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Polariton induced conical intersection and berry
phase†

Marwa H. Farag,a Arkajit Mandala and Pengfei Huo *ab

We investigate the Polariton induced conical intersection (PICI) created from coupling a diatomic

molecule with the quantized photon mode inside an optical cavity, and the corresponding Berry Phase

effects. We use the rigorous Pauli–Fierz Hamiltonian to describe the quantum light-matter interactions

between a LiF molecule and the cavity, and use the exact quantum propagation to investigate the

polariton quantum dynamics. The molecular rotations relative to the cavity polarization direction play a

role as the tuning mode of the PICI, resulting in an effective CI even within a diatomic molecule.

To clearly demonstrate the dynamical effects of the Berry phase, we construct two additional models

that have the same Born–Oppenheimer surface, but the effects of the geometric phase are removed.

We find that when the initial wavefunction is placed in the lower polaritonic surface, the Berry phase

causes a p phase-shift in the wavefunction after the encirclement around the CI, indicated from the

nuclear probability distribution. On the other hand, when the initial wavefunction is placed in the upper

polaritonic surface, the geometric phase significantly influences the couplings between polaritonic states

and therefore, the population dynamics between them. These BP effects are further demonstrated

through the photo-fragment angular distribution. PICI created from the quantized radiation field has the

promise to open up new possibilities to modulate photochemical reactivities.

1 Introduction

Conical intersections (CIs) are ubiquitous in polyatomic molecules
and they are known to play an important role in the non-adiabatic
dynamics of photochemical reactions.1–9 At the vicinity of the CI,
the energy difference between adiabatic potentials is small and
eventually vanishes at the CI, resulting in a large non-adiabatic
coupling between the adiabatic states, and a singular non-adiabatic
coupling at the CI point. As a result, the Born–Oppenheimer
approximation breaks down6,10 and the non-adiabatic transitions
between electronic states are enhanced.11–13 CIs are known to play
a key role in the relaxation dynamics of most polyatomic molecules
and they provide pathways for an ultrafast population transfer
between electronic states.9,14–22 In addition, CIs introduce a non-
trivial geometric phase,23,24 commonly referred to as the Berry
phase,25 for electronic wavefunctions that causes a sign change of
the electron wavefunctions when the nuclei complete a closed path
around the CI.23,25–29 Both enhanced non-adiabatic transitions and

the geometric phase are attributed to as characteristic features of
the presence of CIs.8,27,28,30

In addition to the intrinsic CIs in polyatomic molecules, CIs
can also be created by either standing31,32 or running33–35 laser
waves in a diatomic molecule. This type of CIs are artificially
created through light-matter interactions, and are commonly
referred to as the light-induced conical intersection (LICI).31,32,36,37

For diatomic molecules, the angle between the molecular axis
and the polarization axis of the classical laser field gives rise to
a rotational motion which constitutes a new degrees of freedom
(DOF) that allows forming CIs. In polyatomic molecules, LICIs
can be formed even without rotation due to the presence of
several vibrational degrees of freedom.38 In contrast to the
field-free CIs where the position of the CI and the strength of
the non-adiabatic coupling vectors are inherent properties of a
molecule and non-trivial to manipulate, in the LICI, one can
easily modify the position of the LICIs and the non-adiabtic
coupling strength of the CIs by varying the parameters of light-
matter couplings, such as the frequency and the intensity of the
classical laser.

LICIs open up new directions in which one can modulate the
excited-states dynamics and the inherent physical properties of
molecules without modifying the structure of the molecules.
Thus, it is vital to reveal the characteristic features of these
LICIs. Previous theoretical studies, employing the classical
description of light, investigated the nature of the LICI in
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diatomic molecules34,35,39–44 and to what extent the geometric
phase of the LICI is similar to the natural CIs for polyatomic
molecule in a field free space.33,45–47 It has been demonstrated
that LICI strongly impact the spectroscopic and dynamical
properties of molecules, such as the molecular alignment, the
photodissociation probability, molecular spectra, and the
angular distribution of the dissociation photofragment.

Coupling electronic states of molecules or nanoparticles to
the quantized radiation field inside an optical cavity creates a
set of new photon-matter hybrid excitations, so-called
polaritons.48–51 As opposed to atoms, the vibrational modes
of molecules provide new degrees of freedom (DOF) to mediate
the quantum transitions between the electronic and photonic
states, offering new paradigms for chemical transformations.
For example, strong couplings between molecules and an
optical cavity has yielded great promise to manipulate chemical
reactions in a transformative way.48–56 Through quantum light-
matter interactions, the curvatures of these polaritonic
potential energy surfaces can be engineered by tuning the
frequency of the quantized radiation field53,57,58 or the coupling
strength of light-matter interactions,57,58 thus opening up new
possibilities to control chemical reactions by changing the
fundamental properties of the quantized cavity field.53,57,59,60

The molecular rotations relative to the cavity polarization
direction play a role as the tuning mode of the PICI, resulting in
an effective CI even within a diatomic molecule. We referred to
this as polariton induced conical intersection (PICI).61–63 The PICI
in the diatomic molecules have been theoretically investigated as
well.61,62,64–66 These theoretical works reported a significant effect
on the spectroscopic and dynamical properties of diatomic
molecules in optical cavities. In particular, ref. 62 provides a
theoretical study of coupling a LiF molecule within an optical
cavity, and investigates the influence of the PICI on the polariton
quantum dynamics of the light-matter hybrid system.
Unfortunately, that work is based on the model Hamiltonian that
ignores the dipole self-energy (DSE). It is well known that in the
molecular cavity QED, DSE is a necessary component for achieving
gauge invariant dynamics.67–70 Without DSE, the polariton
potential energy surface is not properly bounded, leading to
incorrect polariton dynamics.67,68

In this work, we use the rigorous Pauli–Fierz Hamiltonian to
describe the quantum light-matter interactions between a LiF
molecule and the cavity, and exact quantum dynamics propagation
to investigate the polariton quantum dynamics of the hybrid
system. We use the theoretical approach developed in ref. 71 to
investigate the intrinsic geometric phase effects by forming
polaritons. This approach eliminates the role of the BP effects
in the dynamics and does not change the shape of the adiabatic
potential energy surface, providing a rigorous theoretical
framework to investigate the intrinsic geometric phase effects
compared to the previously used 1D model that completely
eliminates the dynamical propagation along the rotational DOF
of the molecule.62 We find that when the initial wavefunction is
placed in the lower polaritonic surface, the Berry phase causes a
p phase-shift in the wavefunction after the encirclement around
the CI, indicated from the nuclear probability density and the

photo-fragment angular distribution. We further investigated
the influence of the PICI on the excited state polaritonic
dynamics of the hybrid system. These BP effects from PICI
demonstrate the new possibilities to modulate photochemical
reactivities using the molecule-cavity interactions.

2 Theory
2.1 The Pauli–Fierz Hamiltonian

To investigate the light-induced conical intersection in the
framework of cavity quantum electrodynamics (C-QED), we
begin by deriving the quantum light–matter interaction
Hamiltonian.

The matter Hamiltonian and the corresponding total dipole
operator are defined as follows

ĤM ¼ T̂þ V̂ðx̂Þ ¼
X
j

1

2mj
p̂
2
j þ V̂ðx̂Þ; m̂ ¼

X
j

zj x̂j ; (1)

where j is the index of the jth charged particle (including all
electrons and nuclei), with the corresponding mass mj and
charge zj. In addition, x̂� {x̂j} = {R̂,r̂} with R̂ and r̂ representing the
nuclear and electronic coordinates, respectively, p̂ � {p̂R,p̂r} � {p̂j}
is the mechanical momentum operator as well as the canonical
momentum operator, such that p̂j = �ih�=j. Further, T̂ = T̂R + T̂r is
the kinetic energy operator, where T̂R and T̂r represent the
kinetic energy operator for nuclei and for electrons, respectively,
and V̂(x̂) is the potential operator that describes the Coulombic
interactions among electrons and nuclei.

The cavity photon field Hamiltonian under the single mode
assumption is expressed as

Ĥph ¼ �hoc âyâþ 1

2

� �
¼ 1

2
p̂2c þ o2

c q̂
2
c

� �
; (2)

where oc is the frequency of the mode in the cavity, â† and â are

the photonic creation and annihilation operators, and q̂c ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
�h=2oc

p
ðây þ âÞ and p̂c ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�hoc=2

p
ðây � âÞ are the photonic

coordinate and momentum operators, respectively. Choosing
the Coulomb gauge, =�Â = 0, the vector potential becomes purely
transverse Â = Â>. Under the long-wavelength approximation,

Â ¼ A0 âþ ây
� �

¼ A0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2oc=�h

p
q̂c; (3)

where A0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�h

2oce0V

r
ê; with V as the quantization volume

inside the cavity, e0 as the permittivity, and ê is the unit vector
of the field polarization.

The light–matter interaction is described by using the mini-
mal coupling QED Hamiltonian (the ‘‘p�A’’ form) is expressed as

ĤC ¼
X
j

1

2mj
ðp̂j � zjÂÞ2 þ V̂ðx̂Þ þ Ĥph; (4)

We further introduce the Power–Zienau–Woolley (PZW)
gauge transformation operator72,73 as

Û ¼ exp � i

�h
m̂ � Â

� �
¼ exp � i

�h
m̂ � A0 âþ ây

� �� �
; (5)
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or Û ¼ exp � i

�h

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2oc=�h

p
m̂A0q̂c

� �
¼ exp � i

�h

P
j

zjÂxj

 !" #
. Recall

that a momentum boost operator Ûp ¼ e
�
i

�h
p0 q̂

displaces p̂ by
the amount of p0, such that ÛpÔ(p̂)Û†

p = Ô(p̂ + p0). Hence, Û is a
boost operator for both the photonic momentum p̂c by the

amount of
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2oc=�h

p
m̂A0; as well as for the matter momentum p̂j

by the amount of zjÂ.
The QED Hamiltonian under the dipole gauge (the ‘‘d�E’’

form72,74) can be obtained by performing the PZW transformation
on ĤC as follows

ĤD ¼ ÛĤCÛ
y ¼ ĤM þ �hoc âyâþ 1

2

� �
þ iocm̂ � A0ðây � âÞ

þ oc

�h
ðm̂ � A0Þ2;

(6)

and the last three terms of the above equation are the results of
ÛĤphÛ†. More specifically, the last term in eqn (6) is commonly
referred to as the Dipole self-energy (DSE).

Using q̂c and p̂c, one can express ĤD as follows

ĤD ¼ ĤM þ
1

2
o2

c q̂
2
c þ

1

2
p̂c þ

ffiffiffiffiffiffiffiffi
2oc

�h

r
m̂A0

 !2

; (7)

The widely used Pauli–Fierz (PF) QED Hamiltonian in the
dipole approximation75–77 in recent studies of polariton chemistry
can be obtained by using the following unitary transformation

Ûf ¼ exp �ip
2
âyâ

h i
: (8)

Note that Ûfâ†âÛ†
f = â†â, ÛfâÛ†

f = iâ, and Ûfâ†Û†
f = �iâ†,

applying Ûf on ĤD, we have the PF Hamiltonian as follows

ĤPF ¼ ÛfĤDÛ
y
f

¼ ĤM þ �hoc âyâþ 1

2

� �
þ ocm̂ � A0ðâþ âyÞ þ oc

�h
ðm̂ � A0Þ2

� ĤM þ âyâþ 1

2

� �
�hoc þ

ffiffiffiffiffiffiffiffi
�hoc

2

r
ðây þ âÞk � m̂þ 1

2
ðk � m̂Þ2;

(9)

where we have introduced the short-hand notation

k ¼

ffiffiffiffiffiffiffiffiffi
1

e0V

s
ê � lê: (10)

In the numerical simulation of this paper, we denote the

molecule-cavity coupling strength as l ¼ k �
ffiffiffiffiffiffiffiffi
2

�hoc

r
; where k is a

coefficient in the unit of A0oc, which is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�hoc=2e0V

p
. Further,

one can clearly see that the dipole self-energy term
1

2
ðk � m̂Þ2 is a

necessary component in ĤPF, which is originated from ÛĤphÛ†

in ĤD and preserved from ĤD to ĤPF under the transformation
of Ûf (eqn (8)). Thus, without DSE, the gauge invariance

between the p�A and the d�E form of the Hamiltonian (including
HD and HPF) will explicitly breakdown.67,68,78,79 This is a well-
known result in QED as well as revisited in the current
literature.68,70,78–80

2.2 Model system

For the molecular Hamiltonian ĤM, we use a well-parameterized
diabatic model of the LiF molecule81 to investigate the molecule-
cavity QED enabled new phenomena. The model contains two
diabatic states, the ionic state |Ii and the covalent state |Ci, and
ĤM in the |Ii,|Ci electronic subspace is expressed as

ĤM ¼ � �h2

2m0
r2

R þ
L̂
2

y

2m0R̂2

 !
� 1̂e þ V̂ IðRÞ V̂ ICðRÞ

V̂CIðRÞ V̂CðRÞ

� �
(11)

where 1̂e = |CihC| + |IihI| is the identity operator in electronic

subspace, R is the dissociation coordinate, L̂
2

y ¼

��h2
1

sin y
@

@y
sin y

@

@y
; is the angular momentum operator82 of the

LiF molecule, and m0 is the reduced mass of the LiF molecule.
Explicitly diagonalizing the matrix of V̂ in eqn (11) provides the
adiabatic energy as well as two adiabatic states, |g(R)i and |e(R)i,
which parametrically depend on nuclear coordinates.

Under the diabatic representation, the dipole operator l̂ is
expressed as

l̂ = lI(R)|Ii hI| + lC(R)|CihC|. (12)

Note that {I,C} are eigenstates of l̂ in the truncated electronic
subspace, which are commonly referred to as the Mulliken-
Hush diabatic states,81,83–86 and are commonly used as
approximate diabatic states that are defined based on their
characters (covalent and ionic). In this work, we explicitly
assume that |Ii and |Ci are strict diabatic states, hence
hC|rR|Ii = 0 (they are R-independent).

The cavity photon mode and the molecule are coupled
through the k�l̂ term in eqn (9), which characterizes the light-
matter coupling vector oriented in the direction of polarization
unit vector ê. We denote the angle between the dipole vector l̂

and ê as y, and m̂ = |l̂|, hence the light-matter coupling can be
expressed as

k�l̂ = lm̂cos y. (13)

The Hamiltonian in eqn (9) can be recast as

ĤPF ¼ ĤM þ âyâþ 1

2

� �
�hoc þ

ffiffiffiffiffiffiffiffi
�hoc

2

r
ðây þ âÞlm̂ cos y

þ 1

2
ðlm cos yÞ2: (14)

The polariton state |a(X)i is defined through the following
eigen equation

Ĥpl|a(X)i � (ĤPF � T̂)|a(X)i = Ea(X)|a(X)i, (15)

where the nuclear coordinate is X � {R,y}, the polariton
Hamiltonian is expressed as Ĥpl = ĤPF � T̂, and the T̂ is the
vibrational and rotational nuclear kinetic energy of the
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molecule in eqn (11). Note that |a(X)i is not necessarily a single
valued vector. The polariton potential energy surface Ea(X) is
the eigenvalue of Ĥpl that parametrically dependents on
nuclear configuration X. This equation is numerically solved
by using the diabatic-Fock basis, {|Ii# |ni,|Ci# |ni}, with the
Fock states of the radiation mode (vacuum photon field) {|ni},
i.e., the eigenstate of (â†â + 1

2)h�oc.
In this paper, we did not explicitly consider the cavity loss.

The time scale of the PICI dynamics is ultra-fast (B100 fs), and
the state-of-the-art distributed Bragg reflector (DBR) Fabry-Pérot
(FP) cavity87 can already sustain the photonic life time longer than
that. Explicitly including the cavity loss into the simulation is also
theoretically straightforward.87,88 Further, we acknowledge that
achieving the ultra-strong coupling (commonly defined as meg�A0

4 0.1) is still a challenging task. However, it is possible to achieve
it experimentally with a Fabry-Pérot cavity.89 Thus, besides the
pure theoretical value to explore the PICI effects,61,66 our
theoretical simulation is also within the reach of the near future
experimental setup. Another strategy that could increase light-
matter coupling strength62 is to excite the system into the |g,ni
states, where the overall coupling strength scales with

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1
p

; due
to the presence of the (â† + â) term in eqn (9). This helps to
achieve a more efficient PICI,62 although we did not explore this
possibility in the current study.

2.3 Polariton berry phase

The Berry phase,25,90 also known as the geometrical phase, is
the sign change of the electronic adiabatic wavefunction when
the nuclei follow a closed path around the CI. This sign change
is canceled out by a corresponding sign change in the boundary
condition of the nuclear wavefunction, ensuring that the total
wavefunction is single valued. The Berry phase is one of the
main characteristic features of the CI and can be seen as a
fingerprint for the presence of CIs.27,47,91,92 Here, we investigate
the Berry phase signatures for the PICI created by the quantized
radiation field of the cavity.

To simplify our discussion of BP in molecular cavity QED, let
us restrict to the subspace of {|g(X),1i,|e(X),0i}, where the
nuclear coordinate is X � {R,y}. The g and the e correspond
to the molecular adiabatic electronic states of LiF, while 0 and 1
correspond to the Fock states of the cavity photon mode. This
effectively confined the system within the Jaynes-Cummings
(JC) model93 subspace. We emphasize that this is only used for
analyzing the BP effect, whereas all of the numerical simulations
of the polariton quantum dynamics are performed using the ĤPF

within a large enough basis to converge the results. In this
subspace, the two photo-dressed adiabatic states can be viewed
as diabatic states, because hg,1|=X|e,0i = hg|=X|ei�h1|0i = 0 due
to the orthogonality among vacuum’s Fock states. Within the
subspace, the polaritonic states can be analytically expressed as
follows

|+,0(X)i = sinj(X)|g,1i + cosj(X)|e,0i, (16)

|�,0(X)i = cosj(X)|g,1i � sinj(X)|e,0i, (17)

with the mixing angle

jðXÞ ¼ 1

2
arctan

2hg; 1jĤplje; 0i
Eg1ðXÞ � Ee0ðXÞ

; (18)

where hg; 1jĤplje; 0i ¼
ffiffiffiffiffiffiffiffi
�hoc

2

r
h1jðây þ âÞj0i � hgjk � m̂jei; and the

energies are Eg1(X) = hg,1|Ĥpl|g,1i and Ee0(X) = he,0|Ĥpl|e,0i.
When the nuclear coordinates complete a closed path around
the CI point, varying j(X) from 0 to p causes the polariton
adiabatic wavefunctions |�,0(X)i and |+,0(X)i alter their sign,
causing the accumulation of the geometrical phase. As a result,
the electronic wavefunction becomes double valued.

The Berry phase is defined as10,27,94

gaðCÞ ¼ i

þ
C

haj=X jaidX ¼ �i
ð
S

=� haðXÞj=XjaðXÞidS (19)

where |ai is the single valued polariton adiabatic wavefunction.
Note that by changing line integral to the surface integral during
the second equality of eqn (19), one no longer requires the
wavefunction to be a single valued function,25 because the
derivative is directly acting on the Hamiltonian operator instead
of the wavefuntion. Hence, all |a(X)i from eqn (15) can be used.
On the other hand, one can define the single-valued polariton
wavefunction as27 |ai = e�ij(X)|a(X)i, and the berry phase becomes

gaðCÞ ¼ i

þ
C

haðXÞjeijðXÞ=Xe
�ijðXÞjaðXÞidX

¼
þ
C

=XjðXÞdXþ i

þ
C

haðXÞj=XjaðXÞidX

¼
þ
C

=XjðXÞdX ;

(20)

where we used the fact that ha(X)|=X|a(X)i = 0 because |a(X)i is a
pure real basis. This is because that =Xha(X)|a(X)i = =X�1 = 0 hence
h=Xa(X)|a(X)i + ha(X)|=Xa(X)i = 0. Also note that h=Xa(X)|a(X)i =
ha(X)|=Xa(X)i*, hence leading to the results that ha(X)|=X|a(X)i = 0
if it is pure real.

With eqn (20), one can numerically evaluate the Berry phase
by line integral of =Xj(X)dX. Choosing a particular path of
encirclement that centered at (R0,y0), with a radius r and
encirclement angle f depicted in Fig. 1c, such that

R = R0 � rcosf; y = y0 + rsinf. (21)

The Berry phase along this encircled path is27

gaðC;XÞ ¼
þ
C

=XjðXÞdX ¼
þ
C

djðXÞ ¼ jðfÞj2p0 ¼ p; (22)

suggesting that there is an additional p phase shift and can be
calculated from the difference of the mixing angle j(X) (see
eqn (18)) at the beginning and at the end of the closed path.27,33

Fig. 1a presents the schematic illustration of the LiF molecule
couple to the cavity, with y as the angle between the polarization
direction of the cavity photon mode and the direction of the
molecular dipole moment.

Fig. 1b presents the polariton potential energy surface (PES)
Ea(X) obtained from diagonalizing the matrix of Ĥpl in eqn (15),
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with ten Fock state employed to achieve convergence. As one can
see, the polaritonic surfaces give rise to a conical intersection
(CI) at R E 5 a.u. and cos y = 0(y = p/2). This type of conical
intersection is referred to as the Polariton Induced Conical
Intersection (PICI), arising due to the rotational DOF of the
diatomic molecule coupled to the radiation field.

Fig. 1c presents three different enclosing path in the nuclear
configuration space X = {R,y}, where only one path (red) is
looped around the PICI. Fig. 1d presents the value of the mixing
angle j(f) (eqn (18)) at a particular value of the encirclement
angle f along the path presented in Fig. 1c with the same color-
coding. The Berry phase along a path is expressed as

gaðC;R; yÞ ¼
Ð 2p
0 =XjðXÞdX ¼ jð2pÞ � jð0Þ; as a function of

the encirclement angle f. As shown in Fig. 1d, following a full
circle around the PICI (red), the initial and final j(R,y) is
changed by p. On the other hand, when the path does not
encircle around the PICI, the difference between the initial and
final j(R,y) is zero. In the former case, the polariton wavefunctions
are double valued, whereas in the latter case, the polariton wave-
functions are single valued.

Further analysis is performed by artificially removing the
Berry phase using the approach described in ref. 71. This
approach, which is referred to as the non-BP model,71

eliminates the berry phase by using the absolute value of the
coupling |hg,1|Ĥpl|e,0i| instead of its original expression
hg,1|Ĥpl|e,0i inside the mixing angle j (see eqn (18)). Using
this approach, one can remove the presence of the Berry phase,
without changing the original adiabatic potential. This
approach also explicitly propagates the dynamics along the
rotational DOF governed by L̂y, as opposed to simply ignoring it
(such as in the case of the 1D model62). This novel non-BP
approach thus provides a theoretically rigorous way to demonstrate
the genuine and intrinsic effects of the CI.71 Here, we adapt this
novel theoretical approach to investigate the intrinsic effects of
cavity-induced GP.

In Fig. 1c, we consider the encirclement path (red circle),
and the transformation angle j(f) for the full PF Hamiltonian
and the non-BP model are provided in Fig. 1d. As one can clear
see, when the Berry phase is removed in the non-BP model
(magenta curve in Fig. 1d) the difference between the initial and
final g(R,y) is zero. Consequently, the corresponding polariton
wavefunctions in eqn (16) and (17) remain single-valued.
Therefore, the CI created by the quantized cavity filed gives rise
to a Berry phase with a p phase shift (red curve in Fig. 1d),
similar to the Berry phase of the CI in molecules27 and the CI
created by the classical laser field in the Floquet picture.33,71,95

We emphasize that the PICI is mathematically isomorphic to the
molecular CI or LICI. However, the novelty of the PICI lies in the
new concept of using molecular cavity QED (under the low
number of photon regime) to engineer artificial CIs in
molecule-cavity hybrid systems, as opposed to shining intense
lasers in the case of LICI. On the other hand, we do acknowledge
that the presence of the PICI discussed in the work (as well as in
previous work61,62) is based upon the long-wavelength
approximation (or the electric-dipole approximation). While the
neglected terms in the multi-polar expansion of the multipolar
gauge Hamiltonian may be small, they might break the strict
degeneracy. Beyond long-wavelength approximation, the light–
matter interaction term iocl̂�A0(â†�â) (the third term in eqn (6)) is

expressed as96 �1

e0

Ð
dr3P?ðrÞ �D?ðrÞ; where D>(r) = e0E> + P> is

the transverse displacement field and the P>(r) is the transverse
component of the polarization field of the molecular system.
Future investigations will explore the possibilities of finding a
certain y, such that

Ð
dr3P?ðrÞ �D?ðrÞ ¼ 0; giving rise to a conical

intersection even beyond the long-wavelength approximation. On
the other hand, the proposed photofragment angular distribution
measurements in this work (see Fig. 5 and 8) can be a useful
measure to determine whether the CI exists in the realistic
experimental setup.

2.4 Computational details

To solve the time-dependent Schrödinger equation of the
molecule-cavity hybrid system, the dynamics is propagated with
the numerically exact method based on the discrete variable
representation (DVR) approach.10,82 The angular coordinate is
represented by the Legendre polynomial82 Pm

j (cos y) with m = 0
and j = 0,1,. . .,Ny � 1, where the number of the basis function
Ny equals 101. The dissociation coordinate of LiF, on the other
hand, is represented by the sin-DVR82 with number of basis
function NR equals 1170 for the range of 1.8 r R r 60 (a.u.).
The electronic and photonic DOFs are represented by using the
diabatic-Fock basis, {|Ii# |ni,|Ci# |ni}, with |ni as the Fock
states of the radiation mode. The equation of motions are
solved using the fourth-order Runge–Kutta integrator and the
time step Dt = 0.005 fs. All the simulations are carried out by
employing the Pauli–Fierz Hamiltonian.

The initial wavefunctions are prepared as the product of the
ground vibrational state |ni of the LiF located around R E 3 a.u.
on the |Ii electronic state (ground electronic states), with either

Fig. 1 (a) The angle between the polarization direction of the cavity
photon mode and the direction of the molecular dipole moment. (b)
The polaritonic potential energy surface (|�,0i and |+,0i) as a function of
the dissociation coordinate (R) and the angular coordinate (y) for a cavity
coupling l ¼ 0:04

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2=�hoc

p
(k = 0.04 a.u.). (c) The contours used in the Berry

phase calculations. (d) The transformation angle j (eqn (18)) as a function
of the encirclement angle f.
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J = 0 or J = 1 quantum number for the rotational DOF. The
wavefunction with J = 0 is symmetric, while the wavefunction
with J = 1 is asymmetric with respect to y = p/2 (see Fig. 3a
and c). The initial wavefunction is then placed either in the |I,1i
state or the |C,0i surface for the subsequent propagation. When
the wavepacket is placed in the |I,1i surface, we apply a shift of
the wavefunction along the dissociation coordinate by 0.8 a.u.
The wavefunction is centered at R E 2.2 a.u. instead of 3.0 a.u.
along the dissociation coordinate. This value is chosen to
overcome an initial barrier in the |I,1i surface to facilitate the
dynamical evolution of the hybrid system.

To analyze the effect of the Berry phase on the calculated
quantities, we compare the results obtained from the 2D model
with two other models where the effect of the CI is theoretically
eliminated. The first model is referred to as the one-
dimensional (1D) model,34 in which the angular momentum
operator is set to be zero (L̂y = 0 in eqn (11)). As a consequence,
there is no dynamical evolution along the angular coordinate
and y is treated as a parameter in the potential. The second
model is referred to as the non-BP model, where the Berry
phase is artificially removed by replacing l̂�l̂ by its absolute
value.71 As a consequence, the originally double-valued
polariton wavefunction is forced to be single-valued.71

3 Results and discussion

Fig. 2 presents the potential energy surface (PES) of the LiF
model system, as well as the polariton quantum dynamics
without considering the rotational DOF (by setting L̂y

2 = 0 in
eqn (11)). Fig. 2a presents the diabatic potentials energy surface
Va(R) of the |Ii state (red) and |Ci state (blue) in a LiF molecule,
respectively. The crossing of these two diabatic curves occur at
R = R0 E 13.5 a.u., forming an avoided crossing between the
adiabatic states |gi and |ei (not shown here). The diabatic
coupling is VIC(R) (gold line). Fig. 2e and f presents the exact
polariton quantum dynamics of the model system (e) with
dipole self energy (solid lines) and (f) without dipole self energy
(DSE) term. The DSE is the last term in eqn (9) in the PF
Hamiltonian. Ignoring DSE gives incorrect polariton surfaces
and also incorrect polariton quantum dynamics, hence, leading
to incorrect polariton quantum dynamics, such as missing the
|G,0i population.

Fig. 2b presents the matrix elements of l̂ in both the diabatic
(solid lines) and the adiabatic (dashed lines) representations.
The ionic permanent dipole (solid red) lI(R) increases linearly
with R, while the covalent permanent dipole (solid blue) lC(R) E
0, as one expects. The adiabatic states switch their characters
around R0, as a result, the adiabatic permanent dipole switches
in that region, and meg(R) peaks at R0 as the two diabatic states
couple strongly around R0. Fig. 2c and d presents the polariton
potential energy surface Ea(R) defined in eqn (15), (c) with the

dipole self-energy (DSE)
1

2
ðl̂ � m̂Þ2 term (see eqn (9)) and (d)

without considering DSE. Note that even though we label these
polariton states with a ‘‘photon number’’ (such as |�,0i), they
are the eigenstate of Ĥpl. Here, a strong light-matter coupling

l ¼ 0:04
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2=�hoc

p	 

is used and the frequency of the cavity

photon mode is 3.995 eV.
Unlike a previous work on LiF coupled to the quantized

cavity field,62 we explicitly account for the dipole self-energy to
compute the full Hamiltonian for the LiF in an optical cavity.
We find that under a moderate and a strong light-matter
coupling l, excluding the DSE results in an incorrect potential
energy surface. As we can clearly see, without the DSE, the
ground state is no-longer bonded and becomes dissociative at a
large nuclear distance.67,68,97

Fig. 3 presents the nuclear probability density (NPD) of the
|�,0i state before and after the encirclement around the PICI
with the full 2D model that explicitly consider the rotational
DOF. The initial rotational wavefunction is chosen as (a) and (b)
J = 0 and (c) and (d) J = 1. The initial excitation places the
wavepacket on the lower polariton surface |�,0i, and the
polariton dynamical evolve predominately on the same surface
(through adiabatic dynamical evolution). One notices that both
J = 0 and J = 1 rovibronic wavefunctions alter their symmetries
with respect to y = p/2 after encircling around the CI. For J = 0
(Fig. 3a and b), the initial polariton wavefunction is symmetric
with respect to y = p/2 before the encirclement (Fig. 3a), and it
becomes asymmetric after passing around the CI (Fig. 3b). This
is caused by a destructive interference at y = p/2 due to the BF
accumulation for the clock-wise and counter clock-wise path,
manifesting into a node in the NPD. On the contrary, in the J = 1

Fig. 2 (a) The diabatic potential energy surface of the LiF as a function of
the dissociataion coordinate (R). (b) The LiF permanent and transition
dipole moment in the diabatic and adiabatic representation. (c) The
polaritonic potential energy surface with dipole self energy (DSE) term
and (d) without DSE term for a cavity coupling l ¼ 0:02

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2=�hoc

p
. (e) The

time evolution of the polaritonic state population with DSE term and (f)
without DSE term.
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case (Fig. 3c and d), the initial wavefunction is asymmetric with
respect to y = p/2 (Fig. 3c), and it becomes symmetric after
encircling around the CI (Fig. 3d). This is caused by a con-
structive interference at y = p/2. Note that a similar feature of
NPD has been discovered in the study of splitting one existing
electronic CI into two through molecule-cavity interactions.63

Fig. 4 presents the NPD by theoretical eliminating the effects
of BP, using either the non-BP model in panel (a) and (c) or the
1D model in panel (b) and (d). The former neglect the effect of
the Berry phase, whereas the latter prevents the dynamics along
the angular coordinate. To illustrate how the character of the
Berry phase is manifested in the wavefunction dynamics, we
compare the NPD obtained from these two models with the
NPD obtained with the full 2D model in Fig. 3. Unlike the 2D
model, the symmetry of the initial wavefunction in the non-BP
model do not change after passing around the CI. In particular,
the rovibrational wavefunction with J = 0 remains symmetric after
it passing the CI (Fig. 4a) and the rovibrational wavefunction J = 1
stays asymmetric with respect to y = p/2 after encircling around
the CI (Fig. 4c). Similarly, in the 1D model (Fig. 4b and d),we
notice both rovibrational wavefunction with (b) J = 0 and (d) J = 1
have a zero amplitude at y = p/2. In the 1D model, the angular
momentum operator is set to be zero, hence the dynamics along
the angular coordinate y is not permitted. As a result, the
rovibrational wavefunction does not encircle around the CI. This
explains the absent of amplitudes at y = p/2 for both J = 0 and J = 1
cases in the 1D model, due to the fact that the angler DOF is
treated as a static parameter in the model. These results further
corroborate that the NPD pattern observed in the 2D model in

Fig. 3 is a direct signature of the Berry phase due to the
encirclement of the wavefunction around the PICI.

To further interpret different interference patterns of the
wavefunction after the encirclement around the CI in the 2D
model and the non-BP model, we adapt the Feynman path
unwinding approach of Althorpe and co-workers29,98 which can
be directly applied to the system confined to the lower adiabatic
surface. Due to the presence of CI, there are inaccessible region
in the space, resulting in multiply connected space in the language
of topology. As a consequence, the paths around the CI can be
classified according to the number of loops around the CI.98

All Feynman Paths can be group into two distinct classes, one
corresponds to all even number of loops and another with all
odd number of loops. The even loops (e) correspond to the
Feynman paths encircling clockwise around the CI, whereas the
odd loops (o) correspond to the Feynman paths encircling
counterclockwise around the CI.29 Althorpe and co-workers
demonstrate that the effect of the geometric phase is to change
the relative sign between the even (e) and odd (o) loops on the
time evolution operator as K(X,X0|t) = Ke(X,X0|t) � Ko(X,X0|t),
whereas without considering the geometric phase, the propagator
is K̃(X,X0|t) = Ke(X,X0|t) + Ko(X,X0|t), X0 denotes the initial nuclear
configuration and X refers to the nuclear configuration at time t.
The kernel operator propagates the initial wavefunction
C(X0,0) and gives29,98 CeðX ; tÞ ¼

Ð
dX0KeðX ;X0jtÞCðX0; 0Þ and

CoðX ; tÞ ¼
Ð
dX0KoðX ;X0jtÞCðX0; 0Þ. The final wavefunction

after the encirclement can therefore be expressed as

CðX ; tÞ ¼ 1ffiffiffi
2
p CeðX ; tÞ �CoðX ; tÞ½ � (23)

~CðX ; tÞ ¼ 1ffiffiffi
2
p CeðX ; tÞ þCoðX ; tÞ½ � (24)

Fig. 3 The nuclear probability density obtained from the 2D model with
the initial excitation to the the lower polariton state |�,0i. Left: Before the
encirclement (t = 0 fs) and right: after the encirclement (t = 134 fs) for the
initial rotational quantum number J = 0 (a and b) and J = 1 (c and d).

Fig. 4 The nuclear probability density of the |�,0i state obtained from the
non-BP and 1D models at t = 134 for the rovibrational wavefunction J = 0
(a and b) and J = 1 (c and d).
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where C(X,t) and ~C(X,t) are the wavefunctions obtained with
geometric phase and without geometric phase, respectively.
Eqn (23) and (24) indicate that explicitly consider the geometric
phase alters the interference patterns. These patterns of the
wavefunctions obtained from the Feynman path theory are
consistent with the NPD obtained from the 2D and non-BP
models in Fig. 3 and 4, confirming that the difference between
the NPD obtained from the 2D model and the non-BP model is a
consequence of the Berry phase.

We further compute the photofragment angular distribution
(PAD) for the two rovibrational wavefunctions J = 0 and J = 1
from 2D, non-BP, and 1D models. The PAD is defined as34

PðyÞ ¼
ð1
0

hCg0ðtÞjYðR� RDÞjCg0ðtÞidt; (25)

where Y is the Heaviside step function, and RD = 19.0 a.u. is the
starting point of the dissociation, |Cg0(t)i = hg,0|C(t)i is the
time-dependent polariton wavefunction projected on the |g,0i
surface. The PAD provides details about the direction in which
the photodissociation occurs. Fig. 5 summarizes the results of
the PAD obtained from 2D, non-BP, and 1D models for J = 0 and
J = 1. This quantity has been experimentally measured in a
recent work of the light-induced conical intersection for a H2

+

molecule coupled to an intense laser field.37

Fig. 5 presents the angle-resolved photo-dissociation
probability of the LiF occurs, where y = 0 or y = p represent
directions nearly parallel to the polarization axis of the cavity,
and y = p/2 represents a direction perpendicular to the
polarization axis of the cavity. The behavior of the PAD at the
perpendicular orientation y = p/2 is different for each model.
More specifically, in the 2D model (Fig. 5a), we observe a local
minimum at y = p/2 for J = 0 (blue), and a local maximum for
J = 1 (red). These results are in contrast to those obtained from
the non-BP model (Fig. 5b) in which the Berry phase is absent.
In the non-BP model, we observe a local maximum for J = 0 (blue)
and a local minimum (red) for J = 1 at y = p/2. Importantly, we
find that there is a p phase-shift at y = p/2 between the PAD
obtained from the 2D model and non-BP models. This pattern at
y = p/2 is a consequence of the Berry phase. On the other hand,
in the 1D model (Fig. 5c), both rovibrational wavefunctions with
J = 0 and J = 1 exhibit a local minimum at y = p/2. This is because
the dynamics along the angular coordinate is not permitted in
the 1D model. Notably, the PAD obtained from the 2D, non-BP,
and 1D models are consistent with the results of NPD presented
in Fig. 3 and 4. The results obtained above suggest that by
comparing the PAD for J = 0 and J = 1 molecular species in
directions nearly perpendicular to the polarization axis of the
cavity photon mode, one can probe the Berry phase of the PICI in
diatomic molecules. This findings are reminiscent of a previous
work investigating H2

+ molecule37 or D2
+ molecule coupled to an

intense classical laser field.46

So far, we have discussed the wavefunction dynamics in the
lower polaritonic surface |�,0i and how the Berry phase
manifest into the polariton quantum dynamics. We further
investigate the polariton dynamics with an initial excitation
onto the upper polariton surface |+,0i. Unlike the dynamics in

the lower polaritonic surface where the region surrounding the
CI is inaccessible, when initially excited to the upper polaritonic
surface, this region of space is now accessible due to the funnel-
like shape of the CI. Moreover, the polariton states near the CI
become nearly degenerate, causing a significant population
transfer between the the upper |+,0i and the lower |�,0i
polariton state. From Fig. 1b, one can predict that after a vertical
excitation to the upper polaritonic surface |+,0i, the initial
wavefunction evolves from the Franck–Condon point toward
the CI. During this time-evolution, the wavepacket splits into
several parts. One part of the wavepacket passes through the CI
to the lower polaritonic surface |�,0i. The other part of the
wavepacket circles around the CI and remains in the upper
polaritonic surface, oscillating back and forth between the initial
and final nuclear configurations on the upper polaritonic
surface. During these oscillations, the wavepacket gradually
passes through the CI to the lower polaritonic surface. Note that
part of the wavefunction that moves to the lower polaritonic
surface is located to the left of the CI. This part of the
wavefunction in the lower polaritonic surface adds more
complexity to the wavefunction. This is because in addition to

Fig. 5 The normalized photofragment angular distribution obtained from
(a) 2D model, (b) non-BP model, and (c) 1D model for the rovibrational
wavefunction j = 0 and j = 1.
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the ability of the wavefunction to encircle around the CI in the
lower surface, it has enough energy to access point along the CI
and passes to the upper polaritonic surface. Because of the
complexity of the dynamics with an initial excitation on
the upper polaritonic surface, it is difficult to investigate the
symmetry of the wavefunction to analyze the Berry phase effect
as explained for the lower polaritonic surface. Alternatively, we
analyze the effect of the Berry phase using the time-dependent
quantities.99

Fig. 6 presents the population dynamics of the upper |+,0i
and the lower |�,0i polariton states as well as the ground state
|g,0i of the molecule-cavity hybrid system, obtained from the
2D model (red), the non-BP model (gold), and 1D model (blue),
with the initial rotational quantum number J = 0 (left) and J = 1
(right). In general, we observe that the results with the J = 0 and
J = 1 are qualitatively similar. By comparing the polariton
populations obtained from the 2D model and the 1D model,
we find that the dynamics for both models are similar at an
early time and then deviating at a later time. This is not
surprising because the 2D model system does not significantly
rotate during this early time dynamical evolution (see Fig. S1
in the ESI,† which presents the degree of the alignment of the
LiF as a function of time). After this early time scale (E25 fs),
the rotation of the molecule plays a significant role and the
two models predicts different results. In the 1D model, the
polariton wavefunction was not propagated along the angular
coordinate y to reach the CI region (where the magnitude of the
population transfer is the largest due to nearly degenerate
polariton energy gap), and therefore, the population transfer
from the upper to the lower polaritonic surface is not as
significant as the 2D model. This explains why the population

transfer magnitude from the upper polaritonic state in the 1D
model is smaller than that in the 2D model.

On the other hand, by comparing the non-BP model with the
2D model, we find that the population transfer from the upper
polaritonic state is faster in the non-BP model than that in the
2D model. A possible explanation for these results can be
rationalize from the diabatic picture and the symmetry along
the angular coordinate y (the coupling coordinate)46,71 as
follows. In the 2D model, the two surfaces |e,0i and |g,1i are
coupled through an odd function k�l̂ = lm̂cos y along the
angular coordinate y (where the sign change occurs at y = p/2).
In the non-BP model, the two surfaces are coupled by an even
function |k�l̂| along the angular coordinate. This leads to a
difference in the coupling matrix elements between the |e,0i
state and the |g,1i states with a particular rotational quantum
number.

Fig. 7 presents the total population of the |e,0i and |g,1i
states obtained from the 2D model (Fig. 7a) and non-BP
(Fig. 7b) model as well as the contributions from both the even
and odd states of the angular coordinate (Fig. 7c and d). We
find that in the 2D model (Fig. 7a) and the initial rotational
state J = 0, the even rotational level in the |e,0i state is coupled with
the odd rotational level in the |g,1i surface. As a consequence, only
those rotational states with an odd J in |g,1i are populated, while
the rotational states with an even J are unimportant. On the other
hand, in the non-BP model (Fig. 7b), the rotational state with an
even J in the |e,0i surface is coupled with other even states in the
|g,1i surface. As a result, only the even states in |g,1i are populated
while the odd states remains unpopulated. The quantum dynamics
results in Fig. 7a and b agree well with these interpretation,
showing that in the 2D model (Fig. 7a), only the even-J rotational
states are populated in the |e,0i state (blue) and only the odd-J
rotational states (filled circles) are populated in the |g,1i state (red),
whereas in the non-BP model (Fig. 7b) only the the even-J rotational
states (open circles) are populated on both |e,0i and |g,1i state.
The lower polariton state |�,0i (Fig. 7c and d), which are the
superposition states of |g,1i and |e,0i, effectively averaging over the
transition of many rotational states, resulting in difference between
the population transfer from the upper polaritonic state in the 2D
and non-BP model.

Fig. 8 presents the PAD (eqn (25)) obtained from the 2D
model (Fig. 8a), the non-BP model (Fig. 8b), and the 1D model
(Fig. 8c) with the initial rotational quantum number of J = 0
(blue) and J = 1 (red). The results in the 2D model (Fig. 8a) show
strong oscillations for both J = 0 and J = 1 and are absent in the
non-BP (Fig. 8b) and the 1D model (Fig. 8c). When comparing
the NPD obtained from the three models before passing
through the CI, we find that these oscillations arise in the 2D
model after passing the CI. In addition, these patterns do not
change during the transition from |�,0i surface to |g,0i surface.
The NPD for the the |�,0i and |g,0i states obtained from the
2D, non-BP, and 1D models for rotation quantum number J = 0
and J = 1 are shown in Fig. S2 in the ESI.†

To clearly understand the origin of these oscillations in the
PAD from the 2D model, we analyze the contribution of the
even and the odd quantum number of the angular coordinate

Fig. 6 Population of the polaritonic states for the rovibrational
wavefunction J = 0 (left panel) and J = 1 (right panel).
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in the total population of the |�,0i state and the results are
presented in Fig. 7c and d. Fig. 7c demonstrates that in the 2D
model, the population of the |�,0i has contributions from both
even and odd quantum state. This is expected to give rise to
both a destructive and a constructive interference between the
odd and even rotational wavefunctions, resulting in a strong
oscillation in the PAD in the 2D model. On the other hand,
Fig. 7d demonstrates that the population of the |�,0i in the
non-BP model only has contribution from the even-J rotational
state. Thus, the interference happens only between even-J
rotational wavefunctions with the same symmetry. This
explains why the oscillations are absent in the non-BP model.
Our results, therefore, demonstrate that the strong oscillation
obtained from the 2D model in the PAD are a consequence of
the symmetry of the light-matter coupling Hamiltonian k�l̂ = lm̂
cos y, which also give rise to the BP phase effects.

4 Conclusions

We investigate the impact of the Berry phase introduced by the
polariton induced conical intersection (PICIs) by coupling a
diatomic molecule (LiF) with the quantized radiation field
inside an optical cavity. The Pauli–Fierz Hamiltonian is
employed to describe the quantized light-matter interactions.
We compare the results obtained from the Pauli–Fierz
Hamiltonian with other artificial models where the Berry phase
is removed or the wavefunction is not allowed to encircle
around the PICI. We find that when the initial wavefunction
is placed in the lower polaritonic surface, the Berry phase
causes a sign change in the polariton wavefunction symmetry
along the angular coordinate, resulting in a change of the
interference after encircling the PICI. Our results reveal that
the Berry phase causes a p phase shift, akin to those obtained

from the naturally existing CI in molecules. In addition, we
analyze the Berry phase after excitation to the upper polaritonic
surface. Our results reveal that the Berry phase strongly
influences the coupling between polaritonic states and
therefore, the population transfer between them. Further, we
find that the symmetry of the light-matter coupling term is the
main source for the observed oscillations in the photo-
fragment angular distribution for LiF. The PICI created from
the quantized radiation field exhibits a non-trivial geometric
phase, opening up new possible direction to manipulate photo-
chemical reactivities of molecules with optical cavities.
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Lett., 2017, 8, 1624–1630.
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