
Polariton Spectra under the Collective Coupling Regime. I. Efficient Simulation of Linear
Spectra and Quantum Dynamics

M. Elious Mondal,1, a) A. Nickolas Vamivakas,2, 3 Steven T. Cundiff,4 Todd D. Krauss,1, 2 and Pengfei Huo1, 2, b)
1)Department of Chemistry, University of Rochester, Rochester, New York, 14627,
USA
2)The Institute of Optics, Hajim School of Engineering, University of Rochester, Rochester, NY 14627,
USA
3)Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627,
USA
4)Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA

We outline two general theoretical techniques to simulate polariton quantum dynamics and optical spectra
under the collective coupling regimes described by a Holestein-Tavis-Cummings (HTC) model Hamiltonian.
The first one takes the advantage of sparsity of the HTC Hamiltonian, which allows one to reduce the cost of
acting polariton Hamiltonian onto a state vector to the linear order of the number of states, instead of the
quadratic order. The second one is applying the well-known Chebyshev series expansion approach for quantum
dynamics propagation and applying them to simulate the polariton dynamics in the HTC system, allowing one
to use a much larger time step for propagation and only requires a few recursive operations of the Polariton
Hamiltonian acting on state vectors. These two theoretical approaches are general and can be applied to
any trajectory-based non-adiabatic quantum dynamics methods. We apply these two techniques with our
previously developed Lindblad-Partially Linearized Density Matrix (L-PLDM) approach to simulating the
linear absorption spectra of the HTC model system, with both inhomogeneous site energy disorder as well
as dipolar orientational disorders. Our numerical results agree well with the previous analytic and numerical
work.

I. INTRODUCTION

Coupling molecular excitations to a quantized radia-
tion field inside an optical cavity produces a set of light-
matter hybrid states known as polaritons. These po-
lariton states, which are a hybridization of matter ex-
citation and photonic excitation, have shown interest-
ing photophysical properties. In particular, the light-
matter interaction has been shown to effectively reduce
the coupling between excitons and phonons, which is
commonly referred to as the polaron decoupling effect.1,2

This polaron decoupling effect results in an enhanced
charge transfer rate constant,1 reduction of the ho-
mogeneous linewidth of spectra,3,4 and causes ballistic
exciton-polariton transport.5–7 In particular, the exciton-
polariton coherence lifetime could be significantly pro-
longed due to reduced coupling with the phonon bath.4,8

Linear9,10 and nonlinear spectroscopy4,11–15 are pow-
erful measurements that provide a fundamental under-
standing of the photophysics of polariton systems. To
capture the essential features of polariton photophysics,
one needs to simulate N molecules collectively coupled
to the cavity mode, typically using the Holestein-Tavis-
Cummings (HTC) model Hamiltonian. Further, one
needs to explicitly incorporate exciton energy disorders
(inhomogeneous disorder) and dipole orientational disor-
ders for the molecule-cavity coupling interactions. In the
typical experimental setup, one couple N = 103 − 104

Nanoplatelet to the cavity,8,16–19 or at least N = 106
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organic molecules to one cavity mode. When there is
no disorder present in the HTC Hamiltonian, one can
in principle take advantage of the permutational sym-
metry of the problem and solve the problem with a
mean field solution20,21 or the recently proposed CUT-E
approach22,23 for the zero-temperature case and with a
single high-frequency vibration mode per molecule. With
the presence of various disorders (and no apparent sym-
metry in the system), it is computationally challenging
to directly stimulate the polariton dynamics when there
are a large N of molecules coupled to the cavity, although
there is progress in effectively describing static disorders
as energy bins while taking advantage of the symmetry
in HTC-type Hamiltonian.22,23 The Tensor Train decom-
position method24 in principle could handle HTC-type
dynamics with disorders, but remains computationally
expensive due to the full quantum mechanical treatment
for all degrees of freedom (DOFs).

In our previous work, we have combined the partial
linearized density matrix (PLDM) approach25–28 with
stochastic Lindblad dynamics to simulate polaritonic
spectroscopy in lossy cavities. To include the cavity
loss dynamics, we develop stochastic Lindbald dynamics,
which exactly reproduce the Lindblad dynamics when
averaged over an ensemble of trajectories. With simu-
lated linear and 2D Electronic Spectra (2DES) of the
polariton, we systematically investigated the influence of
the light-matter coupling strength and cavity loss rate
on the optical signals. In particular, we demonstrate
that the polariton coherence (interpreted from the off-
diagonal peak of the 2D electronic spectra) can be signif-
icantly prolonged by increasing the light-matter coupling
strength, providing a theoretical verification of the po-
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laron decoupling effect.4 We now aim to generalize our
approach to the collective coupling situation, where a
large N of molecules are collectively coupled to a cavity
mode, with the presence of various types of molecular
disorders.

In a series of two papers, we aim to develop an effi-
cient and accurate approach to simulate the nonlinear
spectra of the molecule-cavity hybrid system under the
collective coupling regime. In Paper I (this work), we
will focus on introducing two theoretical techniques that
allow one to significantly reduce the computational cost
of simulating the quantum dynamics of the HTC system
with various types of disorders. We will focus on the lin-
ear spectra simulation. In Paper II, we will outline the
theoretical details of stimulating 2DES for the polariton
system under the collective coupling regime, with new
computational techniques for focusing the algorithm of
the PLDM simulation.

In this paper (paper I), we outline two general theo-
retical techniques. The first one is related to the sparsity
of the HTC Hamiltonian, which allows one to reduce the
cost for action of polariton Hamiltonian onto a state vec-
tor to the linear order in the number of states, instead of
the quadratic order. The second one is applying the well-
known Chebyshev series expansion approach for quantum
dynamics propagation and applying them to simulate the
polariton dynamics in the HTC system. The Chebyshev
expansion allows us to use a much larger time step for
propagation and only requires a few recursive operations
of the Polariton Hamiltonian acting on state vectors,
which can further take advantage of the first technique we
developed in this work. These two theoretical approaches
are general and can be applied to any trajectory-based
non-adiabatic quantum dynamics methods29–34 or gaus-
sian wavepacket-based approaches.35,36 We focus on sim-
ulating the linear absorption spectra of the HTC model
system, with both inhomogeneous site-energy disorder as
well as dipolar orientational disorders. With the signif-
icant reduction of the computational costs, we can di-
rectly simulate collective polariton dynamics with up to
N = 105. Our numerical results agree well with the pre-
vious analytic37 and numerical work.38

II. POLARITON QUANTUM DYNAMICS

A. Model Hamiltonian

We describe the system of N -molecules coupled to a
single cavity mode by the Holestein-Tavis-Cummings39

Hamiltonian

ĤHTC = Ĥs + Ĥb + Ĥsb, (1)

where Ĥs is the Hamiltonian of the system, Ĥb is the
Hamiltonian for bath DOF and Ĥsb is the system-bath
interaction. The system Hamiltonian consists of exci-

tonic and photonic DOF,

Ĥs =
(
Ĥex + Ĥph

)
⊗ 1̂b + Ĥex−ph ⊗ 1̂b, (2)

where Ĥex is the molecular (excitonic) Hamiltonian, Ĥph

is the photonic Hamiltonian, Ĥex−ph is the exciton-

photon interaction and 1̂b is the identity operator in the
bath subspace. The excitonic Hamiltonian consists of N
uncoupled molecules, each with an onsite energy εn. The
excitonic hamiltonian can be written as

Ĥex =

N∑
n

εnσ̂
†
nσ̂n ⊗ 1̂ph (3)

Here, σ̂†
n = |en⟩⟨gn| and σ̂n = |gn⟩⟨en| creates annilates

an excitation on the nth molecule, respectively, with |gn⟩
and —en⟩ as the ground and excited states for molecule

n, and 1̂ph is the identity operator for the photonic sub-
space. The photonic Hamiltonian is described by a single
cavity mode

Ĥph = 1̂ex ⊗ ℏωc

(
â†â+

1

2

)
(4)

where â† and â create and annihilate a photonic excita-
tion (a photon) associated with the cavity mode, respec-

tively, with energy ℏωc and 1̂ex is the identity operator
for the excitonic subspace. The operators obey the com-
mutation relation [â, â†] = 1̂ph. We further assume the
rotating wave approximation for the light-matter cou-
pling term

Ĥex−ph =
∑
n

ℏgnc
(
σ̂†
nâ+ σ̂nâ

†) , (5)

with gnc being the coupling strength for the nth exciton,

gnc =

√
ℏωc

2Vϵc
µ̂n · ê =

√
ℏωc

2Vϵc
µn · cos θn. (6)

Here, µn is the magnitude of the transition dipole mo-
ment of the nth exciton, ê is the filed polarization direc-
tion, θn is the angle between µ̂n and ê. Further, V is
the mode volume of the cavity, and ϵc is the permittivity
inside the cavity.
In addition, each molecular exciton is also coupled to

a number of phonon modes that constitute the molecular
bath. The bath Hamiltonian is described by

Ĥb = 1̂s ⊗

[
1

2

N∑
n=1

∑
ν

(
P̂ 2
n,ν + ω2

n,νR̂
2
n,ν

)]
(7)

where P̂n,ν and R̂n,ν are the momentum and position op-
erator of the νth phonon on nth matter site of frequency
ωn,ν , and 1̂s = 1̂ex ⊗ 1̂ph is the identity operator of the
“system” subspace that includes the excitonic and pho-
tonic DOF. These bath DOF are coupled bi-linearly to
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the excitonic sites providing diagonal fluctuations to on-
site energies

Ĥsb =
∑
n

(
σ̂†
nσ̂n ⊗ 1̂ph

)
⊗
(∑

ν

Cn,νR̂n,ν

)
(8)

where Cn,ν is the strength of coupling between nth ex-
citon and νth phonon (vibratrional mode). For the nth
exciton, the phonon frequencies and coupling strength
are sampled from the Debye spectral density40

Jn(ω) =
π

2

∑
ν

C2
n,ν

ωn,ν
δ(ω − ωn,ν) =

2λbωbω

ω2
b + ω2

, (9)

with λb being the bath reorganisation energy and ωb be-
ing the characteristic frequency of the bath. To perform
linear and non-linear spectroscopy simulation, we use the
matter dipole operator for computing multi-time corre-
lation functions41–45

µ̂ =

N∑
n

µn

(
σ̂†
n + σ̂n

)
⊗ 1̂ph (10)

where µn is the magnitude of the transition dipole of ex-
citation for nth molecule. Cavity loss is not explicitly
considered in the Hamiltonian. The loss effect is incor-
porated through the stochastic Lindblad approach de-
veloped in our previous work,46,47 with a brief summary
provided in the Appendix A.

B. Polariton States

The diabatic eigenstates of Ĥs are defined as

Ĥs|α⟩ = ϵα|α⟩. (11)

When only considering the single excitation subspace
|j⟩ = {|g⟩ ⊗ |1⟩, |en⟩ ⊗ |0⟩} (where |g⟩ ≡ ⊗|gn⟩) with
degenerate exciton energy εn = ε, and identical light-
matter couplings gnc = gc, Eq. 11 has well known analytic
solution, with two bright polariton states10,48–51

|+⟩ = cosΘN

[
1√
N

N∑
n=1

|en⟩ ⊗ |0⟩

]
+ sinΘN |g⟩ ⊗ |1⟩,

(12a)

|−⟩ = − sinΘN

[
1√
N

N∑
n=1

|en⟩ ⊗ |0⟩

]
+ cosΘN |g⟩ ⊗ |1⟩,

(12b)

where the mixing angle is

ΘN =
1

2
tan−1

[
2
√
Nℏgc

ℏωc − ε

]
∈ [0,

π

2
), (13)

and N − 1 dark states for k ∈ {1, · · · , N − 1}

|Dk⟩ =
1√
N

N∑
n=1

exp

(
−2πi

nk

N

)
|en⟩ ⊗ |0⟩, (14)

The polariton states and dark states have the energy of

ε± =
ε+ ℏωc

2
± 1

2

√
(ε− ℏωc)2 + 4Nℏ2g2c , (15a)

εDk
= ε. (15b)

where the eigenenergies of polariton states are split from
the original exciton energy and the Dark states have de-
generate energies that are identical to the exciton energy.
As shown in Ref. 49, the analytic solution10,48,49 is also
available for Ĥs. For the zero-detuning case ε = ℏωc,
the Rabi splitting is ℏΩR = ε+ − ε− = 2

√
Nℏgc, and

the strong coupling limit39,50 is achieved when ΩR ≫
1
2 (Γ + κ), where ΩR is the cavity loss rate (linewidth of
the cavity transmission spectra, τc = 1/Γ is the cavity
lifetime) and κ is the exciton linewidth.

C. Trajectory Based Quantum Dynamics Approach

In this work, we consider the trajectory-based quan-
tum dynamics simulations for the HTC model, which
treat Ĥs + Ĥsb as the quantum subsystem,

ĤQ = Ĥs + Ĥsb, (16)

and Ĥb as the classical subsystem. We want to explic-
itly consider the static energy disorders in site energy
εn (inhomogeneous disorder, see Eq. 74) as well as the
dipole orientation disorder in cos θn for the light-matter
interaction terms.
In particular, we will use the partial linearized density

matrix (PLDM) dynamics method,25–27,47,52,53 but the
outlined theoretical schemes can be applied to any mixed
quantum-classical (MQC) method, including the mean-
field Ehrenfest dynamics, the trajectory surface hopping
approach54,55, or trajectory-based semiclassical methods
such as the linearized semiclassical approach56–59 and
symmetrical quasiclassical approach (SQC)60,61.
These trajectory-based quantum dynamics methods

typically require the quantum propagation of the quan-
tum state vector

iℏ
∂

∂t
|Ψ(t)⟩ = ĤQ(R(t)) |Ψ(t)⟩ . (17)

For a given diabatic basis {|j⟩} (for example, Eq. 22-
Eq. 24), one can expand |ψ(t)⟩ =

∑
j cj(t)|j⟩, and Eq. 17

becomes

iℏċk(t) =
∑
k

⟨k|ĤQ(R(t))|j⟩ · cj(t). (18)

Note that both ĤQ and |Ψ(R(t))⟩ depend parametrically
on the bath configuration, R(t) ≡ {Rn,ν(t)}. The nu-
clear DOF is updated through the classical equations of
motion, with different types of forces that depend on
∇R(Ĥsb + Ĥb), such as Ehrenfest dynamics (and sim-
ilarly for other mean-field-like approaches) with F =
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−
∑

jk c
∗
jck∇R⟨j|(Ĥsb+ Ĥb)|k⟩, and for the HTC Hamil-

tonian special case, the nuclear force is

F = −
∑
j

|cj |2∇R⟨j|(Ĥsb + Ĥb)|j⟩, (19)

which is purely diagonal due to the diagonal Ĥsb in
the diabatic basis (Eq. 22-Eq. 24). For the trajectory
surface hopping approach, the nuclear force is F =
−∇R⟨J(R)|(Ĥsb + Ĥb)|J(R)⟩, where |J(R)⟩ is an ac-

tive adiabatic surface (an eigenstate of ĤQ) that is de-
termined stochastically through a given algorithm (such
as the most widely used fewest switches algorithm54,55).
The main challenge of solving Eq. 18 for the HTC

Hamiltonian under the collective coupling regime is the
large number of N that one has to incorporate. The
right-hand side of the differential equation, ĤQ|Ψ⟩, re-
quires the operation of ĤQ matrix on a state vector cj(t).
For the HTC Hamiltonian with N molecules and one cav-
ity mode, there are K = N +1 ∝ O(N) states in the sin-
gle excitation subspace and K = N(N − 1)/2 +N + 1 ∝
O(N2) states in the double excitation subspace. The
force evaluation for a mean-field-like approach of the
HTC model (Eq. 19), on the other hand, only scales with

O(K) due to the purely diagonal structure of Ĥsb, in the
diabatic site basis. The typical experimental condition
requires N = 106 − 1012, resulting in a very large K,
and the computational work12,24,29,30,38 is often limited
by N = 101 − 102 due to the computational cost.
The other possibility is to consider the propagator ap-

proach instead of solving the TDSE (Eq. 18) directly.

Note that ĤQ contains a static part of Ĥs (with a very

special symmetry) and a purely diagonal part Ĥsb that
depends on R(t). One can consider the following sym-
metrical Trotter splitting

|Ψ(t+∆t)⟩ ≈ e−
i
ℏ Ĥsb∆t/2e−

i
ℏ Ĥs∆te−

i
ℏ Ĥsb∆t/2 |Ψ(t)⟩ ,

(20)
with the accuracy up to O(∆t3). Using a diabatic ba-
sis |j⟩ and the polariton basis |α⟩ (see Eq. 11), one can
rewrite Eq. 20 as

|Ψ(t+∆t)⟩ =
∑
k

ck(t+∆t)|k⟩ (21)

≈
∑
k

|k⟩
∑
jα

e−
i
ℏλk∆t/2⟨k|α⟩e− i

ℏ ϵα∆t⟨α|j⟩e− i
ℏλj∆t/2cj(t),

where ϵα is the diabatic polariton energy defined in
Eq. 11, λj = ⟨j|Ĥsb(R)|j⟩ is the pure diagonal con-
tribution of the system-bath coupling (that parametri-
cally depends on R), and cj(t) = ⟨j|Ψ(t)⟩. In prin-

ciple, one needs to diagonalize Ĥs to obtain ϵα and
{⟨α|j⟩} at a cost of O(K2) (see Ref. 62–64, due to the

symmetry of Ĥs, instead of the usual cost of O(K3)
for diagonalizing an arbitrary K × K matrix). Never-
theless, because these are diabatic quantities, one can
in principle compute them only once and store them.

Of course, when only single- and double-excitation sub-
spaces are considered, these results are (almost) analyt-
ically available.10,48,49 When only considering the single
excitation subspace |j⟩ = {|g⟩⊗|1⟩, |en⟩⊗|0⟩}, the expres-
sion of Skj(∆t) ≡

∑
α⟨k|α⟩e−

i
ℏ ϵα∆t⟨α|j⟩ is analytically

available and can be precomputed and stored. One just

needs to multiply the S̃kj ≡ e−
i
ℏλk∆t/2Skj(∆t)e

− i
ℏλj∆t/2

matrix onto the cj(t) column matrix to get the result
of ck(t + ∆t), which in principle still requires a cost of
O(N2).

As such, for the quantum dynamics problem of the
HTC system, the main computational bottleneck is the
ĤQ|Ψ⟩ evaluation. One would also want to avoid directly

diagonalizing ĤQ, as well as increase the time step ∆t
for the dynamics propagation as much as possible (be-

cause each step requires at least one ĤQ|Ψ⟩ evaluation)
while keeping the propagation stable. In the following
sections, we introduce several techniques that can sig-
nificantly reduce the computational costs of propagating
Eq. 17. These techniques can be broadly applied to any
MQC trajectory-based methods for polariton quantum
dynamics simulations.

III. THEORETICAL APPROACHES

We demonstrate strategies to efficiently manipulate
matrix-vector multiplications to reduce the computation
cost of semiclassical simulations. When considering the
single excitation subspace, the size of the Hilbert space
K ∝ O(N), and solving the TDSE in principle requires
operation of O(K2) ∝ O(N2). When considering the
Hilbert space up to the second excitation subspace (for
2DES simulations in paper II) K ∝ O(N2), and the quan-
tum dynamics simulation will in principle require a cost
of O(K2) ∝ O(N4). To reduce the scaling of the cost,

we first demonstrate how the action of the ĤQ on |Ψ(t)⟩
can be written as the sum of a simple Hadamard prod-
uct of vectors that reduces matrix-vector multiplication
from O(N2) to O(N) for single excitation subspace and
O(N4) to O(N2) for up to double excitation subspace.
We demonstrate a similar scaling reduction for the ac-
tion of the dipole operator on the wavefunction, which
is relevant for linear and non-linear spectra calculations.
We further apply a Chebyshev series expansion approach
to simulate the polariton dynamics in the HTC system.
The Chebyshev expansion allows us to use a much larger
time step for propagation and only requires a few recur-
sive operations of the Polariton Hamiltonian acting on
state vectors, which can further take advantage of the
scaling reduction due to the sparsity of the HTC Hamil-
tonian.

The theoretical approach we outlined here can be
widely applicable to any mixed quantum-classical meth-
ods to simulate polariton dynamics (population, coher-
ence, different types of correlation functions). The scal-
ing reduction in the single excitation subspace is the most
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relevant part of the linear spectra simulation in this pa-
per, whereas the scaling reduction in the double excita-
tion subspace will be relevant for 2DES simulations in
Paper II.

A. Efficient Evaluation of ĤQ |Ψ⟩ in the Double Excitation
Subspace

The Quantum Dynamics propagation requires basic
operator action of ĤQ |Ψ⟩ operation (see Eq. 17 and

Eq. 18) using for example, RK4 method, or Ô |Ψ⟩ (see
Eq. 36) in the Chebyshev expansion scheme (Eq. 35). For

a K-dimensional system in ĤQ, this would in principle re-
quire K2 operations in matrix multiplications. However,
we notice that the matrix of ĤQ in the HTC Hamilto-
nian is extremely sparse in the single and double exci-
tation subspaces, which are the relevant subspaces for
photophysics and spectroscopy measurements. Here, we
take advantage of this sparsity to significantly reduce the
scaling of the computational costs of quantum dynamics
propagation.

We take the bare excitonic states and the photonic
Fock states to form the diabatic basis. The collective
ground state can be written as

|G0⟩ =
(⊗

n

|gn⟩
)
⊗ |0⟩ . (22)

Within the single excitation manifold, we can describe
two kinds of diabatic states characterized by either purely
matter or purely photonic excitation character∣∣E0

n

〉
=
( ⊗

m ̸=n

|gm⟩
)
⊗ |em⟩ ⊗ |0⟩ , (23a)

|G1⟩ =
(⊗

n

|gn⟩
)
⊗ |1⟩ . (23b)

In the second excitation manifold, we get three addi-
tional types of states, with either double matter exci-
tations, double photon excitation, or a mixed matter-
photon excited state, expressed as follows

|E0
nm⟩ =

( ⊗
p ̸=n,m

|gp⟩
)
⊗ |en⟩ ⊗ |em⟩ ⊗ |0⟩ , (24a)

|E1
n⟩ =

( ⊗
n ̸=m

|gm⟩
)
⊗ |en⟩ ⊗ |1⟩ , (24b)

|G2⟩ =
(⊗

n

|gn⟩
)
⊗ |2⟩ . (24c)

With the above basis, a general quantum state can be
expanded in this double-excitation subspace as

|Ψ⟩ =cG0 |G0⟩+
∑
n

cE0
n
|E0

n⟩+ cG1 |G1⟩ (25)

+
∑

n,m>n

cE0
nm

|E0
nm⟩+

∑
n

cE1
n

∣∣E1
n

〉
+ cG2 |G2⟩

(a) (b)

(c) (d)

N = 5 N = 10

N = 4N = 3

FIG. 1. The HTC Hamiltonian structure for N molecules.
The light cyan color represents the zero matrix elements,
whereas the darker blue represents the non-zero matrix el-
ements. The order of the basis is the same as indicated in
Eq. 25: from left to right for the row, and from top to bottom
for the column. Panels (a)-(d) represent the Hamiltonian for
N = 3, 4, 5, and 10 molecules, respectively, within the double
excitation subspace.

where cj = ⟨j|Ψ⟩. From now on, we will follow the or-
der of the basis set expansion outlined in Eq. 25, and
represent |Ψ⟩ as

|Ψ⟩ →


cG0

cE0
n

cG1

cE0
nm

cE1
n

cG2

 (26)

The quantum Hamiltonian ĤQ in Eq. 50, when rep-
resented in the double excited diabatic basis, is very
sparse in nature. Although the size of the Hamiltonian
increases as O(N4) for N molecules, the sparsity of the
Hamiltonian (defined as the ratio between the number of
nonzero matrix elements and the total number of matrix
elements) scales as 1− 1/N2 and very quickly converges
to 1.

Fig. 1 demonstrates the increase in sparsity as N
increases, with the nonzero matrix elements explicitly
shown in a darker blue color, and with the basis order
explicitly following Eq. 25. We can precompute the ac-
tion of the sparse Hamiltonian, Eq. (50), on a general
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system quantum state in Eq. (25),

ĤQ |Ψ⟩ =
∑
n

(cE0
n
· ϵn + ℏgnc cG1)|E0

n⟩ (27)

+
(
ℏωc · cG1 +

∑
n

gnc cE0
n

)
|G1⟩

+
∑

n,m>n

[
(ϵn + ϵm) · cE0

nm
+ ℏ(gnc cE0

n
+ gmc cE0

m
)
]
|E0

nm⟩

+
∑
n

{ ∑
m>n

ℏgmc cE0
nm

+ (ϵn + ℏωc) · cE1
n
+
√
2ℏgnc cG2

}
|E1

n⟩

+
(
2ℏωc · cG2 +

√
2ℏ
∑
n

gnc cE1
n

)
|G2⟩,

where

ϵn = εn +
∑
ν

Cn,νRn,ν

is the exciton energy εn plus the bath fluctuation, with
the instantaneous value of the bath coordinate Rn,ν (that
is fixed during the ∆t propagation). The above expansion
in Eq. 27 can be expressed as the following Hadmmard
product

ĤQ |Ψ⟩ = |ϵΨ⟩ ⊙ |Ψ⟩︸ ︷︷ ︸
diagonal

+ ℏgc |Φ⟩︸ ︷︷ ︸
off−diagonal

, (28)

which is the first key result of this work. In Eq. 28, the
diagonal energies are accounted for by the vector

|ϵΨ⟩ →


0
ϵE0

n

ℏωc

ϵE0
nm

ϵE1
n

2ℏωc

 , (29)

Here, ϵE0
n
= [ϵ1, ϵ2, ...ϵN ]T is the vector of exciton ener-

gies, ϵE0
n
= [ϵ12, ϵ13, ...ϵ(N−1)N ]T is the vector of double

exciton energies and ϵE1
n
= [ϵ1+ωc, ϵ2+ωc, ...ϵN +ωc]

T is
the vector of collective matter and photon excited state
energies.

Further, the off-diagonal action of ĤQ on |Ψ⟩ is ac-
counted by the vector

|Φ⟩ →


0

cG1 · µncosθn∑
n cE0

n
· µncosθn

cE1
n
· µncosθn + cE1

m
· µmcosθm∑

m>n cE0
nm

· µmcosθm +
√
2cG2 · µncosθn√

2
∑

n cE1
n
· µncosθn

 ,
(30)

and when there is no dipole orientation disorders, simply
set cos θn = 1 in the above expression.

The operation in Eq. 28 has a linear scaling in the num-
ber of states O(K), and thus ∝ O(N) for a single exci-
tation space and ∝ O(N2) double excitation space when

having N -molecules for the polaritonic systems. The ac-
tion of ĤQ on |Ψ⟩ as outlined in Eq. 28 can be used
to accurately calculate electronic evolution via a simple
RK4 solution of Eq. 17 or through polynomial expansions
of exponential propagators such as the Chebyshev series,
which will be discussed next.

B. Chebyshev Series Expansion for Quantum Dynamics
Propagation

To solve TDSE in Eq. 17, one can use many numerical
methods, such as the RK4 solution of Eq. 17 or using the
symplectic integrator.65 These approaches can still take
advantage of the sparsity properties of the Hamiltonian
outlined in Sec. III A. The numerical challenges for these
propagation-based methods are the requirement of rela-
tively small ∆t for stable propagation. Due to the large
N considered in the HTC Hamiltonian, each propagation
step remains computationally expensive.
To use a relatively large ∆t, we use the Chebyshev

polynomial expansion66 approach to solve the TDSE.
During a time ∆t where the nuclear configuration R is
fixed, the propagation can be expressed as

|Ψ(t+∆t)⟩ = Û(∆t) |Ψ(t)⟩ = exp

(
− i

ℏ
ĤQ∆t

)
|Ψ(t)⟩

(31)
where the Chebyshev expansion of the evolution operator
is expressed66 as

Û(∆t) |Ψ⟩ = b0(z)|Ψ(0)⟩+
∞∑

n=1

ϕn(z)bn(z)|Ψ(n)⟩ (32)

where |Ψ(0)⟩ = |Ψ(t)⟩, and {bn} are the bessel-function
coefficients of the first type. The number of coeffi-
cients required for the above expansion is dictated by
the (energy-time) uncertainty parameter

z =
δE ·∆t
2ℏ

, (33)

where δE is the spectral radius (the energy difference

between the highest and the lowest eigenenergy for ĤQ).
For z ≤ 1, one only needs to include the first few terms of
the expansion. In the Chebyshev expansion approach, a
large time step ∆t or a higher spectral radius δE results
in a higher z value which necessitates the requirement of
more number of terms in the expansion, Eq. 32.
Further, ϕn(z) in Eq. 32 is a phase factor that contains

information on the shift in the energy axis due to the
normalization of the Hamiltonian, given by

ϕn(z) = 2inexp

(
i

ℏ

[
δE
2

+ ϵmin

]
∆t

)
. (34)

Here, δE corresponds to the approximate spectral radius
of ĤQ and ϵmin is an estimate of the lowest eigenvalue

of ĤQ. For the Chebyshev method, one only needs a
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rough estimate for δE and ϵmin, which requires a rough
estimation of the lowest and highest eigenvalues of ĤQ.

The nth order term of the Chebyshev expansion in
Eq. 32 is calculated by the recursion relation66

|Ψ(n)⟩ =
{
Ô |Ψ⟩ n = 1

2Ô
∣∣Ψ(n−1)

〉
−
∣∣Ψ(n−2)

〉
n ≥ 2

(35)

where Ô is the modified (normalized) Hamiltonian

Ô = 2
ĤQ − ϵmin1̂s

δE
− 1̂s. (36)

The action of Ô on |Ψ⟩ is the same as ĤQ on |Ψ⟩ as
described in Eq. 28, with the coefficients now scaled ac-
cording to Eq. 36.

0 2 4 6 8 10
m (coefficient index)

0.
5

0.
0

0.
5

1.
0

b m
(z

)

z = 0
z = 1
z = 2

z = 3
z = 4
z = 5

FIG. 2. The Chebyshev coefficients as a function of expan-
sion index for various uncertainty parameters, z. The colored
curves represent the bessel function for a continuous “m” co-
ordinate and the dots are the bessel functions evaluated at
integer “m” values.

Fig. 2 presents the magnitude of the Chebyshev co-
efficients as a function of the expansion term index for
various z-values. With an increase in z, more terms are
needed for the expansion to converge. For z ≪ 1, only
the first three or four terms in the expansion are required.
For comparison, a typical propagation scheme such as
RK-4 or a symplectic integrator (velocity verlet) typi-
cally needs a much smaller substep, δt ≈ ∆t/10−∆t/100
for a stable integration of the dynamics. The Chebyshev
expansion approach thus provides a significant speedup
of the dynamics propagation compared to solving Eq. 31
using RK4 because one can use a much larger ∆t (up
to 100 times), with only a slight increase of the prefac-
tor of the computational cost associated with how many
terms are needed to form a converged Chebyshev expan-
sion (each associated with the Ô|Ψ⟩ operations). In all
simulations, we are in the regime of z ≪ 1 and we found
that only n = 4 terms of the Chebyshev polynomial are
required to converge the results.

C. Decomposing Single and Double excitation Subspace

The inclusion of a double excitation subspace can make
our δE very large, forcing us to choose a very small ∆t.
Note that the double-excitation subspace has a diagonal
energy that is about twice that of the single-excitation
subspace (when it has zero light-matter detuning). Fur-
ther, the Hamiltonian has a block-diagonal structure of
ĤQ, illustrated in Fig. 1, where the single and double ex-
citation manifolds are not coupled to each other through
Hamiltonian operators (they are connected through the
dipole operator and will have transitions upon laser exci-
tation). This observation leads us to separate the first
and second excitation subspaces with their individual
spectral radius. The operation Ô |Ψ⟩, via Eq. 28 is thus
performed separately for the different subspaces. We sep-
arate the system Hilbert space into different excitation
manifolds,

ĤQ =
⊕
ξ

Ĥ(ξ), (37a)

|Ψ⟩ =
⊕
ξ

|Ψ(ξ)⟩, (37b)

where ξ = 0 indicates the ground state (Eq. 22), and
ξ = 1 and ξ = 2 indicate the single (Eq. 23) and double
excitation manifold (Eq. 24), respectively. The quantum
propagation can now be separated into the propagation
of different subspaces

Û(∆t) |Ψ⟩ =
⊕
ξ

exp

(
−iĤ(ξ)∆t

ℏ

)
|Ψ(ξ)⟩. (38)

We can now independently apply the Chebyshev expan-
sion in different subspaces. For the first excitation sub-
space, the approximate spectral radius and lower-bound
of the eigenvalue are given by

δ
(1)
E = 2gc

√
N + 2λb (39a)

ϵ
(1)
min = ε̄− gc

√
N − λb, (39b)

where ε̄ =
∑

n εn/N , and λb is the bath reorganization
energy that accounts for the bath fluctuations. For the
second excitation manifold, these quantities are10,48,49

δ
(2)
E = 2gc

√
2(N − 1) + 4λb (40a)

ϵ
(2)
min = 2ε̄− gc

√
2(N − 1)− 2λb, (40b)

where we used the analytic results10,48,49 to estimate
the lower bound of the polariton eigenstate as 2ε̄ −
gc
√
2(N − 1) in Eq. 40b.

The Chebyshev expansion allows efficient dynamics
propagation by accurately calculating the action of the
unitary propagator on an arbitrary vector. However,
there is still a numerical challenge in simulating quantum
dynamics with the HTC model. In Eq. 34, the phase fac-
tor in the Chebyshev expansion, Eq. 32, depends on the
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approximate absolute magnitude of the lower eigenvalue
ϵmin. Thus, if the eigenvalue has a large absolute magni-
tude, the accuracy of this method is reduced due to the
noise that builds up from the highly oscillating term com-
ing from the high absolute magnitude of ϵmin, especially
if we are simulating both ground state and single excita-
tions (or further including the double excitation) where
these values are on the order of eV, and the difference

between ϵ
(1)
min and ϵ

(2)
min are also on the order of eV. The

same challenge also exists in other propagation methods,
such as using RK4 to solve Eq. 17, because when a large
energy difference exists in a Hamiltonian, one would need
a much smaller ∆t to fully capture the phase oscillations
when propagating the coefficients.

This numerical challenge can be easily resolved by de-
composing the Hamiltonian as Ĥ = ε̄1̂+∆Ĥ, where ε̄ is
a constant reference energy level, and ∆Ĥ is the fluctua-
tion around ε̄. Because ε̄1̂ commute with ∆Ĥ, the quan-

tum evolution becomes e−
i
ℏ Ĥ∆t = e−

i
ℏ ε̄∆t · e− i

ℏ∆Ĥ·∆t,

where the highly oscillatory part of the phase e−
i
ℏ ε̄∆t

will be evaluated analytically, and the rest of the propa-

gation e−
i
ℏ∆Ĥ·∆t will be numerically updated using the

Chebyshev expansion. Further, in the HTC Hamiltonian,
these subspaces are not directly connected by Hamilto-
nian terms. Following this logic, we rewrite the Hamil-
tonian in Eq. 37a as

ĤQ = Ĥ(0) ⊕ (ε̄1̂(1)
s +∆Ĥ(1))⊕ (2ε̄1̂(2)

s +∆Ĥ(2)) (41)

where 1̂
(ξ)
s is the identity operator of the ξth excitation

subspace and ∆Ĥ(ξ) = Ĥ(ξ) − (ξε̄) · 1̂(ξ)
s , and where ξε̄ is

the reference energy for the ξth excitation subspace (i.e.,
ε̄ for single excitation and 2ε̄ for double excitation sub-
space). Since the identity operator commutes with any
other operators in its respective subspace, using Eq. 41,
the propagator now becomes

Û(∆t) |Ψ⟩ =
⊕

exp
(−iξε̄∆t

ℏ

)
exp
(−i∆Ĥ(ξ) ·∆t

ℏ

)
|Ψ(ξ)⟩,
(42)

where the exp
(
− i

ℏ∆Ĥ
(ξ)∆t

)
|Ψ(ξ)⟩ update will be per-

formed using the Chebyshev expansion, and then multi-
ply with a phase exp(− i

ℏξε̄∆t). With this separation, the
accuracy of the Chebyshev propagator is independent of
the absolute value of electronic excitation energies. For
the Chebyshev expansion with the shifted eigenvalues,
the approximate lower eigenvalues used in Eq. 36 is now

ϵ
(1)
min = −gc

√
N − λb (43)

ϵ
(2)
min = −gc

√
2(N − 1)− 2λb (44)

whereas the δ
(ξ)
E (as expressed in Eq. 39a and Eq. 40a)

remains unchanged. Because different subspaces are not
directly coupled by ĤQ, when propagating the quantum
dynamics governed by HQ, the above Chebyshev scheme
will be used independently for each subspace. On the

other hand, different subspaces are connected through
the cavity loss process (such as |G1⟩ → |G0⟩ in the single
excitation subspace, and |G2⟩ → |G1⟩ and |E1

n⟩ → |E0
nm⟩

in the double excitation space), and when computing the
response function, the instantaneous action of the dipole
operator will connect them. For those two types of oper-
ations, one will apply the stochastic Lindblad algorithm
(Appendix A) and the rule of dipole on state vector di-
rectly, without shifting the reference energies. This sim-
ple technique outlined in Eq. 42 significantly reduces the
noise of the numerical propagation and increases the ac-
curacy of the Chebyshev expansion method, as shown in
Appendix B.

D. Spectroscopy Simulations and Efficient Evaluation of
the µ̂|Ψ⟩ Operation

Within the linear response limit, the absorption spec-
tra of a system can be expressed as the dipole-dipole
auto-correlation function25,41,44,47

R(1)(t1) = iTr[µ̂(t1)[µ̂(0), ρ̂0]], (45)

where the laser excitation is applied at time t = 0, and
one detects the system response at time t1. The trace is
performed for all DOFs. In addition, ρ̂0 represents the
initial density matrix of the entire system in equilibrium
ground state at t = −∞, (ρ̂0 = ρ̂(−∞)). Further, ρ̂0 is
assumed to be a separable state between the polariton
and the phonon bath DOFs as follows

ρ̂0 = ρ̂g⊗ ρ̂b = |G0⟩⟨G0|⊗ ρ̂b = |G0⟩⟨G0|⊗ e−βĤb

Z
, (46)

with |G0⟩ defined in Eq. 22.
The frequency domain spectra can be computed by

R(1)(ω) =

∫ T

0

dteiωtR(1)(t) cos

(
πt

2T

)
, (47)

where T is the maximum time of the recorded
time-domain spectra and cos(πt/2T ) is a smoothing
function.25,47

As can be seen, to compute R(1)(t1) and R
(1)(ω), one

needs to act the dipole operator, µ̂, on the density matrix,
which in principle also scales as O(K4). However, µ̂ also
takes the form of a very sparse matrix in the single and
double excitation subspace, as illustrated in Fig. 3. The
sparsity of the dipole operator scales as 1 − 1/N2 with
N molecules coupled to a cavity mode. The action of µ̂
on a ket vector (following the same arrangement of the
basis as in Eq. 25) can be written as

µ̂|Ψ⟩ =
∑
n

µncE0
n
|G0⟩+

∑
n

(
µncG0 +

∑
m>n

µmcE0
nm

)
|E0

n⟩

+

(∑
n

µncE1
n

)
|G1⟩+ cG1

∑
n

µn|E1
n⟩ (48)
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(a) (b)

(c) (d)

N = 5 N = 10

N = 4N = 3

FIG. 3. Matrix representation of the Dipole operator µ̂ (see
Eq. 48) for N molecules. The light cyan color represents the
zero matrix elements, whereas the dark blue represents the
non-zero matrix elements. Panels (a)-(d) show the Hamil-
tonian for 3, 4, 5, and 10 molecules, respectively, under the
double excitation basis

.

The above becomes a very simplified modification of |Ψ⟩,

µ̂|Ψ⟩ =



∑
n µncE0

n

µncG0 +
∑

m>n µmcE0
nm∑

n µncE1
n∑

m>n µncE0
nm

µncG1

0

 (49)

This helps to significantly reduce the cost of acting dipole
operator on state vector in spectroscopy calculations.

IV. COMPUTATIONAL METHOD

A. PLDM Approach for Dynamics Propagation

We briefly outline the PLDM approach for quantum
dynamics simulations.26,27,53,67 The diabatic Hamilto-
nian of a system coupled to a bath (nuclear DOF) can
be expressed as

Ĥ =
P̂ 2

2M
+ V0(R̂) +

K∑
a

Vaa(R̂) |a⟩⟨a|+
1

2

K∑
b̸=a

Vab(R̂) |a⟩⟨b|

= Ĥb + ĤQ. (50)

where R̂ and P̂ are the position and momenta, respec-
tively, of the bath particles of mass M , and V0(R̂) is the

state-independent part of the Hamiltonian. In the con-
text of this work

Ĥb =
P̂ 2

2M
+ V0(R̂),

ĤQ =

N∑
a

Vaa(R̂) |a⟩⟨a|+
1

2

N∑
b ̸=a

Vab(R̂) |a⟩⟨b| ,

where ĤQ is the quantum part of the Hamiltonian that

include Ĥs and Ĥsb (Eq. 16).
Using Meyer-Miller-Stock-Thoss (MMST) map-

ping procedure,56,68,69 we get the classical mapping
Hamiltonian26

H(R,x,p) =
P 2

2M
+ V0(R) +

1

2

∑
a

Vaa(R)(x
2
a + p2a)

+
1

2

∑
b ̸=a

Vab(R)(xaxb + papb). (51)

For a given set of the system operator Â and B̂, and
ρ̂b is the initial bath density operator, the time evolution
of the PLDM is

CAB(t) = Tr
[
ρ̂b ⊗ Âe

i
ℏ ĤtB̂e−

i
ℏ Ĥt
]

(52)

≈
∑
jk,ab

∫
dτ [ρ̂b]w · [Â]jk · Tka(t) · [B̂]ab · T̃bj(t),

where

dτ ≡ dR · dP · dx · dp · dx̃ · dp̃ ·G · G̃, (53)

x ≡ {xa} and p ≡ {pa} are the mapping variables as-
sociated with the forward propagator, and x̃ and p̃ are
for the backward propagator, both of which evolving ac-
cording to the classical mapping Hamiltonian H(R,x,p)
in Eq. 51. Further, G = exp

[
− 1

2

∑
a(pa

2 + xa
2)
]
is the

Gaussian distribution for the initial forward mapping
variables, with an analogous expression G̃ for backward
mapping variables. In addition,

Tb,j(t) =
1

2
(xb(t) + ipb(t))(xj(0)− ipj(0)) (54a)

T̃k,a(t) =
1

2
(x̃k(t)− ip̃k(t))(x̃a(0) + ip̃a(0)) (54b)

are the transition amplitudes associated with the forward
and backward propagator, respectively. The initial bath
distribution is obtained by sampling from the Wigner
density

[ρ̂b]w =

∫
d∆e−

i
ℏRP

〈
R− ∆

2
|ρ̂b|R+

∆

2

〉
. (55)

Here, R and P denote the mean position of the bath
and the momentum. The system mapping variables (for
both forward and backward variables) evolve according
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to Hamilton’s EOM

∂xa
∂t

=
∂H
∂pa

=
1

ℏ
∑
b

Vab(R)pb, (56a)

∂pa
∂t

= − ∂H
∂xa

= −1

ℏ
∑
b

Vab(R)xb, (56b)

The bath DOF evolves classically

∂R

∂t
= P,

∂P

∂t
= F , (57a)

F(R) = −1

2
∇R {H(R,x,p) +H(R, x̃, p̃)} , (57b)

and experiences a mean force from both forward and
backward mapping variables.

Note that the EOM for the mapping variables is com-
pletely equivalent to the TDSE.65 By establishing a
transformation relation

xa(t) =
√
2 ·Re[ca(t)]; pa(t) =

√
2 · Im[ca(t)], (58)

Eq. 56 is equivalent to the following TDSE

iℏċa(t) =
∑
b

Vab(R(t)) · cb(t). (59)

This was discussed by Gray and Manopolous as the
Symplectic integrator of TDSE.65 For the mapping ap-
proaches with an explicit zero point energy factor (such
as SQC60,61 and spin-LSC57,58), a similar argument can
also be carried out (for example, Eqs. 94-95 in Ref. 57,58).
Historically, the PLDM and related mapping dynamics
approaches are often solved with a simple velocity verlet
algorithm70 or complete symplectic algorithm71,72 (that

requires diagonalizing V̂ ), which are expensive to perform
when having a large N in HTC Hamiltonian.
In this work, we use the relation between mapping vari-

ables and coefficients

ca =
1√
2
(xa + ipa); c̃a =

1√
2
(x̃a − ip̃a) (60)

and the mapping EOMs in Eq. 56 becomes

iℏċa(t) =
∑
b

Vab(R(t)) · cb(t), (61a)

−iℏ ˙̃ca(t) =
∑
b

Vab(R(t)) · c̃b(t). (61b)

Here, we take advantage of the Chebyshev series in
Eq. 32, and the action of ĤQ on the state vector out-
lined in Eq. 28, as well as the subspace decomposition
and energy shift techniques outlined in Eq. 41. The nu-
clear force of the PLDM approach (in Eq. 57b) for the
HTC Hamiltonian is expressed as

F(t) = −
∑
a

1

2
(|ca(t)|2+ |c̃a(t)|2) ·∇R⟨a|Ĥsb|a⟩−∇RĤb

(62)

which is computed directly using the updated coefficients
{ca(t), c̃a(t)} and scales linearly with K. Further, the
transition amplitudes are also directly expressed as

Tb,j(t) = cb(t) · c∗j (0) (63a)

T̃k,a(t) = c̃k(t) · c̃∗a(0) (63b)

which are directly computed with the forward and back-
ward coefficients and then used to compute CAB(t) based
on Eq. 51. For an arbitrary correlation function, the
CAB(t) still have a full sum over the indices {j, k, a, b},
which can, in principle, be further reduced if Â and B̂
exhibit the same type of sparsity. This is indeed the case
for the linear response function (dipole-dipole autocorre-

lation function) with Â = µ̂ρ̂0 and B̂ = µ̂, as we showed
in Eq. 49.

B. PLDM simulation of the Linear Spectra

For the linear response function expressed in Eq. 52,
one can rewrite it as the sum of two correlation functions

R(1)(t1) = iTr [µ̂(0)ρ̂0µ̂(t1)]− iTr [ρ̂0µ̂(0)µ̂(t1)] , (64)

where ρ̂0 = ρ̂g ⊗ ρ̂b (see Eq. 46). This can then be
calculated using the expression of the PLDM correla-
tion function (Eq. 52) by choosing Â = µ̂(0)ρ̂g, B̂ =

µ̂(t1) = e
i
ℏ Ĥt1 µ̂e−

i
ℏ Ĥt1 , and Â = ρ̂gµ̂(0), B̂ = µ̂(t1) =

e
i
ℏ Ĥt1 µ̂e−

i
ℏ Ĥt1 . Alternatively, the response function can

be expressed as25,47

R(1)(t1) = iTr [µ̂(t1)µ̂ρ̂g]− iTr [µ̂(t1)ρ̂gµ̂] (65)

= iTr
[
µ̂e

i
ℏ Ĥt1(µ̂ρ̂0)e

− i
ℏ Ĥt1

]
− iTr

[
µ̂e

i
ℏ Ĥt1(ρ̂0µ̂)e

− i
ℏ Ĥt1

]
,

which can be approximated by using the PLDM approach
as follows25

R(1)(t1) ≈ i
∑
n1

∑
n0,ñ0

∫
dτ0[µ̂ρ̃

(1)]n1,n1
[µ̂ρ̂g]n0,ñ0

· [ρ̂b]w

− i
∑
n1

∑
n0,ñ0

∫
dτ0[µ̂ρ̃

(1)]n1,n1 [ρ̂gµ̂]n0,ñ0 · [ρ̂b]w, (66)

where ρ̃(1) accounts for the transition amplitude from
both forward and backward mapping trajectories, with
the matrix elements expressed as follows

[ρ̃(1)]n1ñ1(t1, n0, ñ0) (67)

=
1

2
[xn1

(t1) + ipn1
(t1)] · [xn0

(0)− ipn0
(0)]

× 1

2
[x̃ñ1

(t1)− ip̃ñ1
(t1)] · [x̃ñ0

(0) + ip̃ñ0
(0)] .
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The linear response at time t1 is obtained by performing
a trace over µ̂ρ̃(1). Using Eq. 49 and Eq. 67, this becomes,

N∑
n1

[µ̂ρ̃(1)]n1n1(t1, n0, ñ0) (68)

=

N∑
n1

µn1
· 1
2
[xn1

(t1) + ipn1
(t1)] · [xn0

(0)− ipn0
(0)]

× 1

2
[x̃n1

(t1)− ip̃n1
(t1)] · [x̃ñ0

(0) + ip̃ñ0
(0)]

=

N∑
n1

(
µn1

· cn1
(t1) · c∗n0

(0)
)
·
(
c̃n1

(t1) · c̃∗ñ0
(0)
)
,

where in the last line we used the expression from Eq. 60.
The cavity loss dynamics is simulated using the

stochastic Lindblad approach with PLDM, as detailed in
Ref. 47. For a cavity mode with loss rate Γ, the Lindblad
loss dynamics is equivalent to updating the forward and
backward coefficients outlined in Eq. A3 and Eqs. A5-
A6. For any t ∈ [0, t1 − ∆t], the overall propagation of
the reduced density matrix for the quantum subsystem
during a time step ∆t can thus be summarized as

ρ̂(t+∆t) =
[
eLL̂∆t/2 · eLĤ∆t · eLL̂∆t/2

]
ρ̂(t), (69)

where eLL̂ is the decay dynamics propagation accord-
ing to the stochastic Lindblad approach, and eLĤ is the
PLDM propagation in Eq. 61, coupled to the nuclear
update with the force described in Eq. 62. In the cur-
rent work, the PLDM update eLĤ∆t is performed using
the Chebyshev Series Expansion outlined in Sec. III B,
and the nuclear update is performed using velocity ver-
let. The stochastic Lindblad update eLL̂ is performed
using as outlined in Eq. A3 and Eqs. A5-A6 for ∆t/2 be-
fore and after the PLDM propagation. We refer to Eq. 69
as the L−PLDM approach.47 Note that although we for-
mally express the propagation as the reduced density ma-
trix in Liouville space, all of the dynamical propagation
has been performed in Hilbert space for the forward and
backward coefficients.

To evaluate the matrix element [µ̂ρ̂g]n0,ñ0
, the action of

the dipole operator on the ground state can be expressed
as

µ̂ρ̂g =
∑
n

µn|G0⟩⟨E0
n|, (70)

which is only non-zero for N off-diagonal elements. How-
ever, the final expression of R(1) requires a sum of∑

n0,ñ0
. To further reduce the cost, we use the focus-

ing algorithm and the stochastic important sampling25

to obtain the initial mapping variables, which, upon tra-
jectory average, results in the same answer as if explicitly
performing the sum

∑
n0,ñ0

. For each trajectory, we use
the focused initial condition for the mapping variables,
with cG0

= 1, cE0
i
= 0 (∀ i ∈ [1, N ]), c̃G0

= 0, c̃E0
i
= 0

(∀ i ∈ [1, N ] and i ̸= n,) and c̃E0
n
= 1, and the focus-

ing label n is stochastically chosen with the probability

P (n) = µn/(
∑N

m=1 µm) and initialize cG0 = c̃E0
n
= 1.

The first term in Eq. 66 can be computed using the
following steps

1. Sample the nuclear configuration based on [ρ̂b]w.
The state |G0⟩⟨E0

n| is randomly chosen for the fo-
cused initial condition, based on the algorithm out-
lined in the previous paragraph. Set the initial
electronic condition cG0 = 1 and c̃E0

n
= 1, based

on the focused initial condition, with n0 = G0 and
ñ0 = E0

n, and the rest of the coefficients to be zero.

2. Propagate the dynamics based on Eq. 69. In partic-
ular, for the eLĤ∆t part, use Eq. 61 to propagate
the forward and backward electronic coefficients,
and Eq. 62 to compute the nuclear force to update
nuclear DOFs; for the eLL̂∆tk/2 part, use Eq. A3
to update the coefficients to describe the Lindblad
loss dynamics.

3. Compute the first term of the response function
based on the estimator i

∑
n1
[µ̂ρ̃(1)]n1,n1 · [µ̂ρ̂g]n0,ñ0

where the initial label of the states are n0 = G0 and
ñ0 = E0

n, and explicitly compute the trace
∑

n1
by

summing all terms expressed in Eq. 68. Average
the correlation function from an ensemble of tra-
jectories (for the

∫
dτ0 integral) to get the linear

response signal.

For the second term, one can simply take the complex
conjugate of the first term to reduce some computational
costs. However, we directly compute both terms in this
work (as well as in our previous work47) and add them
together. This generates the R(1)(t1), with examples pro-
vided in Fig. 4. Further perform the Fourier transform
(see Eq. 47) of R(1)(t1) generates the R

(1)(ω).

C. Model Systems and Computational Details

In all simulations, we use the HTC Hamiltonian for N
molecules coupled to the cavity. Each molecule is coupled
to an independent phonon bath, discretized by Nν = 20
independent bath modes from the Debye spectral density
(see Eq. 9). The bath parameters are sampled using the
procedure outlined in Ref. 27 (or more generally, Ref. 40)

Cν = 2

√
λ

πNνων
tan−1

(
ωmax

ωb

)
, (71a)

ων = ωb tan

[
ν

Nν
tan−1

(
ωmax

ωb

)]
, (71b)

where ωmax ≫ ωb is the maximum frequency when dis-
cretizing the bath frequencies. To sample within the
classical regime, we choose ωmax = 5 ωb. The bath
parameters are ωb = 18 cm−1 (which is 2.2 meV) and
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FIG. 4. Linear response function R(1)(t) as well as the spectra R(1)(ω) of the HTC model, with different numbers of molecule N
obtained from PLDM. Here, the collective Rabi splitting is fixed at ℏΩR = 0.2 eV and there is no cavity loss. Panels (a), (c), and
(e) represent the time-dependent polaritonic linear response for N = 5, 10, and 25 molecules coupled to the cavity, respectively.
Panels (b), (d), and (f) represent the normalized (by area) linear absorption spectra for N = 5, 10, and 25 molecules coupled
to the cavity respectively.

.

λb = 50 cm−1 (which is 6.2 meV). The characteristic
phonon frequency ωb leads to a bath correlation function
decay timescale of 300 fs. The initial bath condition ρ̂b
(see Eq. 55) is described by its Wigner transform with
the following analytic expression,

[ρ̂b]w =
∏
ν

2 tanh

(
βℏων

2

)
(72)

× exp

[
− tanh

(
βℏων

2

)(
ω2
νR

2

ℏ2
+

P 2

ℏ2ω2
ν

)]
.

The temperature is taken to be 300 K for all simulations
with β = 1052.58 au.

To perform linear spectra calculations, we remain
within the single excited subspace described in Eq. 22
and Eq. 23. For a demonstration of linear response
signals at different N coupled to the cavity (Fig. 4),
we fix the magnitude of the collective Rabi-splitting,
ℏΩR = 2

√
Nℏgc = 0.2 eV. For the molecules, we used

the average excitation energy of εn = ε̄ = 0.5 eV. The
cavity frequency is also kept at ℏωc = 0.5 eV (zero light-
matter detuning). The cavity is lossless with Γ = 0 meV.

To simulate disorder effects in linear spectra (Figs. 6-

7), we fix the collective coupling strength 2
√
Nℏgc at

0.2 eV forN = 500 molecules. For the molecules, we used
the average excitation energy of ε̄ = 2.0 eV. Throughout
this work, we consider the resonance condition where

ε̄ = ℏωc, (73)

where we have ignored the solvent reorganization energy
λb (see Eq. 9) in the above condition due to its small
value. For Fig. 6, εn is sampled based on a Gaussian
distribution (Eq. 74), while ε̄ = 2.0 eV. For results pre-
sented in Fig. 7), there is no site energy disorder and
εn = ε̄ = 2.0 eV. The cavity frequency is thus kept at
ℏωc = 2.0 eV (zero light-matter detuning). The cav-
ity loss rate was set at Γ = 10 meV. The nuclear time
step for verlet propagation was taken to be ∆t = 10 a.u.
(≈ 0.25 fs), and the forward and backward coefficients
are evolved between nuclear propagation using Eq. 32.

For energy disorder simulations (Fig. 6), the excitation
energy for nth molecule is sampled from the Gaussian
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FIG. 5. Convergence of the lower polariton spectra with an
increasing number of molecules from N = 1 to N = 105, while
fixing ℏΩR = 2

√
Nℏgc = 0.2 eV a constant (by decreasing gc

accordingly). Here, we do not consider any type of disorder,
and the cavity loss rate is set to be Γ = 20 meV.

distribution

P (εn) =
1√
2πσ2

ε

e−(εn−ε̄)2/2σ2
ε (74)

where σε is the width of the Gaussian centered at ε̄. This
introduces static inhomogeneity within the molecular ex-
citation energies. The sampling is performed indepen-
dently for each trajectory.

Following the previous work,38 we also study the effect
of orientation disorder by sampling the molecular orien-
tation (with respect to the cavity mode) from Gaussian
distribution,

P (θn) =
1√
2πσ2

θ

e−(θn−θ̄)2/2σ2
θ . (75)

The disorders in {θn} will influence the molecule-cavity
coupling in Eq. 6. In the limit of σθ → ∞, it corresponds
to an isotropic distribution of θ0 ∈ [0, π] relative to the
polarization direction of the cavity field. The expectation
value of cos2 θ for the Gaussian distribution is

⟨cos2 θ⟩ =
∫ ∞

−∞
dθP (θ) · cos2 θ = 1

2
+

1

2
e−2σ2

θ . (76)

Following the previous work,38 we further assume that
the external laser field E(t) in the linear spectra simu-
lation has the same direction as the cavity polarization
direction ê, such that

µ̂ ·E(t) =

N∑
n

µn cos θn · E(t). (77)

This means that the µ̂ expression in R(1)(t1) when con-
sidering dipole orientational disorders will be expressed

as

µ̂ =

N∑
n

µn cos θn. (78)

In this work, we assume that the dipole will remain in a
two-dimensional plane and deviate from the field polar-
ization direction ê.
To ensure tight convergence of R(1)(t), we used a

total of 106 trajectories, although typically a total of
103 − 5× 103 trajectories will provide visually converged
results. The propagation time step for the Chebyshev
propagation was chosen as ∆t = 20 a.u. (≈ 0.5 fs). Once
having a converged R(1)(t), we perform the numerical
Fourier transform

R(1)(ω) =

T/∆t∑
j=0

∆t · eiωj∆tR(1)(j∆t) cos

(
π · j∆t
2T

)
,

where T is chosen such that the R(1)(t) is sufficiently
decay to zero. For Fig. 4, for all N , the response signal
was simulated up to T = 2.5 ps, where R(1)(t) → 0. In
Fig. 5, all response signals were simulated till T = 800 fs.
In Fig. 6, the response signal for each energy disorder
(Eq. 74) decay to 0 with different T . For no disorder
case, σε = 0.0 eV, we chose T = 1.5 ps. For σε = 0.03 eV,
0.04 eV, 0.05 eV, 0.1 eV and 0.2 eV, we chose T = 1 ps,
T = 500 fs, T = 300 fs, T = 80 fs and T = 50 fs,
respectively. To simulate dipole disorder (Eq. 75), we set
T = 1.5 ps for all σθ cases in Fig. 7.

V. RESULTS AND DISCUSSIONS

1. Linear Response Signal

Fig. 4 presents the time-dependent linear response sig-
nal, R(1)(t) and the linear absorption spectra, R(1)(ω),
simulated using the PLDM approach. In this figure, we
do not account for any type of disorder, and we keep√
Nℏgc a constant as we change N . Fig. 4a and Fig. 4b

present the linear response signal and the linear absorp-
tion spectra for N = 5 molecules coupled to the cav-
ity, respectively. For the R(1)(ω) data, we shift the axis
with respect to ℏω0 = ε̄, so the spectra are centered
around zero instead of ε̄. A clear observation of the lin-
ear response signal indicates the presence of two types of
oscillations that arise due to the two polaritonic transi-
tions, |G0⟩ → |−⟩ and |G0⟩ → |+⟩, as observed in the
two peaks in linear spectra at ℏω − ε̄ ≈ −100 meV and
ℏω− ε̄ ≈ 100 meV, respectively. Due to symmetry, there
is no optical transition from |G0⟩ to the dark state man-
ifold {|Dk⟩}.
Panels (c) and (d) in Fig. 4 correspond to the case for

N = 10 molecules. Since the linear response signal is a
direct measurement of the coherent oscillations between
the upper and lower polariton states, compared to panel
(a), we can observe an increase in the coherence lifetime
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(a) (b)

FIG. 6. Linear spectra of N = 500 molecules in the presence of various static energy disorders. (a) Polariton absorption spectra
with each curve normalized with the corresponding area, and (b) represent the absorption curves with the peak height kept
fixed. The plots are centered around the molecular excitation energy ε̄ = 2.0 eV. The black dotted lines are the analytical
lower and upper polariton peaks for a system of N molecules coupled to a single cavity mode without any energy disorder.39

in R(1)(t) for the case of N = 10, which manifests it-
self as a further line width reduction and an increase in
peak height for linear spectra R(1)(ω), as shown in panel
(d). This is due to the well-known polaron decoupling
effect,1,2,73 which effectively reduces the phonon reorga-
nization energy by O(1/N) under the collective coupling
regime (see Eq. 27 in Ref. 50 and the discussions there).
Panels (e) and (f) present the results of coupling N = 25
molecules to the cavity mode, and we observe a further
enhancement in the response signal lifetime and a further
reduction in the polariton line widths.

In Fig. 5, we present the convergence of absorption
lineshape with an increasing number of molecules from
N = 1 to N = 105, while fixing the collective Rabi split-
ting, ℏΩR = 2

√
Nℏgc = 0.2 eV. We use a cavity loss rate

of Γ = 20 meV and the same molecular parameters as
used in Fig. 4. Fig. 5 presents the lower polariton line-
shape for a different number of molecules. The LP spec-
tra with N = 102 molecules (green curve) are visually
close to the converged lineshape of N = 105 molecules
(thin dark blue curve). From these curves, the lineshape
features of linear spectroscopy due to collective effects
appear to reach a convergence at N ≈ O(102), which is
very much closer to the lineshape features of N = 105.
The theoretical approaches of this work allow us to di-
rectly perform the quantum dynamics and linear spectra
simulations with N = 105 molecules and explore various
trends of convergences.

2. Energy disorder

Fig. 6 presents the Linear absorption spectra of N =
500 molecules collectively coupled to the cavity, where
each molecule is experiencing static energy disorder (in-
homogeneous disorder), described in Eq. 74. Fig. 6a

presents the absorption normalized with respect to the
area, and Fig. 6b presents the absorption normalized with
the intensity of the peak, with the vertical black dashed
lines indicate the Rabi splitting without any static site
energy disorders.
As the disorder in energy σε approaches the same

size of Rabi-splitting ℏΩR = 2
√
Nℏgc, one can ob-

serve that the effective Rabi-splitting slightly increases.
This has been understood from perturbation theory,38,74

where the effective Rabi splitting is expressed as ℏΩR ≈
2
√
Nℏgc + ⟨δε⟩2/(

√
Nℏgc) when σε/(

√
Nℏgc) ≪ 1 (see

Appendix C of Ref. 38), as well as the approximate ana-
lytical solution of Rabi splitting when having Gaussian-
type energy disorders.74 As the line width increases with
an increase in inhomogeneous disorder, the peak inten-
sity decreases. This is because the effective number of
molecules with zero detuning decreases. When further in-
creasing the σε to 0.2 eV (dark blue curve in Fig. 6a), the
UP and LP peaks start to merge and the Rabi-splitting
fades away. This pattern is clearer when we normalize
the curves with the highest peak intensity, as shown in
Fig. 6b. These observations also agree with the recent
theoretical works.38,74,75

3. Dipole orientation disorder

Fig. 7 presents the linear spectra of N = 500 molecules
coupled to a single cavity mode under various dipole ori-
entation disorders based on Eq. 75, without any static en-
ergy disorders, εn = ε̄ = ε. We further center the spectra
by setting ℏω0 = ε = 0. As one gradually increases the
dipole orientation disorder σθ, Rabi splitting decreases.
On the other hand, the linewidth of the polariton peaks
remains almost unchanged, since there are no additional
broadening mechanisms when including dipole disorders,
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(a) (b)

FIG. 7. Linear spectra of N = 500 molecules coupled to the cavity, in the presence of dipole orientation disorders. (a) Polariton
absorption spectra with each curve normalized by area and (b) the same absorption spectra normalized by peak height. The
plots are centered around the molecular excitation energy εn = ε̄ = 2.0 eV. The black dashed lines are the analytic result using
Eq. 79. The vertical dotted lines indicate the effective Rabi splitting estimated from Eq. 80.

as opposed to the previous case when considering an in-
homogeneous energetic disorder in the system.

For the resonance condition, ℏωc = ε̄, when con-
sidering the dipole orientation disorder, the polariton
eigenspectrum is still analytically available.37 By setting
ω0 = ωc, one can use the well-known analytic results of
the lineshape76 to expression absorption spectra as fol-
lows

R(1)(ω) =
ΓκNg2c ⟨cos2 θ⟩∣∣(ω − ωc + i Γ

2ℏ )(ω − ω0 + i κ
2ℏ )−Ng2c ⟨cos2 θ⟩

∣∣2 .
(79)

where κ is the molecular line width47 and ⟨cos2θ⟩ (see
Eq. 76) is the effective modification of polariton frequen-
cies depending on orientation disorder.37,38

In Fig. 7b, we present the numerical results obtained
from our simulations (solid colors) when normalized to
the peak height, as well as the analytic answer from
Eq. 79 (black dashed lines). Overall, the analytic an-
swer gives a reasonable estimate of the lineshape behavior
across different angle disorders but slightly overestimates
the linewidth. The narrower linewidth from the numeri-
cal results is likely due to the subaverage behavior50,77,78

(linewidth smaller than Γ/2 + κ/2 for the resonant case,
see Eq. 34 in Ref. 50), which cannot be captured by the
simple expression of the lineshape in Eq. 79 that predicts
the linewidth to be Γ/2 + κ/2 under the resonance case.

In Fig. 7b, we see that with an increase in dipole orien-
tation disorder σθ, the effective Rabi-splitting decreases
until it converges to a specific ΩR. The convergence is
reached around a disorder of σθ = 90◦. This can be inter-
preted as follows. For a HTC model Hamiltonian under
the condition ℏωc = ε̄ = ε, the polariton energies can be

expressed as37,39

ε± = ε± 1

2

√
4Nℏ2g2c ⟨cos2θ⟩+

(
−i
[
1

2
κ− 1

2
Γ

])2

(80)

where ⟨cos2θ⟩ is expressed in Eq. 76, λb is molecular reor-
ganization energy (c.f. Eq. 9), which accounts for the ad-
ditional light-matter detuning when the cavity frequency
is equal to the bare molecular excitation. For the model
system considered here, which is in the slow bath limit

(inhomogeneous limit),79 κ/2 =
√
ln 2 ·

√
λbkBT

ℏ , and
√
ln 2 is the half of Full-width half maximum (FWHM)

conversion factor for a Gaussian lineshape. The real part
of Eq. 80 gives the location of the polariton peaks, and
the imaginary part gives the linewidth of the respective
polaritons.39,47 For the resonance case, the Rabi splitting
is expressed as

ℏΩR = Re[ε+ − ε−], (81)

where ε± can be evaluated from Eq. 80. One can esti-
mate the Rabi splitting and compare with the numer-
ically simulated spectra. Indeed, the Rabi splitting de-
creases as one increases the dipole disorder from the fully
aligned case (when σθ → 0 and thus ⟨cos2θ⟩ = 1) to the
fully isotropic case in the 2D plane (when σθ → ∞ and
thus ⟨cos2θ⟩ = 1/2). The vertical dashed line in each
panel of Fig. 7b indicates the Rabi splitting based on the
corresponding value of ⟨cos2 θ⟩ (cf. Eq. 76), and the nu-
merical simulations agree well with the analytic result.
The same behavior has also been discussed in (Appendix
D) of Ref. 38.
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VI. CONCLUSION

In this paper, we presented two general theoretical
techniques for efficient simulation of polariton quan-
tum dynamics under the collective light-matter coupling
regime. The first one is related to the sparsity of the HTC
Hamiltonian, which allows one to reduce the cost of act-
ing polariton Hamiltonian onto a state vector to the lin-
ear order of the number of states, instead of the quadratic
order. In principle, a direct density-matrix-based simula-
tion requires a computational cost (in both time propaga-
tion and memory requirements) proportional to O(N6),
where N is the number of molecules and O(N2) is the
number of states in the double excitation subspace. The
sparse nature of the HTC system Hamiltonian and dipole
matrix allow for a compact expression of ĤQ|Ψs⟩ and
µ̂|Ψs⟩ as simple Hadamard products between vectors of
O(N2) instead of matrix-matrix or matrix-vector opera-
tions.

The theoretical technique applies the well-known
Chebyshev series expansion approach for quantum dy-
namics propagation and uses it to simulate the polariton
dynamics in the HTC system. The Chebyshev expan-
sion allows us to use a much larger time step for prop-
agation and only requires a few recursive operations of
the Polariton Hamiltonian acting on state vectors, which
we can further take advantage of the first technique we
developed in this work. Due to the block diagonal struc-
ture of the HTC-type Hamiltonian, one can decompose
Chebyshev expansions for single and double excitation
subspaces separately, and a shift in the energy axis of the
subspace that significantly reduces the oscillation magni-
tude of the coefficients in time and allows a much larger
propagation time step. These two theoretical approaches
are general and can be applied to any trajectory-based
non-adiabatic quantum dynamics methods.

Applying these two theoretical techniques, we ex-
tended the L-PLDM method80 to the collective coupling
regime. Using this approach, we simulate the linear spec-
tra of the N -molecule polaritonic system described by
the HTC Hamiltonian. The approach we present here
will significantly reduce computational costs. To demon-
strate the developed methods, we simulate the polari-
tonic absorption spectra of N = 500 molecules coupled
to a cavity under either static energy disorder or dipole
orientation disorder, under which the permutation sym-
metry of the HTC Hamiltonian is broken and a simple
mean-field approach is not directly applicable. We ob-
serve similar trends of these linear spectra as observed
in the previous work.74,75,81 As the disorder in energy σε
increases, the linewidth increases, and the Rabi splitting
also gradually increases due to the disorders in energies.
When gradually increasing the orientation disorder, the
Rabi splitting decreases, without further change in the
line width. In future work, we will outline the theoreti-
cal details of stimulating 2DES spectra for the polariton
system under the collective coupling regime (Paper II),
with new computational techniques for focusing the al-

gorithm of the PLDM simulation.
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Appendix A: Cavity loss through Lindblad

The loss channel from state |G1⟩ to state |G0⟩ can be
described by the loss operator

L̂ = |G0⟩⟨G1|. (A1)

The dissipator LL̂ accounts for the cavity loss channel
causing the system to relax

LL̂[ρ̂Q] = Γ
(
L̂ρ̂QL̂

† − 1

2
{L̂†L̂, ρ̂Q}

)
, (A2)

where Γ is the rate of relaxation of the jump operator
which quantifies the coupling strength of the system to
the environment, and {Â, B̂} = ÂB̂ + B̂Â is the anti-
commutator, and ρ̂Q = Trb[ρ̂] is the reduced density ma-
trix operator for the quantum subsystem by tracing out
all bath DOF. In this study, Γ is the cavity loss rate, and
the cavity quality factor is defined as Q = ℏωc/Γ.
The Lindblad evolution for the forward and backward

wavefunctions is computed by multiplying the forward
and backward coefficients with a phase factor for these
two states as

ca(t+ dt) = ηa(t)ca(t) (A3)

c̃a(t+ dt) = η̃a(t)c̃a(t) (A4)

where the phase factors are

ηG1 = η̃G1 = e−Γdt/2, (A5)

ηG0 = η̃∗G0 = 1 + (2r − 1)

√
3(1− e−Γdt)

cG1(t)c̃∗G1(t)

cG0(t)c̃∗G0(t)
,

(A6)
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and r ∈ [0, 1] is a uniform random number. The phase
factor, when averaged over the ensemble of trajectories
ensures the exponential population decay of the state
|G1⟩⟨G1| and a gain in population of the state |G0⟩⟨G0|
as required by Lindblad dynamics, as analytically proved
in our previous work47,82. The rest of the forward and
backward coefficients, for a ̸= G1 and a ̸= G0 are not
affected by the Lindblad decay, and the corresponding
ηa = η̃a = 1. When averaging among a reasonable
amount of trajectories (typically ∼ 102 trajectories, see
Appendix B in Ref. 47), Eq. A5-A6 exactly reproduces
the Lindblad EOM for reduced density matrix, as demon-
strated numerically in our previous work.47

Appendix B: Error analysis for various propagators

We estimate the error accumulated during a propaga-
tion step ∆t in the quantum subspace for various propa-
gation schemes. We first compute the eigenstates of the
HTC Hamiltonian and compute the exact propagator by

exp

(
− iĤQ∆t

ℏ

)
= Û†exp

(
− i∆t

ℏ
Λ̂

)
Û (B1)

where Λ̂ is the eigenvalues matrix (the diagonal form

of ĤQ), and Û is the eigenvector matrix, satisfying

ĤQÛ = Λ̂Û . The evolution of any vector can now be
obtained by operating Eq. B1 on the vector. To test
the accuracy of the different propagators, we generated
N = 106 samples of random state vectors by randomly
selecting the coefficients in Eq. 26 (in the complex plane)
while keeping it properly normalized. For each configura-
tion, the bath fluctuation term

∑
ν Cn,νRn,ν in ĤQ (see

Eq. 27) is also randomly sampled, based on the Wigner
distribution (Eq. 72). For each value of the uncertainty
parameter z, we compute the error of the propagator by
comparing it against the exact evolution by

error =
1

N

N∑
υ=1

max {|cυi − cexi |} ∀i ∈ [1,K] (B2)

where cexi are the components of the exactly propagated
vector through Eq. B1 for υth trial and cυi are the com-
ponents of the vector propagated by the other numerical
integrators.

In Fig. 8, we compare the accuracy of several prop-
agators for one step propagation during ∆t, as a func-
tion of the uncertainty parameter z (defined in Eq. 33).
The red and orange curves present the standard symplec-
tic integrator (using velocity-valet, Vel-Ver) and RK-4
propagators, respectively. For velocity verlet propaga-
tion, we further divided the integration into 1000 steps,
with δt = ∆t/1000. For RK-4, we use δt = ∆t/100 and
100 steps for the ∆t propagation. The light-cyan curve
is the accuracy of the normal Chebyshev (Cheb) expan-
sion without the separation of manifolds and the shift of

FIG. 8. Accuracy of different type propagators as a function
of z-value (see Eq. 33). The red, yellow, cyan, and dark blue
curves correspond to the symplectic integrator (velocity ver-
let), RK4, Chebyshev, and shifted Chebyshev propagators,
respectively.

the energy axis. We considered the first six terms of the
Chebyshev expansion in Eq. 32 for the ∆t propagation.
For low z values up to z ≈ 0.25, the quantum propaga-
tion via normal Chebyshev expansion for a single time
step ∆t is much more accurate compared to RK-4 or the
velocity verlet. As we increase z, the accuracy of Cheby-
shev reduces and, around z ≈ 0.6, it becomes worse than
the velocity verlet propagation, due to the limited num-
ber of expansion terms (only six). Further increasing the
number of terms will reduce the error. The dark-gray
curve represents the Chebyshev propagator with the sep-
arate manifold and the shifting of the energy axis which
we will refer to as the shifted Chebyshev (Shift-Cheb).
As we separate the manifolds and shift the energy of the
manifold, the accuracy of Chebyshev increases by orders
of magnitude and it consistently performs much better
than velocity verlet and RK-4 propagation even at a high
value of z, with only six items used in the expansion.
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