environment.

As a first example system we consider a simplified
two-state model equivalent to the spin-boson model
presented above but with physically reasonable param-
eters for photosynthetic systems [12,27,41]; in partic-
ular we choose the energy gap between the diabatic
dimer states to be (�1� �2)¼ 100 cm�1, the electronic
coupling is D1,2¼ 100 cm�1, and the temperature is
T¼ 300K. The results reported in Figure 5 have the
bath relaxation time �c¼ 100 fs and we have also
studied the behavior of this system with a slower bath
relaxation time (�c¼ 500 fs) where non-Markovian
effects are expected to play a significant role. The
environment coupling strength or solvent reorganiza-
tion energy, �, was varied over a range of values: 2, 20,
100, and 500 cm�1. In Figure 5 populations obtained
for the various approximate methods are compared
with results of hierarchical coupled reduced master
equation (HCRME) calculations [41], which, when the
hierarchy can be converged, provide numerically exact
results for this specific spectral density. In previous
work on this model [27,41], with its realistic parame-
terization, it was demonstrated that the standard
Redfield theory approach only gave reasonable results
at the lowest values of friction and shortest bath
relaxation times, otherwise the Redfield theory, based
on a perturbative treatment of the bath interaction and
the Markovian approximation, gives excessively rapid
damping of the coherent oscillations, and too fast an
approach to thermal equilibrium.
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For the linearized semi-classical approaches, how-
ever, the general trends observed in these two-state
system results, as discussed in earlier work [27], are
that LAND-map and LSC-IVR provide reasonable
qualitative descriptions of how the strong amplitude of
the short time coherent oscillations damp out as the
system approaches its long time steady state behavior.
The long time equilibrium values for these different
approximate methods, however, approach different
values. With the LAND-map approach, as outlined
earlier, the equilibrium population always tends to
infinite temperature result (0.5, for this two-level
system). Similar problems with thermal equilibration
have recently been reported using the Ehrenfest
dynamics approach for this model [38]. The quality
of the results for the LSC-IVR approach, however,
seems to depend on the strength of coupling between
the two-level system and its harmonic bath. For weak
to intermediate system–bath coupling, �, the LSC-IVR
results are in excellent agreement with exact results for
all times. For strong friction, however, the LSC-IVR

results decay too slowly and seem to tend to the wrong
equilibrium, as though the system is trapped in its
starting state by the sluggish bath [68]. Generally we
find that results from these approximate methods agree
better with exact results when the bath relaxation time
is longer; surprisingly these linearized semi-classical
methods provide better results when non-Markovian
memory effects are stronger [27].

The present PLDM propagation approach, how-
ever, is found to give near quantitative agreement with
the exact HCRME results across the entire range of
conditions studied in these model calculations. In
previous work [27] we tested the ILDM propagation
approach with this model and verified that, when we
could get the calculations to converge, the results were
in excellent agreement with those obtained from the
exact HCRME approach. The problem with the
ILDM propagation approach is that large trajectory
ensembles, typically on the order of �107 to 108

trajectories, are often required to provide converged
results and this situation deteriorates at longer times
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Figure 5. Population of site 1 as a function of time (in ps) for a two-state model [41]. The exciton state energy gap is
(�1� �2)¼ 100 cm�1, the excitonic coupling is D1,2¼ 100 cm�1, the temperature is T¼ 300K, the characteristic time of the phonon
bath is �c¼ 100 fs, and the solvent reorganization energy is varies as �¼ 2 cm�1 (upper left), �¼ 20 cm�1 (upper right),
�¼ 100 cm�1 (lower left), and �¼ 500 cm�1 (lower right). Both the present model and the LAND-map results are calculated using
the non-adiabatic dynamics theory outlined in this paper. Linearized semi-classical initial value representation (LSC-IVR) theory
results are taken from reference [12]. Exact results using the hierarchical coupled reduced master equation (HCRME) approach
are taken from reference [41].

1046 P. Huo and D.F. Coker



and in certain parameter regimes [27]. These problems
are completely solved with the present PLDM
approach, which we find requires comparatively
modest ensembles, typically on the order of �104

trajectories for these types of problems, and propaga-
tion to significantly longer times in these types of
model systems is not prohibitive. Finally, it is impor-
tant to note that, unlike the HCRME approach, the
semi-classical methods do not use analytical results
dependent on the form of the spectral density in their
implementation and can thus be applied to general
arbitrary model spectral densities. Given the accuracy,
and stability for long time propagation, of the PLDM
approach and its applicability to general model
spectral densities, this new method offers an extremely
powerful theoretical tool for treating realistic large
scale models of excitation energy transfer.

To demonstrate these important properties of the
PLDM approach, finally in this section, we present
results for a multi-state version of the system-
independent bath model defined by the Hamiltonian
in Equation (15), which has been parameterized, and
used in many recent theoretical studies
[12,27,31,35,37,59,60] of the Nstate¼ 7 model of the
Fenna–Matthews–Olsen (FMO) photosynthetic light
harvesting antenna complex. Most of the model studies
of this system to date assume identical independent
spectral densities for each chromophore, and the
Debye or exponential cutoff models are popular.

When applied to this multi-state model the LSC-
IVR approach actually gives unphysical negative
populations for some of the states [12] for the reasons
discussed in Section 3.1.1. Like the LAND-map
approach [27], the mixed quantum-classical Liouville–
Poisson bracket mapping equation (PEMB) approach
[35] captures the short time coherent behavior of this
model but fails to reproduce accurate relaxation to a
proper Boltzmann equilibrium distribution. A number
of recently devised approximate reduced master equa-
tion approaches such as the non-Markovian quantum
jump (NMQJ) with time convolutionless master
equation [31], the non-Markovian quantum state
diffusion (NMQSD) equation [34], and the generalized
Bloch–Redfield (GBR) model with the non-interacting
blip approximation (NIBA) [61], however, give reliable
results for this and related models. Other, less sophis-
ticated reduced master equation approaches, either
reproduce the short time coherent dynamics and not
the long time thermal equilibrium or vice versa. Thus,
for example, as mentioned above the standard Redfield
equation fails to capture the short time coherent
dynamics reliably, but recovers the long time thermal
equilibrium populations. In contrast, the stochastic
Liouville equation (SLE) [37] or Ehrenfest dynamics

approach [38] fails to give the correct long time thermal
equilibrium limit, but gives an accurate account of the
coherent short time dynamics.

In earlier work [17,27] we used this FMO model
system as a benchmark and in detailed comparisons
with the results of exact HCRME [41,59] and the
rescaled version of the theory [60] we showed that our
ILDM approach and the highly efficient PLDM
approximate version [17] gave quantitatively accurate
results for all times. In recent work [62] we have
converged calculations with the PLDM approach for
very long times, e.g., we have been able to follow the
relaxation to thermal equilibrium of the weakly cou-
pled inter-complex energy transfer between the CP47/
CP43 light harvesting antenna complexes and the
reaction center (RC) in photosystem II requiring
reliable quantum dynamical treatment out to more
than 50 ps.

In Figure 6, the excitation energy transfer dynamics
in the seven-state FMO model at elevated temperatures
(T¼ 300K) is presented. These results obtained with
the PLDM approach are graphically indistinguishable
from the results of HCRME calculations [59,60] and
show short time coherent population beating between
strongly coupled dimers in the system and long time
thermal equilibration. Results of comparable accuracy
for this system have recently been obtained using a
hybrid NIBA–Ehrenfest approach [63]. The path
towards equilibrium from initial site 6 (right panels)
involves excitation energy transfer between two cou-
pled dimers: chromophores 6-5, and 4-7 and the
transient coherent quantum beating of these coupled
states is evident in the population oscillations of these
chromophore dimers. The dynamics initiated in site 1
(left panels), on the other hand, involves a single
coupled dimer that is weakly coupled to the other
chromophores in the network. The upper and lower
panels give results that explore the influence of bath
relaxation time on the lifetime of the quantum coherent
population beating.

4. Concluding remarks

In this paper we have shown that the partial linearized
density matrix (PLDM) propagation approach gives a
new ‘‘mean field’’ version of non-adiabatic quantum
dynamics that out-performs many other such
approaches in terms of both accuracy and numerical
efficiency. Being a mean field approach, however, the
new method cannot accurately account for the ‘‘back
reaction’’ between the classical and quantum DOF that
occurs, for example, when the quantum subsystem
undergoes a transition. Nevertheless we find that the
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approach does seem to capture both short time
coherent dynamics and long time thermal equilibration
in the various model systems studied, unlike many
other mean field like approaches.

We devised the PLDM approach with state inde-
pendent mean field-like forces as a compromise to
address statistical convergence issues with the iterative
linearized density matrix (ILDM) propagation scheme
that we developed in previous work. The ILDM
approach is more like a surface hopping scheme that
involves the short time propagation of the nuclear
DOF on a single diabatic surface, representing the
evolution of populations, or an off-diagonal ‘‘surface’’
representing the evolution of coherence terms in the
density matrix. With the ILDM approach stochastic
hops take the members of the ensemble between these
different types of terms that all play a role in modeling
various contributions to the evolution of the full
system density matrix. Compared to ILDM, the

present PLDM approach is more like a mean surface
‘‘Ehrenfest dynamics’’ approach, though it solves
many difficulties with other related mean field
approaches.

When wave packets emerge from non-adiabatic
coupling regions, a mean field, Ehrenfest like approach
must give that the system continues to evolve with a
mean surface force and thus can never give the right
nuclear dynamics, though as we have seen for various
scattering models the PLDM approach does give very
good results for electronic populations in such situa-
tions. Alternatively, the ILDM surface hopping-like
method will give the correct description, due to the
state dependent force that this approach employs.
However, for describing other types of physical phe-
nomena, for example, where the coupling is slowly
varying or constant and can be finite for long times a
‘‘mean force’’ approach can provide a good descrip-
tion, while a SH approach like ILDM will be
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Figure 6. Population for the seven-state FMO model at 300K with initial excitation at site 1 (left column) or site 6 (right
column). The upper panels give results with the faster relaxation time �c¼ 50 fs, and the bottom panels are computed with the
slower relaxation time of �c¼ 166 fs. These results are graphically indistinguishable from the exact results of HCRME [59] (not
shown in the figure).
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constantly hopping between forces describing the

different states that are involved in the dynamics and
this behavior can cause serious convergence problems.
This is precisely the reason our PLDM calculations
perform so well for the multi-state system–bath inter-

action models that are widely used in modeling
excitation energy transfer dynamics whereas our
ILDM calculations on these models can only give
converged results for relatively short times.

One can imagine merging the advantages of these
two types of approaches to give an ad hoc propagation

scheme that employs a mean field force at the coupling
region, and single surface force beyond [51,52]. It may
be possible to put such a scheme on a more rigorous
footing by grafting the PLDM propagator and the

iterative scheme together [77] based on a rigorous semi-
classical path integral like approach similar to ILDM
but with improved convergence properties.
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Notes

1. The idea of focusing [15] replaces the sampling of the
mapping variable initial conditions from
e�

1
2

P
�ðq

2
�0 þ p2�0Þ by approximating the integral over

initial conditions using the steepest descent method
giving a delta function initial condition sampling distri-
bution 	ðfq2n0 þ p2n0 g � 2Þ.

2. If Jð!Þ ¼ 2�!�c=ð1þ !
2�2c Þ and also Jð!Þ ¼ �

2

P
j

c2j
Mj!j
�

	ð!� !jÞ, with the density of states (DOS)

�(!)¼ 	(!�!j), we get c2j ¼
2
� !j

Jð!j Þ

�ð!jÞ
. By choosing

�ð!Þ ¼ a Jð!Þ
! , together with

R !j

0 �ð!Þ ¼ j andR !m

0 �ð!Þ ¼ Nb (where Nb is the total number of oscilla-

tors that correspond to the total DOS, and !m is the

maximum frequency of the spectral density which is the

numerical cutoff), we have a¼Nb/(2� tan
�1(!m�c)),

cj ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� tan�1ð!m�cÞ=�Nb

p
!j and !j¼ tan(j tan�1�

(!m�c)/Nb)/�c.
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Appendix A: Meyer–Miller mapping Hamiltonian

formulation [65,66]

One way to avoid the ‘‘inverse potential problem’’ is using
the classical analogy of the original Hamiltonian as was
suggested in the original work of Meyer and Miller [65,66]. In
this work the electronic wave function in the diabatic
electronic representation is j�(R, t)i¼

P
�c�(R, t)j�i, and by

inverting the Heisenberg correspondence principle [65,66],
they find the electronic coefficients can be rewritten in terms

of real variables {n�(R, t), ��(R, t)}: c� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n�ðR, tÞ

p
e�i��ðR, tÞ.

This leads to the following Hamiltonian: Hðn, �, tÞ ¼
P

�,��

h�ðR, tÞjH�,�ðR, tÞj�ðR, tÞi ¼
P

�,� c
�
�ðR, tÞH�,�ðR, tÞc�ðR, tÞ ¼P

�,�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n�ðR, tÞn�ðR, tÞ

p
cos ��ðR, tÞ � ��ðR, tÞ
� �

H�,�ðR, tÞ.

Through a canonical transformation from the action-angle

variables (n�, ��) to the corresponding Cartesian variables
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(q�, p�) by q� ¼
ffiffiffiffiffiffiffi
2n�
p

cos �� and p� ¼ �
ffiffiffiffiffiffiffi
2n�
p

sin ��, and

adding the nuclear kinetic energy term, they arrive at the

‘‘classical mapping Hamiltonian’’ as [67]:

Hcl
m ¼

P2

2M
þ
1

2

X
�

H�,�ðRÞð p
2
� þ q2�Þ

þ
1

2

X
� 6¼�

H�,�ðRÞð p�p� þ q�q�Þ: ðA1Þ

This is essentially the original mapping Hamiltonian without
the ‘‘�h�’’ term on the diagonal. Following the argument of
Meyer and Miller [65,66], there should be ‘‘Langer modifi-
cation’’ terms to Equation (A1) which subtracts out the term
1
2

P
�H�,� ¼

1
2 trðHÞ and results in the original mapping

Hamiltonian Equation (1).

Appendix B: LAND-map and ILDM propagation: An

alternative approach for linearizing the path integral

phase

In this appendix we outline the linearized approach to non-
adiabatic dynamics in the mapping formulation or LAND-
map approach [16] and its iterative implementation known as
iterative linearized density matrix (ILDM) propagation
[26,47] and highlight the differences in the linearization
approaches adopted in these earlier methods compared with
the present PLDM approach developed in this paper. The
developments of PLDM and LAND-map proceed identically
up to Equation (5). Instead of directly apply the linearized
approximation to the classical Hamiltonian as is done here
with PLDM leading to Equation (6), in the development of
the LAND-map equations we first cancel the boundary terms
using the following exact relation for the classical mapping
Hamiltonian:

Lcl
1 ¼

X
�

p� _q� � ĥclmapðRÞ ¼
1

2

d

d�

X
�

p�q�

 !
ðB1Þ

and use a similar result evaluated along the R0 path to cancel
the boundary terms in the backward path mapping variables.
With the PLDM approach we make the assumption that
both p�, q� and p0�0 , q

0
�0 propagate according to the mapping

Hamiltonian evaluated along the mean path, ĥclmapð
�RÞ, which

leads to the approximation:
P

� p� _q� � ĥclmapð
�RÞ ¼

1
2
d
d�

�P
� p�q�

�
. With LAND-map, on the other hand, the

forward and backward mapping phase space points propa-
gate according to ĥclmapðRÞ and ĥclmapðR

0Þ respectively. With
LAND-map we use the cancellation between the action phase

e
i
�hS

cl
1
ðR, tÞ ¼ e

i
�h

R t

0
Lcl
1
ð�Þd�
¼ e

i
2�h

R t

0

d
d�

�P
�
p�q�

�
d�
¼ e

i
2�h

P
�
ð p�tq�t�p�0q�0Þ

and the boundary terms in Equation (4). Thus, with PLDM

the action phase and the boundary terms cancel only to

zeroth order whereas with LAND-map the total action phase

cancels the boundary terms exactly. Now with LAND-map

the propagators in Equation (4) can be expressed as

(with h�¼ 1):

T½nt, n0 � ¼

Z
dq0dp0

1

4
ðqnt þ ipnt Þðqn0 � ipn0 Þe

�1
2

P
�
ðq2
�0
þp2

�0
Þ

ðB2Þ

with a similar expression for the backward propagator. To
make the linearization approximation in LAND-map, we

have to linearize the quantities p�(R), q�(R) and p�0(R
0),

q�0(R
0) by expanding their dependence on the environmental

DOF about the mean of the forward and backward nuclear
paths, �R, in the nuclear path difference, Z¼ (R�R0). Also,
we want the overall integrand phase factor to have the form
ei�factor�Z, so that later we can perform the integral dZ over
the path difference and obtain 	-functions containing the
mean path variables. Based on these considerations, in the
development of the LAND-map approach we next introduce
the polar representation of the mapping variables, which is
closely related to the action angle variables used by Meyer
and Miller [65,66] as outlined in Appendix A:

rt,nt ðfRkgÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2t,nt ðfRkgÞ þ p2t,nt ðfRkgÞ

q
�t,nt ðfRkgÞ ¼ tan�1

pt,nt ðfRkgÞ

qt,nt ðfRkgÞ

	 

:

ðB3Þ

A more explicit form of Equation (B3) can be obtained using
Hamilton’s equation of motion for pt,nt and qt,nt determined
by ĥclmapðRÞ, giving the exact result:

�t,nt ðfRkgÞ ¼ tan�1
p0,nt
q0,nt

	 

�

Z t

0

d�hnt,nt ðR�Þ

�

Z t

0

d�
X
� 6¼nt

hnt,�ðR�Þ
ð p�ntp�� þ q�ntq��Þ

ð p2�nt þ q2�nt Þ

" #
: ðB4Þ

With the LAND-map approach we take the full expression
for the evolution of the density matrix that contains a phase
factor in the difference in phases between the forward and
backward paths ½�t,nt ðfRkgÞ ��0t,n0t

ðfR0kgÞ� and expand this

about the mean path �R ¼ ðRþ R0Þ=2 to linear order in the

difference between the forward and backward paths, Z. The

standard assumptions underlying the stationary phase

approximation to an oscillatory integral are made including:

(1) The pre-exponential amplitude factors are assumed to

vary slowly compared to the phase factor so are approxi-
mated by their values at the stationary phase points, i.e. we

assume that rt,nt ðfRkgÞ and r0t,n0t
ðfR0kgÞ can be well represented

by rt,nt ðf
�RkgÞ and r0t,n0t

ðf �RkgÞ, and (2) the time evolution of pt,nt ,

qt,nt and p0t,n0t
and q0t,n0t

are governed by the Hamiltonian

ĥclmapð
�RÞ, not ĥclmapðRÞ and ĥclmapðR

0Þ respectively. With the

present PLDM approach developed in this paper, we

make a similar approximation, but with PLDM we do this

before we linearize the integrand in the difference between R

and R0.
Within the LAND-map development, the above approx-

imations enable us to perform the integrals over Z of the
linearized integrand analytically and result in equations of
motion for the forward–backward mean paths, �R, that
depend on the state labels ðnt, n

0
tÞ, governed by classical-like

forces that, similarly, are indexed by state labels. The final
expression for the density matrix elements is similar to
Equation (8), except, now with the LAND-map approach,
the forces are state dependent due to our linearization of the
particular state dependent angle variables:

F
nt,n

0
t

k ¼ �
1

2
r �Rk

hnt,nt ð �RkÞ þ r �Rk
hn0t, n0t ð

�RkÞ

n o
�
1

2

X
� 6¼nt

r �Rk
hnt,�ð �RkÞ

ðpntkp�k þ qntkq�kÞ

ðp2ntk þ q2ntkÞ

( )

�
1

2

X
� 6¼n0t

r �Rk
hn0t, �ð

�RkÞ
ð p0n0tk

p0�k þ q0n0tk
q0�kÞ

ð p02n0tk þ q02n0tkÞ

( )
: ðB5Þ
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This LAND-map [16] approach has been used to provide
an approximate propagator for a short time segment and
can be extended by iterating the short time propagator
for multiple time slices in the spirit of the development
of a path integral approach. This is the so-called iterative
linearized density matrix (ILDM) propagation method
[26]. Between the short segments, Monte Carlo impor-
tance sampling is used to choose a specific pair of state
labels that give the most significant contribution to the
propagation. These new states are used to initialize the
next iteration in the propagation, making the algorithm
have the good characteristics of a surface hopping
approach, that includes evolution of segments both with
forces that represent those present during propagation of

populations and different forces that evolve the off-
diagonal coherence terms.

One should note that the LAND-map force given above
cannot be generated from the original or classical mapping
Hamiltonian. This means that with the LAND-map and
ILDM propagation approaches the mapping variable and
nuclear trajectories are not governed by a single Hamiltonian
[16]. This is quite different compared to the present PLDM
propagation approach developed in this paper and other
semi-classical approaches where the force is generated from
the mapping Hamiltonian [44–46,67,68]. It is also different
from the Pechukas semi-classical approach of non-adiabatic
dynamics [1], where the transition amplitude and trajectory
must be determined by self-consistent iteration [29].
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