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This work provides the fundamental theoretical framework
for few-mode cavity quantum electrodynamics by resolving
the gauge ambiguities between the Coulomb gauge and the
dipole gauge Hamiltonians under the photonic mode trun-
cation. We first propose a general framework to resolve
ambiguities for an arbitrary truncation in a given gauge.
Then, we specifically consider the case of mode truncation,
deriving gauge invariant expressions for both the Coulomb
and dipole gauge Hamiltonians that naturally reduce to the
commonly used single-mode Hamiltonians when considering
a single-mode truncation. We finally provide the analytical
and numerical results of both atomic and molecular model
systems coupled to the cavity to demonstrate the validity of
our theory. © 2022 Optica Publishing Group

https://doi.org/10.1364/OL.450228

In cavity quantum electrodynamics (cQED), the single-mode
approximation has been ubiquitously applied across multitudes
of studies [1–11]. As this approximation breaks down, increas-
ingly more modes must be considered [12–19]. However, the
choice of gauge for a proper truncation of the photonic modes
leads to a potential ambiguity [13], as one arrives at two different
dipole gauge Hamiltonians when performing mode truncation
before or after performing the Power–Zienau–Wooley (PZW)
gauge transformation. In this Letter, we provide a theoretical
framework to address this ambiguity and demonstrate how to
accurately perform mode truncation in both the Coulomb and
dipole gauges.

We begin by introducing the PZW gauge transformation
operator [20,21] in the long-wavelength approximation as

Û = e− i
ℏ µ̂ ·Â = exp[−

i
ℏ
µ̂ ·

∞∑︂
k=0

Ak(â†

k + âk)], (1)

where µ̂ =
∑︁

j zjqj is the total dipole operator, qj is the position
of the charged particle j (including all electrons and nuclei) with
a charge of zj, and Â =

∑︁∞

k=0 Ak(â†

k + âk) is the purely transverse
vector potential under the Coulomb gauge (∇ · A = 0) and long-
wavelength approximation. The vector potential amplitude is
Ak =

√︁
ℏ/2ωkεV · ê, with V as the quantization volume inside

the cavity, ε as the vacuum permittivity, and ê as the unit vector
of the field polarization. The PZW transformation operator can
also be expressed as Û = exp

[︁
− i

ℏ

√︁
2ωc/ℏµ̂ ·

∑︁∞

k=0 Akq̂c,k
]︁
=

exp
[︁
− i

ℏ (
∑︁

j zjÂqj)
]︁
. Recall that a momentum boost operator

of the form Ûp = e− i
ℏ p0 q̂ displaces p̂ by the amount p0, such that

ÛpÔ(p̂)Û†
p = Ô(p̂ + p0). The PZW can then be thought of simul-

taneously as a boost operator for both the matter momentum and
the photonic momentum.

The dipole gauge (or the d · E form) and Coulomb gauge
(or the p · A form) Hamiltonians for describing light–matter
interactions can then be written [8,22,23] in terms of the PZW
operator Û as

Ĥp·A = Û†ĤMÛ +
∞∑︂

k=0

ℏωkâ†

k âk, (2)

Ĥd·E = ĤM + Û
(︁ ∞∑︂

k=0

ℏωkâ†

k âk
)︁
Û†, (3)

where the matter Hamiltonian is ĤM =
∑︁

j
p2

j
2mj
+ V̂({qj}), the pho-

tonic Hamiltonian is Ĥph =
∑︁∞

k=0 ℏωkâ†

k âk, and ℏωkâ†

k âk is the
photonic Hamiltonian for the kth mode. Note that in Ĥd·E (dipole
gauge), Û boosts the photonic momentum, and in Ĥp·A (Coulomb
gauge), Û boosts the matter momentum. More specifically, one
has the well-known minimum coupling form for the p · A Hamil-
tonian as Ĥp·A =

∑︁
j

1
2mj

(p̂j − zjÂ)2 + V̂(x̂) + Ĥph, ensuring gauge
invariance under any gauge transformation (such as the PZW
transformation). The d · E Hamiltonian [Eq. (3)] can also be
explicitly expressed as Ĥd·E = ĤM + Ĥph +

∑︁∞

k=0[iωkAk · µ̂(â†

k −

âk) +
ωk
ℏ (Ak · µ̂)

2].
Exact QED theory should be gauge invariant, which can be

easily seen by noticing that Ĥd·E = ÛĤp·AÛ†. Gauge ambiguities,
meaning different values for a quantum observable obtained
from different gauges, could arise due to either matter state
truncation (such as two-level approximations) [7,8] or the mode
truncation [13]. In efforts to resolve these, it is commonly asked
whether it is most appropriate to truncate the Hamiltonian in the
Coulomb gauge or the dipole gauge [7,12,13]. We propose a new
theoretical framework to consider truncations in light–matter
interaction Hamiltonians by performing the truncation further
upstream.

Whether the light–matter coupling is expressed in the
Coulomb gauge or the dipole gauge, the total Hamiltonian is
composed of a pure matter Hamiltonian operator, ĤM, and a pure
photonic operator, Ĥph, where one of these operators’ momen-
tum is boosted by a unitary PZW gauge transformation operator
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Û [see Eqs. (2) and (3)]. Since one typically truncates the Hilbert
space in the tensor product of the eigenstates of ĤM or Ĥph to
form a properly truncated light–matter Hamiltonian, one must
first project ĤM and Ĥph in that subspace and then evaluate the
coupling terms by using the PZW operator which is also prop-
erly contained within the same subspace [8,23–25]. It should be
noted that for a given truncation using the projection operator
P̂, a simple truncation of the form P̂ÛP̂ is not properly con-
tained in the subspace P̂ [12,23,24], leading to the well-known
gauge ambiguity for the matter state truncation [23]. To remedy
this, one can construct a new PZW operator [23] in the same
subspace as

Û = exp[−
i
ℏ
P̂(µ̂ · Â)P̂], (4)

such that it is properly confined in the subspace P̂, which is
apparent because Û =

∑︁∞

n=0
1
n! (

i
ℏ P̂(µ̂ · Â)P̂)n. Note that in gen-

eral, P̂ = P̂M ⊗ P̂ph, where P̂M and P̂ph are projection operators
for the matter and the photonic degrees of freedom (DOFs),
respectively, and µ̂ and Â are operators in the matter and pho-
tonic Hilbert spaces, respectively. We can then truncate the
Coulomb and dipole gauge Hamiltonians within an arbitrary
subspace P̂ (of the combined matter and photonic Hilbert space)
as follows [23]:

Ĥp·A =Û
†P̂ĤMP̂Û + P̂ĤphP̂, (5)

Ĥd·E =P̂ĤMP̂ + ÛP̂ĤphP̂Û†, (6)

which always guarantees gauge invariant results through Ĥd·E =

ÛĤp·AÛ
†. The special case of this approach is recently used to

resolve the gauge ambiguity due to the matter state truncation
[8,23].

With this generalized theory outlined in Eqs. (4)–(6), we turn
our focus to a specific problem in cavity QED: the mode trunca-
tion. To begin our discussion, we define the projection operator
to the first m photonic modes (labeled as k ∈ [0, m − 1]) as

P̂ (m) = ÎM ⊗

(︂ m−1⨂︂
k=0

∞∑︂
n=0

|nk⟩⟨nk |

∞⨂︂
k′=m

|0k′⟩⟨0k′ |

)︂
, (7)

where |nk⟩ is the nth Fock state in the kth mode and ÎM is the
identity operator for the matter Hilbert space, thus we do not
explicitly consider the matter subspace truncation in this study.
Note that |0k′⟩⟨0k′ | confines the Hilbert space’s k′

th photonic
mode to its vacuum state, such that this mode neither participates
in the light–matter interactions [this is apparent by looking at
the light–matter interaction Hamiltonian in Eq. (11), as well as
in the PZW operator in Eq. (4), because ⟨0k |(â†

k + âk)|0k⟩ = 0]
nor explicitly shows up in P̂ (m)ĤphP̂

(m). The physical device
to effectively accomplish this mode truncation is the long-pass
filter [25], which prevents the photonic excitations in those high-
frequency modes k ≥ m, or a simple dielectric Bragg reflector
(DBR) cavity which has a mode-dependent quality factor [26],
such that the lifetime of the photonic excitation goes to 0 for
those higher frequency modes.

With our general procedure outlined in Eq. (4), we introduce
the PZW operator that is properly confined in the m modes
subspace (for k ∈ [0, m − 1]) as

Û(m) = e− i
ℏ P̂(m)(µ̂·Â)P̂(m)

= exp[−
i
ℏ
µ̂ ·

m−1∑︂
k=0

Ak(â†

k + âk)]. (8)

Using Eq. (5), the Coulomb gauge Hamiltonian under an n-mode
truncation is expressed as

Ĥ
(m)

p·A = Û(m)†P̂ (m)ĤMP̂
(m)Û(m) + P̂ (m)

∞∑︂
k=0

ℏωkâ†

k âkP̂
(m)

= ĤM +

m−1∑︂
k=0

[︁
ℏωkâ†

k âk +
p̂ · Ak

m
(â†

k + âk)
]︁
+

1
2m

[︁ m−1∑︂
k=0

|Ak |(â†

k + âk)
]︁2.

(9)
As ĤM is a pure matter operator, it is invariant upon mode trun-
cation and therefore commutes with P̂, P̂ (m)ĤMP̂

(m) = ĤMP̂
(m).

In the case of a single mode n = 1, Eq. (9) reduces to
the well-known single-mode minimal coupling Hamiltonian.
Interestingly, if we apply a simple mode truncation, Ĥ ′(m)

p·A =

P̂ (m)Ĥp·AP̂
(m) has the same form of Eq. (9) up to a constant that

represents the zero-point energy of all modes (see Supplement
1, Section 1.).

If we apply a simple truncation procedure to the dipole gauge
Hamiltonian, we have

Ĥ
′(m)

d·E = P̂ (m)Ĥd·EP̂
(m) = ĤM + P̂ (m)Û

(︁ ∞∑︂
k=0

ℏωkâ†

k âk
)︁
Û†P̂ (m)

= ĤM +

m−1∑︂
k=0

[︁
ℏωkâ†

k âk + iωkAk · µ̂(â†

k − âk)
]︁
+

∞∑︂
k=0

ωk

ℏ
(Ak · µ̂)

2.

(10)
This procedure breaks the gauge invariance and generates differ-
ent results from Ĥ

(m)

p·A , because the dipole self-energies for all the
modes are still explicitly present, even for the modes k ∈ [n,∞]

which are supposed to be truncated in the d · E term. The above

Fig. 1. Particle in a double-well potential coupled to the cavity. (a)
Symmetric and (b) asymmetric double-well potential for the matter.
(c) Polariton eigenspectra of different Hamiltonians as a function
of coupling strength, A0, for the symmetric double-well potential
in panel (a). (d) Polariton eigenspectra of different Hamiltonians
as a function of coupling strength for the asymmetric double well
potential in panel (b). (e) and (f) Polariton eigenspectra relative
to E0.
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inappropriate mode truncation was mentioned in the procedure
outlined in Ref. [13], where the mode truncation is done after the
PZW transformation of the minimal coupling Hamiltonian, and
only on for the light–matter coupling term, but not for the dipole
self-energy term. The problem with Eq. (10) arises from the fact
that P̂ (m)Û is not a unitary transformation [12] of

∑︁∞

k=0 ℏωkâ†

k âk,
which leads to operators outside the P̂ (m) subspace [i.e., the
dipole self energy (DSE) term

∑︁∞

k=m
ωk
ℏ (Ak · µ̂)

2 in Eq. (10)].
This DSE term in Ĥ

′(m)

d·E contains an infinite summation of dipole
self-energy terms that does not converge.

With the procedure outlined in Eq. (6), we then obtain a
properly truncated d · E Hamiltonian as follows:

Ĥ
(m)

d.E = ĤM + Û
(m)P̂ (m)

(︁ ∞∑︂
k=0

ℏωkâ†

k âk
)︁
P̂ (m)Û(m)†

=ĤM +

n−1∑︂
k=0

[︁
ℏωkâ†

k âk + iωkAk · µ̂(â†

k − âk) +
ωk

ℏ
(Ak · µ̂)

2]︁ .
(11)

The truncated Hamiltonian in Eq. (11) preserves the same form
of Eq. (3), where the pure photonic operator in the truncated
subspace is acted on by a unitary boost operator. This Hamilto-
nian does not have the non-converging infinite sum for DSE that
is (incorrectly) shown in Eq. (10).

To illuminate the effects of these different mode truncation
schemes on the energy eigenspectra of polaritonic systems, let
us consider a simple model system that contains only two cavity
modes in the p · A form as follows:

Ĥ
(2)
p·A =ĤM +

1∑︂
k=0

[︁
ℏωkâ†

k âk +
p̂ · Ak

m
(â†

k + âk)
]︁

+
1

2m
[︁ 1∑︂

k=0

|Ak |(â†

k + âk)
]︁2,

(12)

whereas the equivalent d · E form is Ĥ (2)
d·E = ĤM +

∑︁1
k=0[ℏωkâ†

k âk +

iωkAk · µ̂(â†

k − âk) +
ωk
ℏ (Ak · µ̂)

2]. We then consider three differ-
ent possible Hamiltonians truncated to a single cavity mode: (a)
a single-mode Coulomb gauge Hamiltonian; (b) an inappropri-
ately truncated single-mode dipole gauge Hamiltonian; and (c)
a properly truncated single-mode dipole gauge Hamiltonian, as
follows:

Ĥ
(1)
p·A = ĤM + Ĥ0

ph +
p̂ · A0

m
(â†

0 + â0) +
|A0 |

2

2m
(â†

0 + â0)
2,

(13a)
Ĥ

′(1)
d·E = ĤM + Ĥ0

ph + iω0A0 · µ̂(â†

0 − â0) +
∑︂
k=0,1

ωk

ℏ
(Ak · µ̂)

2,

(13b)
Ĥ

(1)
d·E = ĤM + Ĥ0

ph + iω0A0 · µ̂(â†

0 − â0) +
ω0

ℏ
(A0 · µ̂)

2,
(13c)

where Ĥ0
ph = ℏω0â†

0â0.
Figure 1 presents the energy eigenspectra of a single par-

ticle experiencing symmetrical and asymmetrical double-well
potential [8] V̂(r̂) = a

4 r̂4 − b
2 (r̂ − γ)

2 which is then coupled to
the optical cavity. Here, a, b>0 are parameters used to for the
double-well shape, and γ is an asymmetry factor. In this work,
we use the values a = 0.5 and b = 2.27. The results from vari-
ous truncated Hamiltonians are compared relative to the exact
results. Figure 1(a) presents the symmetrical potential of the
matter by setting γ = 0. Due to no permanent dipole in this
symmetric potential, under the two-level approximation, µ̂ ≈

µ01(|ϕ1⟩⟨ϕ0 | + |ϕ0⟩⟨ϕ1 |), µ̂2 ≈ |µ01 |
2(|ϕ0⟩⟨ϕ0 | + |ϕ1⟩⟨ϕ1 |). For

Ĥ
′(1)
d·E in Eq. (13b), the constant transition dipole moment

causes the extra constant DSE term (for the k = 1 mode) to
be a zero-point energy shift for all polariton states, weighted
by a quadratic coupling strength |A1 |

2 for mode n = 1 (note
that |A1 |

2 = (ω0/ω1) · |A0 |
2). We emphasize that this two-level

approximation is not used in any of our numerical results pre-
sented in this work, but only used to intuitively understand the
numerical results provided in Figs. 1(c) and 1(e).

Figure 1(c) presents the polariton eigenspectra obtained by
diagonalizing Ĥ, Ĥ (1)

p·A, Ĥ ′(1)
d·E , and Ĥ

(1)
d·E in a basis of {|ϕi⟩ ⊗ |n⟩},

where |ϕi⟩ is the ith electronic state of ĤM, and |n⟩ is the Fock
state of Ĥph. The numerical details are provided in Section 4 of
Supplement 1. Figure 1(c) displays this quadratic deviation (with
respect to the coupling strength) of all of the polariton eigenen-
ergies of the improperly truncated d · E Hamiltonian Ĥ

′(1)
d·E from

the properly truncated Hamiltonians of both Ĥ
(1)
d·E and Ĥ

(1)
p·A. This

departure, however, is almost perfectly constant for the first few
polariton energy levels based on our simple analysis of the two-
level approximation. When the ground polariton state energy, E0,
is subtracted from all states, the eigenspectrum of Ĥ ′(1)

d·E almost
matches those of Ĥ (1)

d·E and Ĥ
(1)
p·A, as shown in Fig. 1(e).

When a permanent dipole is added to the model system (by
using γ = 0.2 for the double-well potential), significant off-
diagonal terms appear for the µ̂2 operator [such as ⟨g| µ̂(|g⟩⟨g| +
|e⟩⟨e|)µ̂ |e⟩ due to the presence of both transition and the per-
manent dipoles]. For such a case, even the relative energies of
the improperly truncated dipole gauge Hamiltonian Ĥ

′(1)
d·E start

to disagree with the exact results. This asymmetric potential is
shown in Fig. 1(b). Figure 1(d) presents the energy eigenspec-
tra for this asymmetric potential. As shown in this panel, the
results obtained from Ĥ

′(1)
d·E no longer have a quadratic departure

from the exact results. However, the results obtained from Ĥ
(1)
p·A

and Ĥ
(1)
d·E follow the results of the full Hamiltonian in Eq. (12)

almost perfectly. Figure 1(f) further accentuates the breakdown
of Ĥ

′(1)
d·E in this model. The eigenspectrum produced does not

qualitatively match the exact results. We emphasize that for the
non-resonant mode (m = 1 mode in Ĥ

(2)
d·E), the polariton energy

influenced by the dipole self-energy term almost perfectly can-
cels with that influenced by the light–matter coupling d · E term,
such that the energy eigenspectrum is almost identical to the
one for Ĥ (1)

d·E). Using second-order perturbation theory, we pro-
vide the analytic expressions of the energy and demonstrate this
cancellation explicitly (see Section 2 of Supplement 1).

To further demonstrate these results, we also compute the
polaritonic potential energy surfaces of a molecule coupled to a
cavity [27], defined as (Ĥ (m) − T̂R)|Φ(R)⟩ = E(R)|Φ(R)⟩, where
the |Φ(R)⟩ is the polaritonic state for the hybrid system and E(R)
is the polariton potential energy surface [2,27]. Here, Ĥ (m) =

Ĥ
(2)
d·E for the “exact” result, and Ĥ (m) with Ĥ

(1)
p·A [Eq. (13a)], Ĥ ′(1)

d·E

[Eq. (13b)], and Ĥ
(1)
d·E [Eq. (13c)] for the mode truncation results.

We use the Shin–Metiu model molecular system [28], which
contains two fixed ions, and one moving electron and proton
(whose position is R), all interacting with each other through
modified Coulombic potentials. The details for the model as
well as numerical simulations are provided in Sections 3 and 4
of Supplement 1, respectively.

Figure 2 displays the various potential energy surfaces gener-
ated by various Hamiltonians, plotted as a function of the proton
coordinate, R. The upper panels of this figure also depict the
lowest electronic wavefunctions for the isolated matter (without

https://doi.org/10.6084/m9.figshare.19115528
https://doi.org/10.6084/m9.figshare.19115528
https://doi.org/10.6084/m9.figshare.19115528


Letter Vol. 47, No. 6 / 15 March 2022 / Optics Letters 1449

Fig. 2. Polariton potential energy surfaces at different level of the-
ories, for a Shin–Metiu molecular system coupled to a two-modes
optical cavity, with ω0 = 0.4eV and A0 = 0.15. The upper panels
visualize the lowest energy wavefunctions at three different pro-
ton positions: the donor configuration (R = −1.95); the equidistant
position (R = 0); and the acceptor configuration (R = 1.95). “Exact”
results refer to the eigenspectrum of Ĥ (2)

d·E.

coupling to the cavity) at three different locations of the proton:
the donor configuration minimum energy position (R = −1.95);
the equidistant position (R = 0); and the acceptor configuration
minimum energy position (R = 1.95). The results in Fig. 2 again
demonstrate the importance of a proper truncation of the DSE
in the dipole gauge Hamiltonian. With a coupling strength of
A0 = 0.15, the relative polaritonic energies (i.e., energy differ-
ences between states) at a given R is very close to the exact
results for Ĥ

′(1)
d·E . However, to accurately reproduce the exact

polaritonic potential energy surface, an R-dependent term would
have to be subtracted from the Ĥ

′(1)
d·E potential energy surfaces.

For this reason, it is especially pertinent to properly truncate the
Hamiltonian as done in Ĥ

(m)

d.E [Eq. (11)].
In conclusion, we present a new theoretical framework to

properly truncate the photonic degrees of freedom in cavity-
QED under the long-wavelength approximation. By first trun-
cating the photonic Hamiltonian and matter Hamiltonian in their
own Hilbert subspaces, and then performing unitary transfor-
mations using a properly projected PZW gauge transformation
operator [as outlined in Eqs. (5) and (6)], any gauge ambigui-
ties between the Coulomb and dipole gauges are resolved. This
principle allows us to construct a proper procedure for mode
truncation without introducing any ambiguities.
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