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In our previous work [Ref. 1], we developed several efficient strategies to simulate exciton-polariton dynamics
described by the Holestein-Tavis-Cummings (HTC) Hamiltonian under the collective coupling regime. Here,
we incorporated these strategies into the previously developed L-PLDM approach for simulating 2D Electronic
Spectroscopy (2DES) spectra of exciton-polariton under the collective coupling regime. In particular, we
apply the efficient quantum dynamics propagation scheme developed in Paper I to both the forward and
the backward propagations in the PLDM, and develop an efficient important sampling scheme and GPU
vectorization scheme that allow us to reduce the computational costs from O(K2)O(T 3) to O(K)O(T 0) for
the 2DES spectra simulation, whereK is the number of states and T is the number of time steps of propagation.
We further simulated the 2DES spectra for an HTC Hamiltonian under the collective coupling regime and
analyzed the signal from both rephasing and non-rephasing contributions of the ground state bleaching (GSB),
excited state emission (ESA), and stimulated emission (SE) pathways.

I. INTRODUCTION

Nonlinear spectroscopy can be a very powerful mea-
surement tool that provides a fundamental understand-
ing of the photophysics of polariton systems by un-
raveling the energy transfer mechanisms through line-
shape features and lifetimes of the different peak in-
tensities.2–8 Transient absorption (TA) measurements by
DelPo el al.9 studies non-linear effects like Rabi contrac-
tion and Virgili et al.10 have developed kinetic models
suggesting indirect energy transfer from Upper polariton
(UP) to Lower polariton (LP) via dark states. Although
TA is a powerful tool, it suffers from some artifacts for
interpreting polariton dynamics11,12 2D Electronic Spec-
troscopy (2DES), as pioneered by David Jonas13–16 and
many others,17–22 can easily overcome these challenges
by resolving the system dynamics along two frequency
axes.19–21,23–27 The various non-linear effects that re-
sult from collective coupling in exciton-polariton sys-
tems like Rabi contraction,9 motional narrowing,28–30 po-
laron decoupling,2,7 coherence enhancement7,31,32 can be
directly studied by just studying the 2D lineshapes of
the diagonal and cross-diagonal peaks and how these
signals fluctuate in time. Takahashi and Watanabe2

demonstrated the effect of polaron decoupling in exciton-
polaritons using tetraphenyldibenzoperiflanthene (DBP)
molecules coupled to a cavity, appearing as a tilt of
the slope between the GSB (ground state bleach) +
SE(stimulated emission) and ESA (excited state absorp-

a)Electronic mail: mmondal@ur.rochester.edu
b)Electronic mail: pengfei.huo@rochester.edu

tion) signals in the lower polariton peak. A similar
study has been done by Quenzel and coworkers,7 where
they couple Squarine J-aggregates to gold plasmonic sur-
faces and observe the slope tilt in the polariton 2DES
peaks. Recent 2DES measurements also demonstrate en-
ergy relaxation and energy transfer mechanisms in dif-
ferent types of exciton-polariton systems, including J-
aggregates6,31 and carbon nanotubes4. These studies4,31

also demonstrate the enhancement of exciton lifetimes
and coherent energy transfer lifetimes33,34 due to the col-
lective coupling of molecules to the cavity mode.

Despite the rich amount of information that can be
extracted by the 2DES signals, there is only a limited
amount of theoretical work on simulating 2DES for exci-
ton polariton.8,35–37 In our previous work8, we developed
a theoretical approach for simulating linear and non-
linear spectroscopy of exciton-polaritons within the semi-
classical partially linearized path-integral framework, but
it was limited to N = 1 molecule. This is because,
with an increasing number of molecules N , the number
of states within the second excitation manifold expands
quadratically in order of O(N2) and the Hamiltonian size
scales as O(N4). Due to this quartic scaling, the direct
computation of dynamical properties for an N -molecule
polaritonic system becomes very expensive even for a sys-
tem as small as N = 10.

To efficiently simulate the collective coupling in
exciton-polaritons, we have developed efficient quantum
dynamics propagation schemes, reported in paper-I1. In
particular, we take advantage of the sparsity of the HTC
Hamiltonian and develop an efficient propagation scheme
based on the Chebyshev series expansion of the time evo-
lution operator. In this paper, we integrate our theoret-
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ical development in Ref. 8 and in paper-I1 to simulate
2DES of N -molecules polariton systems, while introduc-
ing new algorithms for the focusing step in L-PLDM
2DES calculations. These new developments reduce the
cost of the calculations to the order O(N2) without the
necessity for generating any O(N4) matrix. We further
show that our algorithm can be efficiently vectorized us-
ing GPU to reduce the scaling of 2DES propagation time
R from O(T 3) to O(T 0), where T is the number of prop-
agation steps for each laser in the simulation. This allows
us to efficiently perform accurate 2DES calculations, with
the help of GPU, for polariton systems with N ≈ O(102)
where the total states can be of orderO(104). We demon-
strate the 2DES for up to N = 25 molecules coupled to
the cavity at t2=0 fs and also demonstrate the signal
breakdown of 2DES for N = 5 molecule polariton sys-
tem at different population time t2. Finally, we analyzed
the features of different signals from both rephasing and
non-rephasing contributions while also further decompos-
ing them as ground-state bleaching (GSB), excited state
emission (ESA), and stimulated emission (SE) pathways.

II. THEORETICAL APPROACH

A. Model Hamiltonian

We describe the system of N -molecules coupled to a
single cavity mode by the Holestein-Tavis-Cummings38

Hamiltonian,

Ĥ = ĤQ + Ĥb (1)

where ĤQ is the quantum part of the Hamiltonian and

Ĥb is the phonon bath DOF. In particular, we have N ex-
citonic DOF and one photonic mode in ĤQ, together with
the exciton-photon interaction as well as the exciton-
phonon interactions

ĤQ =

N∑
n

εnσ̂
†
nσ̂n + ℏωc

(
â†â+

1

2

)
(2)

+
∑
n

ℏgnc
(
σ̂†
nâ+ σ̂nâ

†)+ Ĥsb,

where the nth exciton has site energy of εn and the
exciton is coupled to the cavity mode of energy ℏωc

with a light-matter coupling strength of ℏgnc . Here,
σ̂†
n = |en⟩⟨gn| and σ̂n = |gn⟩⟨en| creates and annilates

an excitation on the nth molecule, respectively, with |gn⟩
and |en⟩ as the ground and excited states for molecule n.
Additionally, each exciton site is also coupled to a set of
harmonic bath coordinates ν, which are described by the
bath Hamiltonian,

Ĥb =
1

2

N∑
n=1

∑
ν

(
P̂ 2
n,ν + ω2

n,νR̂
2
n,ν

)
(3)

where P̂n,ν and R̂n,ν are the momentum and position op-
erator of the νth phonon on nth exciton. For the HTC
Hamiltonian (Eq.1), the bath coordinates are diagonally
coupled to the exciton, with a bi-linear system-bath in-
teraction defined as

Ĥsb =
∑
n

σ̂†
nσ̂n ⊗

(∑
ν

Cn,νR̂n,ν

)
(4)

with Cn,ν being the exciton-phonon coupling strength
between nth exciton and νth phonon mode.
To compute the non-linear molecular response, the

dipole operator is defined as

µ̂ =

N∑
n

µn

(
σ̂†
n + σ̂n

)
, (5)

where µn is the transition dipole of the nth exciton.
To obtain a matrix representation of ĤQ and µ̂, we con-

struct a diabatic basis by dressing the exciton states with
photonic Fock states within a double excitation subspace
as described in Section. III.A of Paper-I (Ref. 1). For a
system of N two-level excitons coupled to a single cav-
ity mode, the total number of quantum states within the
double excitation subspace is K = 2N +3+N(N − 1)/2,
which scales as O(N2).

B. PLDM Approach for Dynamics Propagation

The diabatic Hamiltonian of a system coupled to a
bath (nuclear DOF) can be expressed as

Ĥ =
P̂ 2

2M
+ V0(R̂) +

K∑
a

Vaa(R̂) |a⟩⟨a|+ 1

2

K∑
b ̸=a

Vab(R̂) |a⟩⟨b|

= Ĥb + ĤQ. (6)

where R̂ and P̂ are the position and momenta, respec-
tively, of the bath particles of mass M , and V0(R̂) is the
state-independent part of the Hamiltonian. In the con-
text of this work for the HTC Hamiltonian,

Ĥb =
P̂ 2

2M
+ V0(R̂),

ĤQ =

N∑
a

Vaa(R̂) |a⟩⟨a|+ 1

2

N∑
b ̸=a

Vab(R̂) |a⟩⟨b| ,

where ĤQ is the quantum part of the Hamiltonian (see

Eq.2). Here, we use R̂ for a short hand notation for

{R̂n,ν}.
As described in Paper I1, the PLDM approach evolves

the reduced density matrix of the system by propagating
the forward and backward quantum coefficients (mapping
variables), and coupled to the classical equation of mo-
tion for the nuclear DOF. Although the original PLDM
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approach39–43 was developed based on the partially lin-
earized path-integral formalism using the MMST map-
ping representation, it can be recast using forward and
backward expansion coefficients ca and c̃a (see discussions
in Paper I1), evolving according to

iℏċa(t) =
∑
b

Vab(R(t)) · cb(t), (7a)

−iℏ ˙̃ca(t) =
∑
b

Vab(R(t)) · c̃b(t). (7b)

The nuclear DOFs evolve according to

∂R

∂t
= P,

∂P

∂t
= F , (8a)

F = −1

2
∇R

(
H(R) + H̃(R)

)
, (8b)

where the MMST mapping Hamiltonian for the forward
coefficients is expressed as

H =
P 2

2M
+ V0(R) +

∑
a

Vaa(R)|ca|2

+
∑
b ̸=a

Vab(R) (Re[ca]Re[cb] + Im[ca]Im[cb]) ,
(9)

and a similar expression for H̃ can be obtained using the
backward coefficients

H̃ =
P 2

2M
+ V0(R) +

∑
a

Vaa(R) · |c̃a|2

+
∑
b ̸=a

Vab(R) (Re[c̃a]Re[c̃b] + Im[c̃a]Im[c̃b]) .
(10)

The reduced density matrix estimator (for each indi-
vidual trajectory) can be expressed as

ρ̂Q = |Ψ⟩⟨Ψ̃|, (11)

where the forward and backward vectors are expanded in
these coefficients as

|Ψ⟩ =
K∑
a

ca |a⟩ and ⟨Ψ̃| =
K∑
a

c̃a ⟨a| . (12)

Note that the dynamics for the quantum subsystem are
not unitary due to coupling to the bath, and ρ̂Q does
not correspond to a pure state, and upon the trajec-
tory average, Eq.11 describes reduced density matrix
for mixed states. The time-dependent reduced density
matrix of the system is obtained by averaging ρ̂ from
all trajectories. For the system with an initial state of
ρ̂Q(0) = cn0

|n0⟩⟨ñ0|c̃ñ0
, the elements of the reduced sys-

tem density matrix can now be obtained as

⟨nj |ρ̂Q(t)|ñj⟩ =
1

2
cnj

(t) · c∗n0
× 1

2
c̃∗ñj

(t) · c̃ñ0
. (13)

C. 2DES Spectroscopy

Within the linear response limit, the 2D electronic
spectra can be obtained by computing the 3rd order re-
sponse from the four-point correlation function8,44

R(3)(t1, t2, t3)

= −iTr
[
µ̂(t3 + t2 + t1)µ̂

×(t2 + t1)µ̂
×(t1)µ̂

×(0)ρ̂(g)
]
(14)

where, µ̂×Â ≡ [µ̂, Â] and ρ̂(g) is the equilibrium ground
state of the system.1 Here, the system is perturbed at
times t0, t1, and t2 and the system response is detected
at t3. In Eq.14, R(3) can be separated into 8 differ-
ent Liouville pathways, each can be categorized as either
rephasing or non-rephasing signals. Four of these Liou-
ville pathways correspond to

R
(3)
1 = −iTr[µ̂(t3 + t2 + t1)µ̂(0)ρ̂gµ̂(t1)µ̂(t1 + t2)],

(15a)

R
(3)
2 = −iTr[µ̂(t3 + t2 + t1)µ̂(t1)ρ̂gµ̂(0)µ̂(t2 + t1)],

(15b)

R
(3)
3 = −iTr[µ̂(t3 + t2 + t1)µ̂(t2 + t1)ρ̂gµ̂(0)µ̂(t1)],

(15c)

R
(3)
4 = −iTr[µ̂(t3 + t2 + t1)µ̂(t2 + t1)µ̂(t1)µ̂(0)ρ̂g],

(15d)

while the other four pathways can be constructed from
the complex conjugate of Eq.15a to Eq.15d. The purely-
absorptive 2D spectra is computed by adding the rephas-

ing (denoted as R
(3)
rep) and non-rephasing (denoted as

R
(3)
nrp) contributions expressed as follows

R(3)
rep(t1, t2, t3) = R

(3)
2 +R

(3)
3 +R

(3)∗
1 , (16a)

R(3)
nrp(t1, t2, t3) = R

(3)
1 +R

(3)
4 +R

(3)∗
2 . (16b)

In Eq.16a and Eq.16b, the terms on the right-hand side
are arranged as individual contributions from (in the or-
der of) Stimulated Emission (SE), Ground State Bleach
(GSB), and Excited State Absorption (ESA) signals, re-
spectively. The 2D spectra in the frequency domain are
calculated by performing separate Fourier transforms of
rephasing and non-rephasing signals,

R(3)
rep(ω1, t2, ω3) =

T1∫
0

dt1

T3∫
0

dt3R
(3)
repe

iω3t3−iω1t1S1S3,

(17a)

R(3)
nrp(ω1, t2, ω3) =

T1∫
0

dt1

T3∫
0

dt3R
(3)
nrpe

iω3t3+iω1t1S1S3,

(17b)

where Si = cos(πti/2Ti) is the smoothing function for
time ti. The frequency domain pure absorptive 2D spec-
tra is the imaginary part of the total contribution from
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rephasing (Eq.17a) and non-rephasing (Eq.17b) signals,
expressed as follows

R(3)(ω1, t2, ω3) = −Im
[
R(3)

rep(ω1, t2, ω3) +R(3)
nrp(ω1, t2, ω3)

]
.

(18)

D. Simulating 2DES using PLDM

The nonlinear responses in Eq. 14 can be equivalently
expressed as44

R(3)(t1, t2, t3) = −iTr
[
µ̂G3

(
µ̂×G2

(
µ̂×G1

(
µ̂×
0 ρ̂

(g)
)))]

,

(19)

where GjÂ = e
i
ℏ Ĥtj Âe−

i
ℏ Ĥtj . As a specific example,

the non-rephasing Ground State Bleach (GSB) signal in
Eq. 15d can be written as44

R
(3)
4 (t1, t2, t3) (20)

= −iTr
[
µ̂e

i
ℏ Ĥt3 µ̂e

i
ℏ Ĥt2 µ̂e

i
ℏ Ĥt1(µ̂ρ̂0)e

− i
ℏ Ĥt1e−

i
ℏ Ĥt2e−

i
ℏ Ĥt3

]
.

These expressions in Eq. 19 Eq. 20 can be easily eval-
uated by using the PLDM approximation,44 where the
path-integral expression for the forward and backward
propagators are used and the partial linearization ap-
proximation on the nuclear DOF is applied.39,41 For R(3),
the PLDM expression is44

R(3)(t1, t2, t3) (21)

≈ −i
∑
n3

∑
n2,ñ2

∫
dτ2[µ̂ρ̃

(3)]n3,n3

∑
n1,ñ1

∫
dτ1[µ̂

×ρ̃(2)]n2,ñ2

×
∑
n0,ñ0

∫
dτ0[µ̂

×ρ̃(1)]n1,ñ1
[µ̂ρ̂g]n0,ñ0

· [ρ̂b]w

and more specifically for R
(3)
4 , the PLDM expression is

R
(3)
4 (t1, t2, t3) ≈ −i

∑
n3

∑
n2,ñ2

∫
dτ2[µ̂ρ̃

(3)]n3,n3
(22)

×
∑
n1,ñ1

∫
dτ1[µ̂ρ̃

(2)]n2,ñ2

∑
n0,ñ0

∫
dτ0[µ̂ρ̃

(1)]n1,ñ1

× [µ̂ρ̂g]n0,ñ0 · [ρ̂b]w.

In the above expression, dτj are expressed as

dτj ≡ dRj · dPj · dcj · dc̃j ·Gj · G̃j , (23)

where Rj and Pj are the “initial” nuclear configuration
at time tj , cj ≡ {ca(tj)} and c̃j ≡ {c̃a(tj)} are the com-
plex forward and backward coefficients at time tj . Here,
the time tj (for tj ∈ {t1, t2, t3}) are the times at which

the system is perturbed with a laser. The quantity ρ̃(j)

represents the reduced system density matrix after apply-
ing the perturbation at time tj−1, with an initial state of

ρ̃(j−1) = cnj−1
|nj−1⟩⟨ñj−1|c̃∗ñj−1

, and evolved during the

time t ∈ [tj−1, tj ]. The evolved density matrix elements
can be expressed as

⟨nj |ρ̃(j)|ñj⟩ =
1

2
cnj

(tj) · c∗nj−1
× 1

2
c̃∗ñj

(tj) · c̃ñj−1
(24)

The other response functions have a similar expression as
Eq. 22, with µ̂ showing up in different places with ρ̃(j).
From Eq. 20, one can easily observe that, for each

consecutive laser operation, one needs to spawn more
trajectories due to the sum,

∑
nj ñj

, and each dτj con-

tains additional Gaussian sampling for the mapping vari-
ables. To reduce this scaling in the number of trajecto-
ries, Provazza et al.44 suggested an efficient importance
sampling strategy with focusing and important sampling
techniques8,41,45 to stochastically choose one pair of la-
bels {nj , ñj}, with details outlined below.

E. Focusing Scheme of µ̂ρ̃(n).

The focusing algorithm for the PLDM 2DES simula-
tion requires an stochastic sampling41,44,45 of the “el-
ement” {nj , ñj}, based on the weight of the absolute

magnitude of the µ̂ρ̃(n), and re-weight each trajectory
based on the phase of µ̂ρ̃(n). This is done by using the
important sampling procedure outlined in the previous
work.8,41,44 The application of a laser at a given time
on the system can be represented by the dipole operator
acting on the system density matrix estimator. We can
expand this as

µ̂ρ̃(n) =
∑
ab

[µ̂ρ̃(n)]ab |a⟩⟨b| =
∑
ab

rab · eiθab |a⟩⟨b| , (25)

where we decompose the estimator as its absolute value
rab and its phase eiθab .

The Cumulative Distribution Function (CDF) is gen-
erated from the absolute value of this density matrix,

D̂ =
∑
ab

dab |a⟩⟨b| , dab =
∑
n≤a

∑
m≤b

rnm (26)

Defining the normalization factor (for a total of K states)

Rρ =

K∑
a=1

K∑
b=1

rab (27)

we use the normalized CDF for the focusing step.8 Next,
we sample a uniform random number, ζ, and select the
collective index K ≡ ab, such that

dK−1

Rρ
≤ ζ <

dK
Rρ

(28)

The pair of the label {a, b} will be chosen, and that
trajectory will be re-weighted by the phase factor eiθab .

A diagrammatic illustration of computing R
(3)
1 (t1, t2, t3)
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(the stimulated emission state signal) with the focusing
scheme can be found in Fig. 2 of Ref. 8.

The condition in Eq. 28 is typically searched by enu-
merating all possible K = {a, b} and then performing the
search over O(K2) elements.8,44 To compute µ̂ρ̃(n), one
in principle will need to multiply two O(K2) size ma-
trices. Furthermore, from Eq. 26, in order to calculate
the CDF8,44 of this large matrix, we need to perform an-
other O(K2) operation on µ̂ρ̃(n). This is a challenging
task for computing polariton spectra under the collective
coupling regime, with respect to both time and memory
requirements as K ∝ N2, especially with a large N .
To reduce the computational cost of the focusing, we

modify the original importance sampling algorithm men-
tioned above as follows. Within a single trajectory, the
reduced density matrix of the system can be represented
as the outer product of a “forward” (|Ψ⟩) and a “back-

ward” (⟨Ψ̃|) part (see Eq. 11)

ρ̃(n) = |Ψ⟩⟨Ψ̃|. (29)

The operation of the dipole operator on ρ̃(n) can thus be
rewritten as

µ̂ρ̃(n) = µ̂|Ψ⟩⟨Ψ̃| = (µ̂|Ψ⟩)⟨Ψ̃| = |Φ⟩⟨Ψ̃| (30)

where |Φ⟩ = µ̂|Ψ⟩, which can efficiently evaluated as we
shown in Eq. 49 in Ref. 1 (paper I), with a linear scaling
of the total number of states K. With this, we further
express

|Φ⟩ =
∑
a

ca |a⟩ =
∑
a

rae
iθa |a⟩ (31a)

⟨Ψ̃| =
∑
b

c̃b ⟨b| =
∑
b

r̃be
iθb ⟨b| . (31b)

Because that the density matrix estimator can be ex-
pressed as the outer product, the sum of all elements (in
Eq. 27) can now be simplified as

Rρ =
∑
ab

rab =

(∑
a

ra

)
·

(∑
b

r̃b

)
= R · R̃ (32)

where R =
∑

a ra and R̃ =
∑

b r̃b. We also define the
cumulative sum of magnitudes as

da =
∑
n≤a

rn , d̃b =
∑
m≤b

r̃m. (33)

A search for the forward index is equivalent to searching
for the row of the focused element. We start the search
of the row index a first, with a fixed column index b, for
which Eq. 28 is satisfied as

dab
Rρ

≥ ζ. (34)

Because dab = dad̃b and d̃b ≤ R̃ (see Eq. 32 and Eq. 33),

we necessarily have the condition dab ≤ da · R̃. Thus, the

condition in Eq. 34 becomes

dab
Rρ

≥ ζ ⇒ da · R̃
Rρ

≥ ζ ⇒ da · R̃
R · R̃

≥ ζ,

leading to

da
R

≥ ζ (35a)

so the index a is the row of the focused element as long as
da/R ≥ ζ. Once a row index a is found, one can search
the column index b with the following condition(

da
R

)
· d̃b ≥ ζ, (35b)

where the ζ and da are the same as used in Eq. 35a. The
algorithm in Eq. 35a and Eq. 35b is equivalent to the
original condition in Eq. 28, but significantly reduces the
computational cost from order O(K2) to order O(2K),
and there is no need to generate and store the reduced
density matrix, µ̂ρ̃(n) of order O(K2).
Final response function. To calculate the nth order

response, we need to evaluate the following trace within
each trajectory,

R(n) = Tr
[
µ̂ρ̃(n)

]
(36)

For any forward-backward trajectory methods,39–43,46,47

we can directly use Eq. 30 to obtain the form,

R(n) = Tr
[
|Φ⟩⟨Ψ̃|

]
= ⟨Ψ̃|Φ⟩ (37)

This is basically the scalar product between the two
wavefunctions. Thus, we end up not generating the en-
tire reduced density matrix of order O(K2) to calculate
the response using forward-backward methods. Instead,
we compute the dot product of the forward and backward
wavefunctions of order O(K).

III. COMPUTATIONAL METHOD

A. Computational scaling with N

For an N -molecule polaritonic system, including the
2nd excitation manifold leads to a K ∝ O(N2) number of
states, and O(N4) numbers of the reduced density ma-

trix elements. The operation of acting ĤQ on ρ̂Q would
in principle requires O(N6) operations. The total cost
of 2DES simulation for the N -molecule polaritonic sys-
tem, forM trajectories, will be O(N6T 3M). This scaling
is for both memory and computational cost (run time).
However, using the strategies developed in the previous
sections, one never needs to generate any O(N4) den-
sity matrix, and all of our calculations can be performed
with vectors of the size of O(N2). This is the case for

https://doi.org/10.26434/chemrxiv-2024-5p9fn ORCID: https://orcid.org/0000-0002-8639-9299 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-5p9fn
https://orcid.org/0000-0002-8639-9299
https://creativecommons.org/licenses/by/4.0/


6

any semi-classical or mixed quantum-classical trajectory-
based approach, as we extensively discussed in Paper I.1

For a time step ∆t (where the nuclear configuration is
fixed), the propagation of the reduced density matrix can

be expressed as applying the unitary propagator Û(∆t)

ρ̂Q(∆t) = Û†(∆t)ρ̂QÛ(∆t) = Û†(∆t)|Ψ⟩⟨Ψ̃|Û(∆t).
(38)

The forward-backward representation allows us to re-
duce Eq. 38 operation of order O(N6) to the individ-

ual operations of (Û†(∆t)|Ψ⟩) and (⟨Ψ̃|Û(∆t)), each of
which with the cost of O(N4). Furthermore, the matrix-
vector and matrix-matrix multiplications reduce to sim-
ple Hadamard products as shown in Eq. 27 of Ref. 1
(Paper I), and the usage of Eq. 42 from Paper I to rep-
resent the matrix exponential, reduces the cost of den-
sity matrix dynamics further, from order O(N4) to order
O(N2).

In Fig. 1, we present the computational scaling cost of
different schemes for the operation of Hamiltonian (ĤQ)
of the reduced density matrix of the system (ρ̂) or the sys-
tem state vector (|Ψ⟩). The solid red curve is the compu-

tational cost of performing a ĤQρ̂ operation. Each of the

matrices ĤQ and ρ̂ scales as O(N4) and thus their multi-
plication here scales as O(N6), as can be seen in the red
curve. The solid yellow curve demonstrates the computa-
tional cost of performing a ĤQ|Ψ⟩ operation which scales
as O(N4). The solid cyan curve is the cost of simulat-

ing the vectorized sparse ĤQ|Ψ⟩ operation, and scales as
O(N2). The dotted curves represent the computational
time taken by these operations, when performed on a
GPU48–50. Performing the same calculations on the GPU
shows a constant scaling, O(N0), with increasing N . Al-

though the matrix-vector operation, ĤQρ̂, seems very ef-
ficient on GPU, these operations occupy a lot of memory,
and thus we are restricted to only a few ĤQρ̂ operations.

ĤQ|Ψ⟩ reduces the memory requirement, but we are still

highly restricted in the number of ĤQ|Ψ⟩ operations we
can perform. To address this challenge, we move to vec-
torized ĤQ|Ψ⟩ operation, where the memory requirement
is significantly reduced to a more tractable regime, and
we can simultaneously perform a lot of Hadamard prod-
ucts with a reduced computational cost.

B. Vectorization over lasers and trajectories

Since each of the trajectories is independent in the
PLDM approach, the simulation can be trivially paral-
lelised51 over a total of M trajectories. This drastically
reduces the cost of the computation from an order of
O(N2)O(T 3)O(M) to an order O(N2)O(T 3). Now, we
can further make use of the simplified Hadamard prod-
ucts (Eq. 28 of PaperI, Ref. 1) to vectorize the code over
each of the laser perturbations, which can, in principle,
remove the scaling with respect to T , and our computa-
tion can thus, in principle, be further reduced.

FIG. 1. Computational cost of different matrix multiplica-
tions as a function of number of molecules. The red, yellow
and cyan solid curves shows the ĤQρ̂, ĤQ|Ψ⟩, sparse ĤQ|Ψ⟩
operations respectively performed on CPU. These computa-
tions were all done on Intel Xeon CPU E5-2680 v3 @ 2.50GHz
CPU’s. The dotted lines represent the corresponding GPU
calculations which were performed on NVIDIA Hopper H100
GPU48. The dark blue lines represent ĤQρ̂, the light cyan

represents ĤQ|Ψ⟩ and the dark grey represents the vectorized

ĤQ|Ψ⟩.

The vectorization48,52,53 is done by bunching differ-
ent trajectories together by collecting the state vector
from “m” different trajectories as different columns of a
“batch” matrix, [|Ψ⟩], of size K ×m,

{|Ψ⟩}m →


...

...
...

...
|Ψ1⟩ |Ψ2⟩ · · · |Ψ(m−1)⟩ |Ψm⟩
...

...
...

...

 (39)

where |Ψi⟩ is the ket at a certain nuclear time step for the
ith trajectory, and similarly, for the propagation of back-
ward coefficients, we can make a batch matrix {⟨Ψ|}m by
collecting ⟨Ψi| from “m” different trajectories. Similarly,
we can also bunch together the diagonal energy fluctua-
tions from these trajectories as columns of a batch matrix
{ϵ}m, of size K ×m,

{ϵ}m =


...

...
...

...
ϵ1 ϵ2 · · · ϵ(m−1) ϵm
...

...
...

...

 (40)

where ϵi is the vector containing diagonal fluctuation of
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site energies for ith trajectory.

ϵi →


ε1 +

∑
ν C1,νR1,ν

ε2 +
∑

ν C2,νR2,ν

...
εN +

∑
ν CN,νRN,ν

 (41)

Here Cn,ν is the coupling of nth exciton to the νth
bath mode coordinate (Rn,ν) within the ith trajectory.
Using Eq. 39 and Eq. 40 we can convert the sim-
ple hadamard product in Eq. 28 of Paper I (Ref. 1)
as a collective Hadamard product of “m” trajectories
through the Hadamard product between the batch ma-
trices, {ϵ}m ⊙ {|Ψ⟩}m.
Similarly we can also collectively bunch the position

coordinates of bath DOF’s (R) from “m” different tra-
jectories

{R}m =


...

...
...

...
R1 R2 · · · R(m−1) Rm

...
...

...
...

 (42)

where Ri represents the vector containing position co-
ordinates of all excitons for the ith trajectory (not to
be confused with the nuclear DOF Rn,ν , as we used a
shorthand notation for R = {Rn,ν}). Similarly, we can
collect the momentum coordinates from the “m” trajec-
tories to construct the batch matrix, {P}m. These {R}m
and {P}m can be collectively propagated using the sim-
ple forms of Eq. 8a and Eq. 8b.

Applying a laser perturbation at different nuclear time
steps leads to different initial conditions for each time
step. Each of these initial conditions can now be treated
as equivalent to a different trajectory as each of these
initial conditions will evolve independently of the other.
Within each trajectory, we can thus group together all
the quantum states after the application of laser pertur-
bation at a certain time step as different columns of the

batch matrix, {|Ψ⟩}(i), for ith trajectory, to construct a
matrix of size K × T

{|Ψ⟩}(i) =


...

...
...

µ̂|Ψi(t1)⟩ µ̂|Ψi(t2)⟩ · · · µ̂|Ψi(tT )⟩
...

...
...

 (43)

where µ̂|Ψi(t)⟩ can be evaluted using Eq. 35a and

Eq. 35b, and {|Ψ⟩}(i) can be propagated just like {|Ψ⟩}m
in Eq. 39. We can also bunch together “m” different

{|Ψ⟩}(i) to make a bigger batch matrix of size (K×T )×m,

{Ψ}m =
[
{|Ψ⟩}(1) {|Ψ⟩}(2) · · · {|Ψ⟩}(m)

]
(44)

Fig. 2 presents the computational cost of 2DES simu-
lation at various levels of vectorization for different laser
pulses as a function of the number of time steps for a sin-
gle laser pulse. The red curve is the computational cost

FIG. 2. Computational cost scaling as a function of the num-
ber of time steps (T ) of each laser pulse delay at different levels
of vectorisation of Eq. 39. The red curve denotes the com-
putational cost of serial computation for a single trajectory
of three laser pulses. The yellow curve denotes the compu-
tational cost when one of the lasers is vectorised. The green
curve is the case of vectorisation along two laser pulses and
the blue curve denotes vectorization along all the laser de-
lays. Each curve involves propagating a wavefunction in the
2D excitation manifold of ≈ 50 molecules with around 2500
total quantum states. The above calculations were performed
on NVIDIA Hopper H100 GPUs using pytorch48–50 with de-
vice “meta”. Each of the curve above is averaged over 106

instances of Eq. 39 operations.

for a simple 2DES calculation using the most straightfor-
ward coding without any vectorization. If we vectorize
the propagations for the time steps between any two laser
pulses, we reduce the computational cost from O(T 3)
to O(T 2), as can be seen from the yellow curve. Vec-
torization over two propagation periods further reduces
the cost to a linear scaling, O(T ), represented by the
green curve. If we vectorize over all three propagation
segments, we get a constant scaling O(T 0). It should
be noted that, although very efficient, the vectorization
over time costs a lot of memory and to actually get a
constant scaling, one needs to have a reasonably large
GPU resource per trajectory. To get the most out of the
available resources, one may need to compromise on the
levels of vectorization we do. However, with the above
scheme, we have a way to systematically control the level
of vectorization and parallelization, if the level of com-
putational resource is no longer the limiting factor.

We simulate the 2DES of the N -molecule HTC system
for various N at a fixed cavity loss rate Γc = 10 meV.
The molecular parameters are kept the same as in the
linear spectra simulations. Due to the inclusion of doubly
excited subspace, the total number of electronic states
now scales as O

(
N2
)
. Fig. 5 shows the pure-absorptive

2DES for various N at t2 = 0 fs for a fixed Rabi splitting.
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(a) (b)

(c) (d)

N=1 N=2

N=5 N=25

FIG. 3. Rephasing 2D spectra for polaritonic systems con-
taining various numbers of molecules. Panels (a)-(d) repre-
sent the rephasing spectra of N = 1, 2, 5 and 25 respectively.

C. Computational Details

The phonon frequencies and coupling strength are sam-
pled from the Debye spectral density54

Jm(ω) =
π

2

∑
ν

C2
m,ν

ωm,ν
δ(ω − ωm,ν) =

2λbω0ω

ω2
0 + ω2

, (45)

with λb being the bath reorganisation energy and ω0 be-
ing the characteristic frequency of the bath. For all the
calculations, we sampled 20 bath modes for each of the
exciton site.

The 2DES calculations were performed by including
the 2nd excitation subspace. To restrict the total size of
Hilbert space, we simulate the 2DES for N = 1 (with
K = 5), N = 2 (with K = 8), N = 5 (with K = 23) and
N = 25 (with K = 228) molecules coupled to the single
cavity mode. Without losing any generality, to increase
the nuclear time step, we shift the average site energy of
the molecules to be ⟨ε⟩ =

∑
n εn/N = 0.5 eV, and the

cavity mode is tuned to molecular excitation energy, ℏωc

= 0.5 eV, see discussions in Ref. 1 The total Rabi splitting
was fixed at Ωc = 2

√
Nℏgc = 0.1 eV. For Figs. 3-5, we

do not consider any cavity loss, and we only simulate the
2DES at t2 = 0 fs to clearly demonstrate the changes in
lineshape, purely due to collective effects. We set the nu-
clear time step to be 40 au (≈ 1 fs). Since, with increas-
ing N , the coherence lifetime increases, we need longer T1

and T3. For N = 1 and N = 2, we set T1 = T3 = 400 fs.
For N = 5, we use T1 = T3 = 500 fs and for N = 25,
we use T1 = T3 = 1000 fs. For Figs. 7-8, we consider the
cavity loss rate Γc = 10 meV using the stochastic Lind-
blad algorithm for PLDM.1,8,55. Here, we used a nuclear

time step of 20 au (≈ 0.5 fs) and T1 = T3 = 300 fs.

(a) (b)

(c) (d)

N=1 N=2

N=5 N=25

FIG. 4. Non-rephasing 2D spectra for polaritonic systems
containing various numbers of molecules. Panels (a)-(d)
represent the rephasing spectra. Panels (e)-(f) show non-
rephasing spectra and panels (i)-(l) show the total pure-
absorptive spectra for different N .

IV. RESULTS AND DISCUSSIONS

Fig. 3a-d shows the rephasing signal for N = 1, 2, 5 and
25 respectively. In panel (a), we observe four diagonally
elongated peaks with one molecule coupled to the cavity
mode. The lower diagonal peak at (ℏω1 ≈ −50 meV,
ℏω3 ≈ −50 meV) corresponds to the lower polariton ex-
citation, and the upper diagonal peak at (ℏω1 ≈ 50 meV,
ℏω3 ≈ 50 meV) corresponds to the upper polariton ex-
citation. The cross peaks at (ℏω1 ≈ −50 meV, ℏω3 ≈
50 meV), and at (ℏω1 ≈ 50 meV, ℏω3 ≈ −50 meV) cor-
respond to coherent energy transfer between the upper
and lower polaritonic states. In panel (b), we present
the rephasing 2DES for 2 molecules coupled to the cav-
ity mode. All of the peaks are diagonally elongated and
appear at a location similar to that in panel (a). With
increasing N , we can observe a significant reduction in
the linewidth of various peaks, due to the polaron de-
coupling effect1,30,32,56–58 (that the reorganization energy

λ ∝ 1/N), even though
√
Nℏgc is fixed. This linewidth

narrowing with an increasing N is also evident in the lin-
ear spectra.1,30 The size of all the peaks is reduced, which
is equivalent to the reduction of polariton linewidths in
the linear spectra with increasing N as shown in Fig. 4
and Fig 5 of Paper I1. In addition, we also see the ap-
pearance of an asymmetrical negative signal (derivative
lineshape) in both the lower and upper diagonal peaks.
This is observed because of the excited-state absorption
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transitions (ESA) from the upper and lower polaritons
to higher double exciton states in the double excitation
manifold9,59,60, which is only possible for N > 1. As
such, the appearance of this ESA peak is a signature of
the collective coupling of molecules to the cavity mode.
As we increase the number of molecules toN = 5 in panel
(c), the peaks appear at locations similar to those in pan-
els (a) and (b), but the size is further reduced. There are
dark states for N = 2, N = 5, and N = 25. Due to their
zero net transition dipole, they are not visible in 2DES
presented in panels (b)-(d)

(a) (b)

(c) (d)

N=1 N=2

N=5 N=25

FIG. 5. Pure absorptive spectra for polaritonic systems con-
taining various numbers of molecules. Panels (a)-(d) repre-
sent the rephasing spectra. Panels (e)-(f) show non-rephasing
spectra and panels (i)-(l) show the total pure-absorptive spec-
tra for different N .

Fig. 4a-d presents the non-rephasing response signal
intensity for different N . Panel (a) presents the non-
rephasing signal for one molecule coupled to cavity. The
peaks along the diagonals appear at the same location
as the diagonal peaks in Fig. 3 but are aligned along
the anti-diagonal direction and they correspond to the
lower and upper polariton locations. Panels (b)-(d) rep-
resent the non-rephasing signals for N = 2, 5, and 25
molecules coupled to the cavity respectively. The peak
size decreases with an increasing number of molecules be-
cause of the linewidth reduction as we observed in linear
spectra in Fig. 4 of Paper-I1. The off-diagonal coherence
peaks also appear in the same locations as the rephasing
signals but they become more intense with an increas-
ing number of molecules.32 This can be attributed to the
polaron decoupling effect which effectively reduces the
strength of coupling between the bath modes and po-
lariton states, creating a homogeneous environment for
the polaritons and thus intensifying the relative coher-
ence transfer through non-rephasing pathways. Similar

enhancement of polariton coherence has been observed
in recent exact quantum dynamics simulations as well as
analytic theory.32

Fig. 5a-d presents the total pure-absorptive spectra for
different N , which is obtained by direct addition of the
rephasing (Fig. 3) and non-rephasing signals (Fig. 4) and
then normalizing the signal according to the maximum
peak intensity. Panel (a) presents the pure-absorptive
2DES of one molecule coupled to the cavity mode. The
upper and lower diagonal peaks correspond to the up-
per and lower polariton eigenstates. These peaks are
overall diagonally elongated, indicating that the polari-
tonic states are coupled to an inhomogenous bath envi-
ronment. Panel (b) represents the pure absorptive 2DES
of N = 2 molecules coupled to the cavity. The overall
size of the peaks has reduced, and the diagonal peaks ap-
pear to have relatively reduced in the diagonal direction
(the homogeneous broadening has become very similar
to the inhomogeneous molecule). We also see the ap-
pearance of ESA signatures in the diagonal peaks which
is due to the formation of double-exciton states which
allow for the transitions between single excitons in the
first excitation manifold with the double excitons in the
second excitation manifold. Comparing all the panels,
we can observe that with an increase in N , the overall
linewidth becomes homogenous and the 2DES is mostly
dominated by the non-rephasing pathways. This is due
to the effective reduction of coupling strength between
the polariton states and the bath modes which makes
the non-rephasing pathways more favorable.

Fig. 6 presents different Liouville pathways for the dif-
ferent 2DES signals used in pure-absorptive 2D electronic
spectra. The vertical direction represents the increas-
ing time of propagation. The light-red and sky-blue
arrows represent the system perturbation with the ex-
ternal laser field. The light-red arrow pointing in the
right direction represents an electric field with a nega-
tive phase factor (e−iωt, where ω is the frequency of the
radiation field), and the sky-blue arrow, pointing in the
left direction represents the electric field with a positive
phase factor (eiωt). The vertical yellow, dark-red, and
dark-blue arrows represent the evolution of the system
after the first, second, and third laser perturbations, re-
spectively. Within the ladders, we represent the state
of the system as either coherence or population states.
For example, |G0⟩ corresponds to the collective ground
state, |P1⟩ (and |P′

1⟩) represent the polariton eigenstates
in the first excitation manifold (like the upper polariton,
|+⟩ and the lower polariton |−⟩) and |P2⟩ correspond to
the polariton eigenstates in the second excitation mani-
fold.1,8,9,59,60 Each of the diagrams is read from bottom
to up in the vertical direction of increasing time. The de-
tailed definitions of these states are expressed in Eqs. 23-
24 in Paper I.1 Different coherence and population trans-
fer mechanisms are further demonstrated in Appendix A
for the Rephasing Simulated Emission signal.

Fig. 7 presents the individual contributions of the
Rephasing spectra (with GSB, SE, and ESA) for N = 5
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FIG. 6. Liouville pathways for different signal components
contributing to the purely absorptive 2D spectra. The verti-
cal direction represents the increasing time axis. The yellow,
dark red and dark-blue arrows indicate the propagation of
the system during t1, t2, and t3 periods. The light-red arrow
pointing to the right indicates the electric field perturbation
with a negative phase (e−iωt) and the sky-blue arrow pointing
to the left represents the electric field with a positive phase
(eiωt).

molecules coupled to the cavity mode as a function of
population time t2. The four columns represent the
ground state bleaching (GSB), the simulated emission
(SE), the excited state absorption (ESA), and the to-
tal Rephasing signal respectively. The three rows repre-
sent the intensities for each of the signals at t2 = 0 fs,
125 fs, and 250 fs respectively. All signals are individually
normalized according to their maximum signal intensity.
Panels (a)-(d) represent the GSB, SE, ESA, and total
Rephasing, respectively, at t2 = 0 fs. In panel (a), we
observe diagonally elongated peaks at (ℏω1 ≈ −50 meV,
ℏω3 ≈ −50 meV) and at (ℏω1 ≈ 50 meV, ℏω3 ≈ 50 meV)
which correspond to the energetic locations of the lower
and upper polariton eigenstates respectively. We also ob-
serve cross-diagonal peaks at (ℏω1 ≈ −50 meV, ℏω3 ≈
50 meV) and (ℏω1 ≈ 50 meV, ℏω3 ≈ −50 meV) which
indicate the coherent energy transfer between the bright-
polariton states.

In Fig. 7b, we observe very similar lineshapes for the
diagonal and cross-diagonal peaks as shown in panel (a).

This can be interpreted from the Feynman diagrams for

these two pathways (R
(3)
2 and R

(3)
3 in Fig. 6) at initial

population time t2 ≈ 0 fs. For both cases, SE and GSB,
during t1 the system is in the coherence state |G0⟩⟨±| and
during t3, the system is in the conjugate coherence state
|±⟩⟨G0|. Thus, they have exactly the same lineshapes at
t2 = 0 fs for all the peaks.

Fig. 7c, we observe the negative ESA peaks to be a lit-
tle bit shifted from along the ω3, when compared to the
peak locations in panels (a) and (b). This is because the
|G0⟩ → |P1⟩ transitions are slightly different frequencies
compared to the |P1⟩ → |P2⟩ transitions. The overall ad-
dition of signals gives the diagonally elongated diagonal
and cross-diagonal peaks in the total rephasing spectra
in panel (d). We can observe the existence of negative
features along the diagonal peaks due to the shifted con-
tribution from the ESA signal. As we move down along
each column, we see similar lineshape features when com-
pared with the first row. On careful observation, we see
that the SE transition peak intensities have reduced when
compared to the GSB transitions at t2 = 250 fs. This is
due to the population decay associated with the cavity
mode during population time t2. For the SE signal, the
system is in the state |±⟩⟨±| (see Fig. 9) which loses its
intensity when evolving during t2 due to cavity loss from
the cavity mode (|G1⟩ → |G0⟩). When compared to the
GSB signal, where the system is in the state |G0⟩⟨G0|
during t2 propagation, which increases in intensity due
to the decay of photonic population to the ground state.
The effect of difference in population between the |±⟩⟨±|
and |G0⟩⟨G0| during t2 causes the cross-diagonal peaks
to be significantly reduced in size for the SE signal, and
thus the GSB pathway is the major contributor to the co-
herent energy transfer between the polariton eigenstates
via rephasing mechanism.

In Fig. 8, we present the similar decomposition of the
Non-Rephasing spectra at different population times, t2,
for N = 5 molecules coupled to the cavity mode. Pan-
els (a)-(d) represent the GSB, SE, ESA, and the total
Non-Rephasing spectra at t2 = 0 fs. In panel (a) we ob-
serve the appearance of anti-diagonally elongated peaks
at (ℏω1 ≈ −50 meV, ℏω3 ≈ −50 meV) and (ℏω1 ≈ 50
meV, ℏω3 ≈ 50 meV) which are the location of lower
and upper polariton eigenstates respectively. We also
observe the cross-diagonal peaks at (ℏω1 ≈ −50 meV,
ℏω3 ≈ 50 meV) and (ℏω1 ≈ 50 meV, ℏω3 ≈ −50 meV) in-
dicating the coherent energy transfer between the bright-
polariton eigenstates via the non-rephasing GSB path-
way. Due to its non-rephasing nature, the cross-diagonal
peaks are also anti-diagonally elongated. As we move
to panel (b), we see the appearance of SE peaks only
along the diagonals, but no cross-diagonal peaks. Upon
inspecting the Feynman diagram corresponding to the

non-rephasing SE signal (R
(3)
1 ), coherent energy transfer

through this pathway is not possible. If during t1, the
system is in the coherence state |+⟩⟨G0| (or |−⟩⟨G0|),
then, following the SE pathway, it will end up again in
the coherence state |+⟩⟨G0| (or |−⟩⟨G0|) during t3 and
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FIG. 7. Rephasing Signal for N = 5 decomposed for individual contributions, including GSB, SE, and ESA for the first three
columns respectively. The last column shows the total rephasing signal. The rows indicate the signal intensities at t2 = 0 fs,
125 fs, and 250 fs respectively.

so we do not observe any cross peaks. In panel (c), we
present the ESA spectrum with the appearance of diag-
onal peaks which are relatively shifted along the ω3 axis
when compared to the diagonal peaks of SE and GSB.
Just like the Rephasing ESA pathway, this can again be
attributed to the difference of transition energies when
exciting from first to second excited manifold in compar-
ison to ground to first excited manifold. Panel (d) repre-
sents the overall non-rephasing spectra at t2 = 0 fs. The
diagonal peaks appear at the same location as in GSB
and SE signals. The cross peaks appear at the same lo-
cation as the cross peaks of the total Rephasing spectra
and the overall intensity is mostly dominated by the con-
tribution from GSB and SE signals. As we move down in
each column, the relative lineshapes remain comparable
to early t2 but the contribution from the ESA signal is
increasing in the overall non-rephasing signal as can be
verified by the increase in the negative ESA signal along
the diagonal peaks in panel (f).

V. CONCLUSION

In this paper, we extended the L-PLDM formalism to
simulate the non-linear spectra for N -molecules collec-
tively coupled to the cavity, described by the HTC Hamil-
tonian. A direct density-matrix-based simulation will re-
quire a computational cost (in both time and memory
requirements) proportional to O(N6). The sparse na-
ture of the HTC system Hamiltonian and dipole matrix
let us compactly express ĤQ|Ψs⟩ and µ̂|Ψs⟩ as simple
Hadamard products between vectors of O(N2) instead
of matrix-matrix or matrix-vector operations. We fur-
ther utilize the forward-backward nature of the L-PLDM
method to convert all matrix-matrix operations to con-
secutive vector-vector Hadamard products. Here, we in-
corporated these strategies into the previously developed
L-PLDM approach for simulating 2D Electronic Spec-
troscopy (2DES) spectra of exciton-polariton under the
collective coupling regime. In particular, we apply the ef-
ficient quantum dynamics propagation scheme developed
in Paper I1 to both the forward and the backward propa-
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FIG. 8. Non-Rephasing Signal for N = 5 decomposed for individual contributions, including GSB, SE, and ESA for the first
three columns respectively. The last column shows the total rephasing signal. The rows indicate the signal intensities at
t2 = 0 fs, 125 fs, and 250 fs respectively.

gations in the PLDM, and develop an efficient important
sampling scheme and GPU vectorization scheme that al-
low us to systematically reduce the computational costs
from O(K2)O(T 3) to O(K)O(T 0) for the 2DES spectra
simulation, where K is the number of states and T is the
number of time steps of propagation.

We also simulate the 2DES of N = 25 molecules cou-
pled to the cavity within the double excitation subspace
and demonstrate the effect of linewidth reduction due
to the polaron decoupling effect,56,57 which has been ob-
served experimentally.2 We further analyzed the signal
from both rephasing and non-rephasing contributions,
as well as the ground state bleaching (GSB), excited
state emission (ESA), and stimulated emission (SE). For
N > 1, we also found the derivative lineshape due to
ESA, which appears as a negative feature on the lower
and upper polariton diagonal peaks due to the differ-
ence in frequencies of |G⟩ → |P1⟩ and |P1⟩ → |P2⟩
transitions.9,59,60

Together with paper I, the theoretical development we
presented here allows an efficient and accurate simula-
tion of quantum dynamics and multi-dimensional spec-

troscopy of exciton polariton under the collective cou-
pling regimes, which we envision will benefit the investi-
gation of molecular polariton photophysics.
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Appendix A: Lioville pathways for the Rephasing Simulated
Emission Signal

All the different Liouville pathways in Fig 6 can be
further broken down into several subpathways depend-
ing on which eigenstates (excluding bath Hamiltonian)
the system is transitioning during the laser perturbation
and how excitation energy is being transitioned to other
states due to bath fluctuations. Here, we present a simple
overview of the possible pathways leading to the differ-
ent peak locations for the Rephasing Simulated Emission
signal.

FIG. 9. Liouville pathway for rephasing SE with different po-
laritonic bright states. The arrow conventions are the same
as in Fig. 6 with the yellow, dark-red, and dark-blue arrows
indicating the system propagation after the first, second, and
third laser perturbations for t1, t2 and t3 intervals respec-
tively. The sky-blue arrow pointing to the left indicates the
phase of the electric field is positive (eiωt) and the light-red
arrows pointing to the right indicate the phase of the elec-
tric field is negative (e−iωt). The last row indicates the peak
location in the 2D spectra due to the specific pathway fol-
lowed where ω+ and ω− are the energetic location of upper
and lower polariton eigenstates respectively.

In Fig. 9, we present different energy transfer path-
ways after different laser perturbations. For example, if
we follow the left-most pathway, the initial system is in
ground state |G0⟩⟨G0| and being perturbed from “right”

by the laser causing the system to transition to the co-
herence state |G0⟩⟨+|. The system then propagates in
this state for a time t1, oscillating at a frequency ω+

with a phase eiω+t1 , which is then perturbed from “left”,
causing the system to transition to the population state
|+⟩⟨+|. The system decays in this state for time t2 due to
the loss of the photon mode, after which it is perturbed
by the third laser from the right, simulating the system
to cause emission back to the ground state. The system
is now in coherence between the upper polariton and the
ground state, |+⟩⟨G0|, which oscillates at a frequency of
ω+ for t3 with a phase factor of e−iω+t3 , after which the
system emits a signal giving a SE signal at the location
(ℏω1 ≈ 50 meV, ℏω3 ≈ 50 meV). We see that the system
oscillates with opposite phases during t1 and t3, giving it
the rephasing nature.

If we follow the second pathway, the second pertur-
bation takes the system to a coherence between lower
and upper polariton |−⟩⟨+| and so the system state fluc-
tuates with a frequency of ω− − ω+ for time t2. After
the third perturbation, the system transitions to a coher-
ence between lower polariton and ground state, |−⟩⟨G0|.
Thus, during t3, the system propagates with a phase of
e−iω−t3 . Due to two different frequency oscillations dur-
ing t1 and t3, we get a cross peak at (ℏω1 ≈ 50 meV,
ℏω3 ≈ −50 meV). Also, since during the population
time, t2, the system is in the coherence state |−⟩⟨+|
propagating with a phase factor e−i(ω−−ω+)t2 , as we
scan the 2DES with t2, we observe the cross peak in-
tensity oscillating at a frequency of the Rabi splitting
(ℏΩR = ℏω+ − ℏω−).
In a similar way, we can also analyze the 3rd pathway

which mirrors the 2nd pathway, in that we swap the lower
and upper polaritons to obtain an upper cross peak at
(ℏω1 ≈ −50 meV, ℏω3 ≈ 50 meV). Also, since in this
pathway, during the population time, t2, the system state
(|+⟩⟨−|) is oscillating with Rabi frequency (with a phase
e−i(ω+−ω−)t2), this cross-peak oscillates with the Rabi
frequency with t2.

Finally, the 4th pathway can be obtained by replac-
ing the upper polaritons (|+⟩ and ⟨+|) with the lower
polaritons (|−⟩ and ⟨−|) in the first pathway which
produces the lower diagonal peak (ℏω1 ≈ −50 meV,
ℏω1 ≈ −50 meV). During the population time (t2) the
system state (|−⟩⟨−|) decays due to the photonic loss
without any oscillations and so the lower diagonal peak
intensity will only decay with time without any oscilla-
tions (unlike the cross-peaks).
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