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Microscopic theory of polariton group
velocity renormalization

Wenxiang Ying 1,6, Benjamin X. K. Chng 2,6, Milan Delor 3 &
Pengfei Huo 1,4,5

Cavity exciton-polaritons exhibit ballistic transport and can achieve 100 μm in
one picosecond. This ballistic transport significantly enhances mobility com-
pared to that of bare excitons, which often move diffusively and become the
bottleneck for energy conversion and transfer devices. Despite being robustly
reproduced in experiments and simulations, there is no microscopic theory
available for describing the group velocity vg of polariton transport and its
renormalization. In this work, we derive an analytic expression for vg renor-
malization. The theory suggests the vg renormalization is caused by phonon-
mediated transitions between the lower polariton (LP) states and the dark
states. The theory predicts that the renormalization magnitude depends on
both exciton-phonon coupling strength and temperature, which are in quan-
titative agreement with numerical quantum dynamics simulations. Our results
provide theoretical insights and a predictive analytical theory for under-
standing cavity-enhanced exciton-polariton transport.

Recent experiments1–7 have shown that exciton transport in semi-
conductors can be significantly enhanced by coupling these excitons
to confined electromagnetic modes inside an optical cavity. By form-
ing cavity exciton-polaritons, the electronic excitation is capable of
traversing long distances ballistically at a high group velocity vg. This
novel strategy of cavity-enhanced ballistic exciton energy transport4

allows devices to bypass the intrinsic bottleneck of diffusive transport,
offering a paradigm shift in fundamental energy science and device
applications such as halide perovskite solar cells1,8 and light-emitting
diode displays9–11. The high group velocity mainly arises from the large
gradient of the dispersion curve of the polariton bands (compared to
the pure-matter band). Multiple recent experiments that image
polariton propagation3,4,6,7,12 have observed polariton group velocities
that are substantially lower than expected from their dispersion. This
deviation, often referred to as group velocity renormalization, is par-
ticularly noticeable for polaritons with large excitonic fractions4,6,13.

Recent progress in the theoretical understanding of polariton
transport2,14–21 have emerged through numerical simulations6,20–22 and
theoretical models6,15,16, providing valuable insights into this complex

phenomenon. In the framework of theoretical models, two prevailing
hypotheses for vg renormalization have been presented. One is the
thermally activated scattering theory (TAST) in ref. 6, which posits that
there will be a quasi-equilibrium between the polariton band and the
dark exciton states. Under this theory, ballistic transport occurs only
during the period when the system is in the polariton band (see the
details of the theory in the Supplementary Information of ref. 6). As
such, vg is reduced, and the extent of the renormalization depends on
the energy difference between the polariton band and the dark exci-
tons. A similar hypothesis is also proposed in ref. 3. The second
hypothesis is the transient localization hypothesis proposed in ref. 4,
which arises from the interpretation of trajectory results in the
Ehrenfest mixed-quantum-classical (MQC) simulations. According to
this hypothesis, the polariton wavepacket predominantly exhibits
ballistic coherent transport, but the wavepacket becomes transiently
localized due to phonon coupling, manifested by thermally activated
displacements of nuclear coordinates. A detailed ab-initio mixed
quantum-classical study that supports both of the above-mentioned
mechanisms can be found in ref. 20. This hypothesis explains the
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group velocity renormalization and the ballistic transport con-
currently and canbe examined from the trajectories obtained from the
mixed quantum-classical simulations directly. Despite thesepromising
developments, there is no microscopic theory, to the best of our
knowledge, that quantitatively describes vg-renormalization and
shows how vg-renormalization depends on exciton-phonon coupling
(reorganization energy λ), temperature T, exciton fraction in the
polariton, etc.

In this work, we develop a microscopic theory using a field-
theoretic approach to explain the polariton vg-renormalization due to
polariton-phonon interactions. By utilizing the polariton Green’s
functions, we derive themodified band structure for polaritons, which
results in a renormalized polariton group velocity. Our theory indi-
cates thatwithin the lower polariton (LP) branch, the systemmanifests
a dark state manifold-mediated scattering process due to phonons,
thus slowing down the band-like transport. The theory predicts that
the extent of modification scales linearly with the phonon bath reor-
ganization energy λ, and similarly, displays a linear temperature
dependence in the high-temperature regime. We also show that the
theoretical predictions are in quantitative agreement with numerical
results based on MQC simulations21.

Results and discussions
Model system
We use the Generalized Holstein-Tavis-Cummings (GHTC)
Hamiltonian23–26 to describe N excitons interacting with M cavity
modes, and N≫M in line with typical experimental conditions. Typi-
cally, one estimates N=M � 106 � 109 for systems used in
experiments27. The total Hamiltonian can be written in the form of the
system-bath model and is expressed as Ĥ = ĤS + ĥB + ĤSB. The system
Hamiltonian ĤS consists of the excitonic degrees of freedom (DOF)
and the photonic DOF of the cavity. Each exciton is modeled as an
effective two-level system that consists of the ground state ∣gn

�
and

excited state ∣en
�
(for the nth exciton). Without making the long-

wavelength approximation26, ĤS is expressed as follows,

ĤS =ℏω0

XN
n= 1

σ̂y
nσ̂n +

XM
k

ℏωkâ
y
kâk

+
X
k

XN
n= 1

ℏgk ây
k σ̂ne

�ikk �xn + σ̂y
nâke

ikk�xn
h i

,

ð1Þ

where σ̂y
n = ∣en

�
gn

�
∣ and σ̂n = ∣gn

�
en
�

∣ are the creation and annihilation
operators of the nth molecule’s exciton, andω0 is the excitation energy
between themolecule’s ground and excited state. Furthermore, âk and
ây
k are the photonic field annihilation and creation operators for mode

k whose frequency is ωk. Note that the GHTC model described here
does not contain exciton inter-site hopping or exciton-exciton

interactions, which might prove to be important for a realistic
description of polariton transport.

For Fabry–Pérot (FP) cavities, the dispersion is

ωkðkkÞ= c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
? + k2

k

q
, ð2Þ

where c is the speed of light in vacuum. When k∥ =0, the photon fre-
quency is ωc ≡ωk(k∥ =0) = ck⊥. The second line of Eq. (1) represents
light-matter interaction, where gk = gc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðωk=ωcÞ

p
cosθ is the k-depen-

dent light-matter coupling strength4, and tanθ= kk=k? is the incident
angle. Note that the θ angle inside the cavity differs from the angle of
incidence outside the cavity if the cavity background refractive index is
not 1. Furthermore, xn is the position of the nth exciton. We consider
the cavity modes inside the same simulation box as the excitons, with
total size NL along the k∥ direction (L = xn − xn−1).

As such, k∥ has discrete (but quasi-continuous) values of kk =
2π
NL k,

where the mode index is k 2 ½�M�1
2 , :::0, :::M�1

2 �. Diagonalizing ĤS in
the singly excited subspace leads to 2M polariton states ∣± k

�
, with

eigen-energies

ϵ± k =ℏω± k =
ℏ

2
ðωk +ω0Þ±

ℏ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðωk � ω0Þ2 + 4Ng2

k

q
, ð3Þ

where + and − denote the upper polariton (UP) and LP branches,
respectively. In addition, there are N �M dark states ∣Dk

�
with ener-

gies ℏωDk =ℏω0, which do not mix with photonic states and form the
dark exciton branch. The definition of these dark states is provided in
Supplementary Note 1.

Under the polariton representation, the systemHamiltonian in Eq.
(1) is expressed as ĤS =

P
μ, kℏωμk P̂

y
μ, k P̂μ, k , where P̂

y
μ, k , P̂μ, k are the

polariton creation and annihilation operators for polariton state k on
polariton band μ, respectively, and the band label μ 2 f+ , � ,Dg.
Specifically,

P̂
y
+ , k = cosΘkB̂

y
k + sinΘkâ

y
k

ð4aÞ

P̂
y
�, k = � sinΘkB̂

y
k + cosΘkâ

y
k , ð4bÞ

where B̂
y
k = ð1=

ffiffiffiffi
N

p
ÞPN

n = 1e
�ikk�xn σ̂y

n creates the collective bright exci-
tons, and

Θk =
1
2
arctan

2
ffiffiffiffi
N

p
gk

ωk � ω0

 !
2 0,

π

2

h �
ð5Þ

is the mixing angle. Details on the derivation in the polariton repre-
sentation, as well as the expressions of the polariton operators, are
provided in Supplementary Note 1.We present a schematic illustration

| |

⊥

LP

DS

Fig. 1 | Schematics of the GHTC model and band structure. a Schematics of the
model setup. Inside an optical cavity, the separatedmolecules collectively interact
with many cavity modes. b Polariton band structure, where the matter fraction is
shown in terms of the colorbar. The dashed lines are the bare photon (red) and

matter (silver) dispersions, respectively. The phonon-mediated exchange effect
between the lowerpolariton (LP) and thedark states (DS)manifold is also indicated,
which is the main cause of polariton group velocity renormalization.
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of the model system above, as well as the polariton band structure, in
Fig. 1. Without coupling to phonons, the polariton exhibits band-like
transport characterized by the group velocity

vg, ± ðkkÞ=dω± k=dkk, ð6Þ

where the k∥-dependence of ω±k is carried by ωk via Eq. (2).
The bath Hamiltonian ĥB describes the nuclear DOF, which we

assume is a phonon environment that consists of a set of non-
interacting harmonic oscillators, ĥB =

PN
n= 1

P
αℏωα b̂

y
α,nb̂α,n, where

b̂α,n, b̂
y
α,n are the αth bosonic bath phonon annihilation and creation

operators in the nthmoleculewith phonon frequencyωα. Furthermore,
ĤSB describes the exciton-phonon interaction ĤSB =

PN
n= 1 σ̂

y
nσ̂n�P

αcαðb̂α,n + b̂
y
α,nÞ, where cα is the exciton-phonon coupling strength.

We assume the coupling strength is identical for all excitons and cα is
therefore independent of the label n. Based on the Caldeira–Leggett
model28,29, the baths as well as their interactions with the system are
described by the spectral density

JðωÞ= π
ℏ

X
α

c2αδðω� ωαÞ, ð7Þ

and λ= ð1=πÞ R +1
0 dω JðωÞ=ω=

P
αc

2
α=ωα is the reorganization energy.

We further introduce the Fourier transform of the bath phonon
operators b̂α, k = ð1=

ffiffiffiffi
N

p
ÞPN

n= 1e
ikk�xn b̂α,n. Using these transforms, the

bath Hamiltonian is expressed as ĥB =
P

k

P
αℏωαb̂

y
α, k b̂α, k , and the

polariton-phonon interaction Hamiltonian is given by

ĤSB =
X

μ, k, ν, k 0
ζμk � ζ νk 0 P̂

y
μ, kP̂ν, k0

X
α

cαffiffiffiffi
N

p b̂α, k�k0 + b̂
y
α, k0�k

� �
, ð8Þ

where the band labels μ, ν 2 f+ , � ,Dg, and ζμk is a state-dependent
coefficient that characterizes thematter fraction of the polariton state,
with ζ + k = cosΘk and ζ�k = sinΘk . The ζ+k and ζ−k are commonly
referred to as the Hopfield coefficients24,30,31, and we note that ζDk = 1.
These polariton-phonon interactions will modify the polariton band
structure, and will, in turn, affect the polariton transport properties
such as the group velocity in Eq. (6).

Theory
We derive the expression for vg-renormalization using the equilibrium
Green’s functions at finite temperature. We restrict our discussions to
polariton transport in the weak exciton-phonon coupling regime and
the band-like transport regime4,6. The single-particle Green’s function
of the polaritons at finite temperature is expressed as follows32,

Gμ, kðtÞ � �iθðtÞhP̂μ, kðtÞP̂
y
μ, kð0Þi, ð9Þ

where θ(t) is the Heaviside step function, the time-dependence of the
operators read as P̂μ, kðtÞ= e

i
ℏ
Ĥt P̂μ, kð0Þe�

i
ℏ
Ĥt , and hÂi �

Tr ½Âe�βĤ �=Tr ½e�βĤ � denotes the thermal average under finite tempera-
ture β≡ 1/(kBT), where kB is the Boltzmann constant. Similarly,
one defines the Green’s function of the phonons as DqðtÞ �
�i
P

αðc2α=NÞ � hT ðb̂α,qðtÞ+ b̂
y
α,�qðtÞÞðb̂α,�qð0Þ+ b̂

y
α, qð0ÞÞi, where T is the

time-ordering operator. The Green’s function in Eq. (9) can be
determinedby the self-consistentDyson equation in the timedomain as32

iℏ
∂
∂t

� ϵμk

� �
Gμ, kðtÞ �

Z t

0
dτ Σμ, kðt � τÞGμ, kðτÞ= δðtÞ, ð10Þ

where Σμ,k(t) is the self-energy, and ϵμk = ℏωμk is the bare polariton
energy. Eq. (10) is recast in the frequency domain as

G�1
μ, kðωÞ=ℏðω� ωμk + iηÞ � Σμ, kðωÞ, ð11Þ

where Gμ, kðωÞ is the Fourier transformofGμ,k(t), andwe take η→0+. To
obtain the polariton band renormalization, we further define the
renormalized polariton energies ~Eμk = Eμk + iΓμk and plug it into Eq.
(11), arriving at the expression33

Eμk =ℏωμk + Re ½Σμ, kð~Eμk=ℏÞ�, ð12Þ

Γμk = Im ½Σμkð~Eμk=ℏÞ�, ð13Þ

which has to be solved self-consistently for Eμk and Γμk. Consequently,
Eμk is the renormalized polariton band, and the renormalized polariton
group velocity is obtained via ~vg, ± ðkkÞ= ð1=ℏÞdE ± k=dkk, which leads to

~vg, ± ðkkÞ= vg, ± ðkkÞ+
1
ℏ

d
dkk

Re Σ± , kð~E ± k=ℏÞ
h i

: ð14Þ

The second term in the right-hand side of Eq. (14) characterizes the
modification of the polariton group velocity due to polariton-phonon
interaction. We hypothesize that this term is the main cause of the
renormalization of vg4,21.

In most cases, Eq. (12) cannot be solved exactly, and approxima-
tions are needed to obtain the self-energy in a closed form. Here, we
derive the leading contribution to polariton band renormalization
using the standard tools of diagrammatic perturbation theory. The
first-order self-energy is expressed as32,34,35

Σð1Þ
μ, kðtÞ= iζ

2
μk

X
ν, k0

ζ 2νk0 � Dð0Þ
k�k0 ðtÞGð0Þ

ν, k0 ðtÞ, ð15Þ

where Gð0Þ
± , kðtÞ= � iθðtÞe�iω± k t and Gð0Þ

D, kðtÞ= � iθðtÞe�iω0t are the non-
interacting Green functions of the polaritons and the dark excitons,
respectively, and the low-temperature limit is taken because ϵμk≫ kBT.
Furthermore, Dð0Þ

k�k0 ðtÞ is the free phonon propagator under finite
temperature, and is expressed as

Dð0Þ
q ðtÞ= � i

X
α

2c2α
N

½ð1 +nαÞe�iωα jtj +nαe
iωα jtj�, ð16Þ

whereDð0Þ
q ðtÞ is independent of q, nα = 1=ðeβℏωα � 1Þ is the Bose-Einstein

distribution function, and the bath modes are degenerate such that
ωα,q =ωα,−q =ωα. A diagrammatic representation for the polariton
Green’s functions and self-energies are provided in Supplementary
Fig. 1. Eq. (15) is the Fan-Migdal self-energy33, and when substituted in
Eq. (14), leads to the following expression for the modified polariton
bands

Eð2Þ
μk =ℏωμk + ζ

2
μk �

X
ν, k0

X
α

ζ 2νk0 � 2c
2
α

N
� Ξμk, νk0 ðωαÞ, ð17Þ

where Ξμk, νk0 ðωαÞ is the real part of the polarizability and is given by

Ξμk, νk0 ðωαÞ= Re
1 +nα

ωμk � ωνk0 � ωα + iη
+

nα

ωμk � ωνk0 +ωα + iη

" #
: ð18Þ

A detailed derivation of Eq. (18) is provided in Supplementary Note 2.
For continuous spectral density functions, the summation over the
phononmodesα in Eq. (17) can bewritten as an integral in termsof J(ω)
(see Supplementary Note 3). We note that the band modification can
also be obtained directly from the total Hamiltonian using Rayleigh-
Schrödinger perturbation theory33, by treating ĤSB as perturbative
interactions that cause 2nd-order energy corrections (that scatter
∣� , k

�
to dark states then scatter back). This derivation is provided in

Supplementary Note 2D, with the results identical to Eq. (17)
(with η = 0).
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In this work, we focus on the LP’s vg renormalization, which is
dominated by scattering to the dark exciton states (a total ofN �M of
them), as opposed to scattering to theM LP andM UP states because
N �M≫2M. Thus, one can explicitly perform the summation over k0

that only includes the dark exciton contributions withP
k 0 f ðωνk0 Þ � ðN �MÞf ðω0Þ, and the N �M factor will cancel with 1/N

in Eq. (17) under the large N limit. The validity of this approximation is
further demonstrated numerically in Supplementary Fig. 2. This can-
cellation also indicates that in simulations, as long as one can keep
ðN �MÞ=N ! 1, one should expect the same converged results, and
the detailed choice of N or M does not matter that much (assuming
sufficient resolution of the polariton wavepacket in the spatial and
k-space).

With the above considerations, the renormalized LP group velo-
city becomes

~vg,� = vg,� +
d
dkk

jCk j2
X
α

2c2α � Ξ�k, 0ðωαÞ
" #

, ð19Þ

where the Hopfield coefficient ∣Ck∣2 is expressed as

jCk j2 = sin2Θk =
1
2

1 +
ωk � ω0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðωk � ω0Þ2 + 4Ng2
k

q
2
64

3
75, ð20Þ

which characterizes the matter fraction of the LP. Furthermore,
Ξ−k,0(ωα) only considers the dark exciton contribution and is expressed
as

Ξ�k, 0ðωαÞ=
nα � ðωα � Δω�kÞ
ðωα � Δω�kÞ2 + η2

� 1 +nα

ωα +Δω�k
, ð21Þ

where Δω−k =ω0 −ω−k >0 is the energy gap between the dark exciton
states and the LP band at kk =

2π
NL k. Eq. (19) provides an analytic

expression of the LP group velocity based on the current theory. It
predicts that the magnitude of the vg renormalization will depend
linearly on λ [through c2α], and also predicts that vg is sensitive toCk and
temperature [throughnα]. In Supplementary Fig. 3, wepresent theplot
of the amplitude of vg renormalization against thematter fraction ∣Ck∣2,
and against the temperature, respectively. Further taking the η → 0
limit of Eq. (21), one can analytically express Eq. (19) as

Δvg,� � ~vg,� � vg,�

= � d
dkk

jCk j2
P
α
2c2αωα

Δω�k �ð2nα + 1Þ�ωα

Δω2
�k

�ω2
α

	 

:

ð22Þ

In most experiments, the LP initial excitation is in a region Δω−k≫ωα,
thusΞ−k,0(ωα) is negative. For a broad rangeof phonon frequencies, the
high-frequency phononmakes a positive contribution to Ξ−k,0(ωα), but
the overall results should still be dominated by the low-frequency
phonons, making Ξ−k,0(ωα) negative. Note that Eq. (19) is only valid
when dark excitons dominate the sum in Eq. (17). Nevertheless, one is
able to derive simpler analytic answers from Eq. (17) or Eq. (19) under
different regimes of spectral densities J(ω) or temperatures.

Mechanistic picture
We want to comment on the mechanistic picture suggested by Eqs.
(22) and (17). The LP group velocity renormalization occursmainly due
to the presence of the dark states as a virtual scattering state. The
transition from LP to all dark states, and scattering back to the LP
(∣� , k

�! ∣Di ! ∣� , k
�
) leads to the reduction of the group velocity,

which can be understood as the perturbative energy correction up to
second order. Indeed, the overall scaling of Δvg,− ∝ 1/Δω−k. This scaling
means that even with large light matter detunings, such that the dark
states are never appreciably populated from the LP, these dark states

still act like virtual states, such that their perturbative presence will
lead to energy correction of LP and hence vg renormalization. In this
sense, we can classify the physical picture predicted by Eq. (22) as the
super-exchange-likemechanism, where the dark exciton states act like
virtual states to mediate the population transfer with LP. For small
light-matter detuning (such as in ref. 3), the LP might be able to
transfer the population to the dark states. Note that the typical super-
exchange process describes indirect energy transfer to another state
mediated by virtual states, rather than back to the initial state36,37. For a
large light-matter detuning, dark states will only be virtually populated
and thus will not be detected spectroscopically, as experimentally
observed under resonant excitation of the LP in ref. 4. Supplementary
Fig. 5 presents the polariton band structure and group velocity mod-
ification under different detunings, and Supplementary Fig. 6 presents
a two-dimensional “heatmap”of the detuning effect under differentωc

and k∥. Furthermore, Supplementary Fig. 7 presents the population
dynamics of the polariton and dark states obtained from Ehrenfest
dynamics simulations under different detunings.We also note that the
mechanism is akin to theRaman scatteringprocess,which is evidenced
by the expressionofΞμk, νk 0 ðωαÞ in Eq. (18). In fact, Eq. (17) is the Raman-
type polarizability in the frequency domain, which is the well-known
Kramers–Heisenberg–Dirac (KHD) expression38–41, but now with tem-
perature dependence (because the interaction is ĤSB, which is tem-
perature dependent, and not the dipole interactionwith the field in the
original KHD expression). Supplementary Note 2D clearly shows how
the ĤSB termmediates the transition fromLP todark states and back to
LP bands. As such, the vg-renormalization can also be described as a
phonon-mediated Raman-type scattering process, which is a non-
resonant process. A schematic illustration is provided in Fig. 1b. Finally,
the mechanism is also akin to the model used in the quantum relaxa-
tion process (see Chapter 9 of ref. 29).

Note that under the polariton representation, an alternative
mechanistic picture could be phonon-mediated attractive interac-
tions between polaritons and dark excitons, manifested by the
negative energy correction in Eq. (17) (and one can further obtain an
effective interacting polariton Hamiltonian via a Schrieffer–Wolff
transformation32,42,43, for example). In this sense, polariton attrac-
tions provide a backward drag force to the polariton wavefront and
slow down the propagation. This mechanistic picture is consistent
with the dark states manifold-mediated scattering effect discussed
above. Note that the above-mentioned is just an interpretation, and
the current theory or simulations do not explicitly consider the
many-body interactions (such as exciton-exciton or polariton-
polariton interactions).

We emphasize that the current theory predicts a less sensitive
bath characteristic phonon frequency ωf dependence of vg. See Sup-
plementary Fig. 8 for details. Nevertheless, increasingωf could lead to a
more significant LP → DS population transfer, which breaks the equi-
librium theory (See Supplementary Fig. 9). On the other hand, when
increasing the light-matter detunings so that LP → DS population
transfer is suppressed, Supplementary Fig. 10 shows that vg is indeed
less sensitive toωf. Furthermore,weemphasize that the polaritonband
modification expressed in Eq. (17), or approximately [c.f. Eq. (19)],
Eð2Þ
�, k � jCk j2

P
α2c

2
α � Ξ�k, 0ðωαÞ

� �
does not cause the shift of the opti-

cal signal44. For angle-resolved cavity photonic spectra, our results
indicate that in optical measurements of the polariton dispersion,
phonon coupling will only broaden the spectra, not change the peak
frequency or band dispersion (see Supplementary Fig. 11). As such,
Eð2Þ
�, k is a unique quantity that renormalizes the group velocity, but

does not directly influence linear optical signals. Our model thus
closely matches experimental measurements that display no mea-
surable renormalization of the polariton dispersion measured from
linear reflectance or transmission spectra, but a large group velocity
renormalization in nonequilibrium measurements of polariton
propagation.
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Numerical results
Toquantitatively examine the accuracyof the above theory (Eq. (17), or
the corresponding ~vg,�), we perform quantum dynamics simulations
for the GHTC model Hamiltonian using the Ehrenfest method21, and
verify various scaling relations andpredictionsmadeby the theory. For
the system Hamiltonian, we chose the exciton energy ℏω0 = 1.96 eV,
the cavity frequency ℏωc = 1.90 eV, and the collective light-matter
coupling strength

ffiffiffiffi
N

p
gc = 120 meV. Details of the models and com-

putations are provided in Supplementary Note 4, with a brief summary
provided in the “Methods” section.

Figure 2 a presents the modified polariton band structure (Eq.
(17)) with different λ. One observes that the modification of vg
increases as λ and the matter fraction increase. For the LP branch, the
second term in Eq. (17) is negative, which effectively provides an
attractive interaction between polaritons (mediated by phonons) and
decreases the LP energy. Since ζ 2μk is the matter fraction of the polar-
iton branch, it is straightforward to see that as k∥ increases, ζ 2�k
increases with a larger matter fraction, thus providing more mod-
ifications to the LP band. The modified polariton band structure con-
sequently leads to polariton group velocity renormalization. Note that
when both λ and k∥ are large, the polariton dispersions bend down and
have a negative slope (red and green curves in Fig. 2a), implying that
~vg,� becomes negative. This behavior is unphysical due to the break-
down of the perturbation theory used to derive Eq. (17). The quantum
dynamics simulations21 suggest that under this regime, the transport
will become diffusive with a very small vg. For the results presented
later, we only focus on the region of k∥≥0 predicted by the analytic
theory in Eq. (19).

Figure 2b presents the LP group velocity as a function of the bare
LP energies (see the black curve in Fig. 2a) and for different λ, where
the theoretical results using Eq. (17) are compared to quantum
dynamics simulations (open circles). One sees that as λ increases, the
magnitude of the group velocity renormalization increases (from the
blue curve to the green curve), further deviating from the derivative of
the LP band, vg (black solid curve). Furthermore, as the LP energy
increases, the matter character of the LP state jC2

k j also increases,

which further reduces the group velocity. For all cases, the theory
agrees very well with the numerical simulations for small λ (<12meV).
However, for larger λ, thepolariton-phonon interactionenters thenon-
perturbative regime, and the first-order self-energy level theory in Eq.
(17) becomes inadequate. As a result, the theory gradually deviates
from numerical simulations, as expected. Nevertheless, the theory
describes the overall semi-quantitative trend of the data from the
simulation.

Figure 2c presents the scaling relation of the LP group velocity
~vg,� (c.f. Eq. (19)) as a function of λ, which characterizes the mod-
ification to the LP group velocity by the polariton-phonon interaction.
Importantly, the theory in Eq. (19) predicts that this renormalization
magnitude is proportional to c2α and thus jΔvg,�j= j~vg,� � vg,�j / λ.
Figure 2c presents ~vg,� versus λ at different LP energies. We observe
that ~vg,� scales linearly with λ, and the slope increases as the matter
fraction increases. It is clear from Eq. (17) that the polariton band
structure (or group velocity) modification is proportional to λ due to
its quadratic dependence on cα. The results obtained from quantum
dynamics simulations agree quite well with the theory, especially for
cases with small λ and matter fractions. As λ and matter fraction
increase, the Ehrenfest results gradually deviate from the theory and
show a nonlinear dependence on λ, due to non-perturbative effects;
see the ϵ−k = 1.84 eV (shallow green) curve for example. Nevertheless,
the semi-quantitative trend is always captured by the theory, and we
stress that there are no free parameters in the current theory. Fur-
thermore, our quantumdynamics simulation is based on the Ehrenfest
MQC approximation, which may lead to inaccurate results when λ is
large. Future efforts are needed to evaluate vg in the large λ regime
using more accurate quantum dynamics approaches.

Figure 2d presents the temperature dependence of the polariton
group velocity renormalization. Figure 2d presents ~vg,� versus T at LP
energy ϵ−k = 1.86 eV and λ = 6meV. From a theoretical standpoint, the
temperature dependence is mainly carried by the Bose–Einstein dis-
tribution function in Eq. (17), which is nonlinear in T. In particular,
under the high-temperature limit (ℏωα≪ kBT for all ωα), the Bose-
Einstein distribution function can be approximated as

Fig. 2 | Polariton energy and group velocity renormalization due to polariton-
phonon interaction. a Modified polariton band structure under different λ.
b Group velocity of the LP branch ~vg,� as a function of the bare LP energy (black
curve in (a)). under different λ. c Scaling relation of the LP group velocity ~vg,� with

λ. d Temperature-dependence of the LP group velocity ~vg,� at LP energy
ϵ−k = 1.86 eV and λ = 6meV. Theoretical results using Eq. (17) (solid lines) are com-
pared to Ehrenfest dynamics simulations (open circles).
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nα � kBT=ðℏωαÞ / T . As a result, the modification of the polariton
band structure (or group velocity) is proportional to T. At tempera-
tures near 300K, the parameters we used satisfy the high-temperature
limit; thus Δvg,− scales linearly with T. In the Ehrenfest dynamics
simulations, the nuclear quantum effect comes from the initial Wigner
distribution of the nuclear thermal density only, and the exciton-
phonon dynamics beyond the quantum-classical limit are not cap-
tured. Considering this, the deviationbetweenEhrenfest dynamics and
the theory is likely due to the inaccuracy of Ehrenfest dynamics at very
low temperatures, as we expect that our analytic theory should be
accurate under the low λ, even when T → 0 limits (because there is no
additional approximations related to the temperature dependence
factor in Eq. (21)). Nevertheless, both the current theory (solid green
line) and the numerical simulation agree reasonably well across all
temperature regimes. Overall, the theory and simulations predict that
vg,− decreases as T increases. This is because when T increases, the
phonon fluctuations cause transitions from the LP band to the dark
exciton states, thus reducing the group velocity. We also want to
emphasize that there is no free parameter in the current theory to
predict the temperature dependence.

Note that a phenomenological expression has previously been
proposed based on the TAST6, due to scattering from ∣�k

�
to the dark

states, resulting in the following expression for the group velocity
renormalization

~vg,� =
vg,�

1 +G � e�βℏΔω�k
, ð23Þ

where G is a free parameter. See Supplementary Note 5, as well as
Supplementary Information S3 in ref. 6 for further details. The TAST is
basedon the idea that transport dependson theproportionof time the
system spends in the LP band relative to the dark states, resulting in a
temperature-dependent modification of vg that is sensitive to the
energy gap Δω−k. Although the TASTmakes intuitive sense (and aligns
with findings from our microscopic theory), we found that Eq. (23)
does not give the correct temperature dependence when G is treated
as a temperature-independent parameter. In Fig. 2, the result from
TAST is plotted as the red dashed curve, with a fitting parameter
G = 3.0 to reproduce the correct value of ~vg,� at T = 300K. One sees
that it does not give the correct T-dependence across a broad range of
temperatures unless one further chooses a T-dependent G parameter.
The reason TAST fails to reproduce an accurate T-dependence is
because the expression from TAST scales as 1=ð1 + e�βℏΔω�k Þ, whereas
the microscopic theory in Eq. (19) posits that the temperature
dependence is nα � e�βℏωα under the low-temperature limit when
ℏωα≫ kBT, and nα � kBT=ðℏωαÞ under the high-temperature limit
when ℏωα≪ kBT. Additionally, TAST assumes that the transition
between the LP band and dark exciton states follows Boltzmann
statistics, whereas, in our current theory, the phonons obey Bose-
Einstein statistics, which mediate the (virtual) transitions between the
LP band and the dark states. Ourmicroscopic theory also predicts that
Δvg,− should depend on Δω−k, but this dependence (in Eq. (19)) is not in
the Boltzmann factor. As such, at a low temperature when kBT≪ ℏΔω−k

(for a large energy difference between LP and dark excitons), but still
has kBT ~ℏωα (for low-frequency acoustic phonon α), TAST predicts
that there is no renormalization, and the current theory predicts that
there will be a finite magnitude of renormalization (see Fig. 2D for
T < 150 K). Preliminary experimental evidence of such a low-
temperature vg renormalization can be found in Fig. 3c in ref. 13.
On the other hand, if one wants to choose the mechanistic
interpretation based on Eq. (23), then our current theory will give a
precise expression of how G should depend on temperature, which is
G= ðeβℏΔω�k=~vg,�Þ d

dkk
jCk j2

P
α2c

2
α � Ξ�k, 0ðωαÞ

� �
, see details in Supple-

mentary Note 5. In that sense, we view our current theory as a more
general, microscopic one compared to TAST.

We developed amicroscopic theory that successfully explains the
renormalization of polariton group velocity due to polariton-phonon
interactions. We analyze a theoretical model based on the GHTC
Hamiltonian, which comprisesN identical copies of molecular systems
consisting of excitons and phonons that are collectively coupled toM
cavitymodes,which satisfy somedispersion relation. The theory uses a
diagrammatic perturbative treatment of the equilibrium Green’s
function of the polaritons, revealing how exciton-phonon interactions
renormalize the LP band and thus reduce the group velocity in polar-
iton transport. Crucially, the theory captures the λ and T dependence
of the vg renormalization magnitude and semi-quantitatively agrees
with results from quantum dynamics simulations. We emphasize that
there is no free parameter in our microscopic theory, and every
quantity is derived from the microscopic light-matter interaction
Hamiltonian.

We expect the theorywill eventually break downwith increasing λ
and matter fraction, such that the system enters into the non-
perturbative regime. However, for λ ≤ kBT, the analytic theory almost
quantitatively agrees with the numerical results. Although the theory
does not capture transient non-equilibriumdynamical behaviors in the
short-time regime, it yields semi-quantitatively accurate answers
compared to numerical simulations that do include all transient non-
equilibrium effects. This strongly suggests that the LP vg renormali-
zation is largely dictated by the renormalization of the LP band due to
phonons and is less sensitive to the transient dynamics.

Our theory yields several predictions regarding the scaling rela-
tion with matter fraction ∣Ck∣2, phonon bath reorganization energy λ,
temperature, etc., and these have been verified through our quantum
dynamics simulations. These predictions can, in principle, be verified
with experiments3,4,6. The theory is simple enough to be extended to
multidimensional systems with multiple dispersive matter bands and
phonons, such as semiconductor materials. It is also feasible to
implement our theory along with ab initio simulations33.

Methods
Numerical evaluation of Eq. 17
We assume a Drude–Lorentz form for the phonon bath spectral den-
sity JðωÞ= π

ℏ

P
αc

2
αδðω� ωαÞ= 2λωfω=ðω2 +ω2

f Þ, where λ is the reorga-
nization energy, and ωf is the bath characteristic frequency. We adopt
an efficient and commonly used type of bath discretization
procedure45, which discretizes the spectral density with equal intervals
in λ (instead of in frequency), with

ωα =ωf tan
π
2

1� α
Nb + 1

� �	 

, cα =

ffiffiffiffiffiffiffiffiffiffiffiffiffi
λωα

Nb + 1

s
, ð24Þ

where α = 1,⋯ , Nb, and Nb is the number of bath modes. Here Nb = 104

is used to evaluate Eq. (17) to generate converged results, and the
infinitesimal imaginary term in Eq. (18) is taken as η = 1meV. The value
of ~v�, g is directly obtained by numerically differentiating Eð2Þ

μk in Eq.
(17). Note that one can adopt a smaller η value in numerical calcula-
tions, but it then requires an even larger Nb to reach convergence.

Quantum dynamics simulations
Weuse themean-field Ehrenfest dynamics21 to propagate the quantum
dynamics of polariton transport. The transport dynamicsmainly occur
in the single excitation subspace, defined as follows

En



 �
= ∣en

�O
m≠n

∣gm

�O
k

∣0k

�
ð25Þ

k


 �= ∣GiO

k0≠k

∣0k 0
�� ∣1k

�
, ð26Þ
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where ∣En

�
is the singly excited state for the nth molecule located at xn,

∣k
�
is the one-photon-dressed ground state with wave-vector kk =

2π
NL k,

and L is the inter-molecular spacing, which is set to be L = 40 Å.
Furthermore, ∣Gi= Nn∣gn

�N
α ∣0k

�
represents the common ground

state for the hybrid system.We describe the time-dependent quantum
state in the exciton-photon subspace as

∣ψðtÞ�= XN
n

cnðtÞ∣En

�
+
X
k

ckðtÞ∣k
�
, ð27Þ

where cn(t) and ck(t) are the excitonic and photonic expansion coeffi-
cients, respectively. The polariton quantum dynamics for ∣ψðtÞ� is
propagated by solving the time-dependent Schrödinger equation
(TDSE),

iℏ
∂
∂t

∣ψðtÞ�= ĤQðRÞ∣ψðtÞ
�
, ð28Þ

where ĤQ = ĤS + ĤSBðRÞ. The bath nuclear DOF R, on the other hand, is
propagated classically using Hamilton’s equations of motion (EOM),
governed by the time-dependent mean-field force

F= � ∇R ψðtÞjĤSBðRÞjψðtÞ
D E

+hBðRÞ
h i

: ð29Þ

The polariton group velocity ~vg is computed by tracking thewavefront
of the LP polariton wave packet using the same method reported in
previous works4,21, with details provided in Supplementary Note 4.
Example spatial distribution of the polariton wavepacket at different
time and the extraction of the group velocity are shown in Supple-
mentary Fig. 4, with detailed fitting parameters in Supplementary
Table III.

Simulation details
For all quantum dynamics simulations, we use N = 104 molecules and
M= 102 cavity modes, keeping the ratio of N=M � 35. More details
about the precise number ofmolecules andmodes for each parameter
regime explored in Fig. 2 are provided in Supplementary Note 4 (see
Supplementary Table I and Supplementary Table II). A total of Nb = 35
phonon modes were sampled based on the same equal-λ procedure
mentioned above. The total light-matter coupling strength is set toffiffiffiffi
N

p
gc = 120meV. All results are obtained with an ensemble of 500

independent trajectories. Convergence tests are performed with up to
1000 trajectories. The nuclear time step is Δt = 2.5 fs, where during
each nuclear propagation, there are 100 electronic propagation steps
with a time step dt = 0.025 fs. The nuclear EOM is numerically inte-
grated with the velocity verlet algorithm, and the TDSE is solved with
the Runge-Kutta-4 algorithm.

Data availability
Thedata generated in this study havebeen deposited inhttps://github.
com/Okita0512/Polariton-Transport.

Code availability
The source code for the Ehrenfest quantum dynamics method
used in this study is available at https://github.com/benxkchng/
Polariton-Transport-Ehrenfest. The source code for producing all
the figures in the main text and the supplementary notes is avail-
able at https://github.com/Okita0512/Polariton-Transport.
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