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Molecular polaritons are becoming one of the leading directions to control a multitude of chemical and
physical processes, such as charge transfer, selective bond breaking, and excited-state dynamics. Accurately
and efficiently simulating polariton properties under the collective-coupling regimes (between N molecules and
the cavity mode) remains a central theoretical challenge. In this work, we use a stochastic resolution of the
identity approach coupled with a Chebyshev expansion to compute various polariton photophysical properties,
with a substantially reduced computational effort than would be needed for a direct diagonalization of the same
Hamiltonian, which is often the bottleneck for such large dimensionality. Such quantities of interest are the total
density of states (the eigenspectrum of the Hamiltonian) and the transmission spectrum (a probe of the photonic
degrees of freedom), the latter of which is a direct observable in the experiment. We simulate the linear spec-
troscopy of molecule-cavity hybrid systems, specifically exploring the effects of the distribution and magnitude
of molecular disorder for one, few, and many coupled molecules. We compare our numerical results to recent
work, which formulated analytic expressions in the large-N limit for the spectroscopic signals. We find that our
results match those of the analytic results when N = 100, at which point we find that the collective effects for
linear spectroscopy are converged.

DOI: 10.1103/x5q3-tm1q

I. INTRODUCTION

Exciton polaritons, light-matter hybrid states with cavity
photon frequencies in the eV range, have recently become a
topic of great interest for their ability to alter both chemical
reactions/properties in the ground [1–9] and excited [3,10–
15] states as well as photophysics/spectroscopies [3,16–34]
such as quasiparticle propagation [35–41]. Much theoreti-
cal work has been performed to simulate these intrinsically
many-body systems [8,9,15,42–51]. An exciton polariton is
an entangled state of light and matter in which the native
excitonic and photonic degrees of freedom hybridize to form
new states. These new states can be tuned in various ways to
modify chemical and physical properties, such as the poten-
tial energy landscape or the emission efficiency of materials.
However, much is still unknown about these new hybrid
states. For example, collective effects—which arise from the
coherent coupling of N = 2–1010 molecules to a single optical
cavity mode—are largely unexplored due to the size complex-
ity of the light-matter Hamiltonian.

To understand all of these effects, one turns to various
types of spectra to decipher how the molecular and photonic
degrees of freedom (DOFs) are coupled to each other and
their surroundings. The simplest realization of this is the linear
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spectroscopy in which the system encounters a measurement
photon at some frequency ω. For the molecule-cavity hy-
brid system, there are multiple types of linear spectroscopy
that can be performed: (i) reflectance, (ii) absorption, and
(iii) transmission. In the experiment, the reflectance R and
transmission T spectroscopies are collected directly. The ab-
sorption A is then calculated as A% = 1 − T % − R% as an
indirect measurement. Our focus here is the transmission
spectroscopy whose intensity is proportional to the photon
number inside the cavity, T ∝ 〈â†â〉 [52,53].

Numerous theoretical and experimental works have ex-
plored the effects of collectivity on linear spectroscopy
[13,15,24,25,29,54–58]. However, many of these works have
assumed that the collective nature of the spectral signatures
requires a large number of molecules N , such as those analyt-
ical works relying on thermodynamic limits of linear response
equations, single-particle Green’s functions, and molecular
susceptibilities, etc. [29,54]. Therefore, it is widely assumed
that the collective nature of these hybrid systems is not
directly reachable with standard “brute force”-style diagonal-
ization techniques.

In this work, we directly simulate the transmission spec-
troscopy of coupled light-matter systems, forming exciton
polaritons, in the presence of various molecular excitation
frequency disorders. We find that the transmission spectra
take on drastically varied characteristics between different
electronic disorder types (Gaussian, rectangular, Lorentzian)
as well as between one-, two-, and many-molecule (more than

2469-9926/2025/112(1)/013713(12) 013713-1 ©2025 American Physical Society

https://orcid.org/0000-0002-2441-3569
https://orcid.org/0000-0002-8639-9299
https://ror.org/022kthw22
https://ror.org/022kthw22
https://ror.org/022kthw22
https://ror.org/022kthw22
https://crossmark.crossref.org/dialog/?doi=10.1103/x5q3-tm1q&domain=pdf&date_stamp=2025-07-15
https://doi.org/10.1103/x5q3-tm1q


BRADEN M. WEIGHT AND PENGFEI HUO PHYSICAL REVIEW A 112, 013713 (2025)

100) systems for a given disorder type. Second, the Lorentzian
profile shows little-to-no modifications by varying N . Finally,
our simulations reveal that the number of molecules necessary
to saturate the collective effects for linear transmission spec-
troscopy to be N ∼ 100 or less, irrespective of the disorder
type and magnitude.

II. LIGHT-MATTER HAMILTONIAN

In this work, we are interested in exciton polaritons
[15,47], which are composed of electronic excitations (typi-
cally in the frequency regime of ∼1–5 eV) coupled to a pho-
tonic excitation of similar frequency. Moreover, we focus on
collections of excitons that simultaneously couple to one pho-
tonic mode to explore the resulting linear spectroscopies in the
presence of static excitonic disorder of varying magnitude.

The nonrelativistic Pauli-Fierz Hamiltonian ĤPF has been
widely applied [15,45,47,59–62] to study light-matter hybrid
systems. A widely used approximation to the Pauli-Fierz
Hamiltonian for many molecules in the weak-to-strong-
coupling regime is the Tavis-Cummings (TC) Hamiltonian
ĤTC [63–66]. The TC Hamiltonian simultaneously drops the
dipole self-energy (DSE) and introduces the rotating-wave
approximation (RWA). The TC Hamiltonian can be written as

ĤTC = Ĥel + Ĥph + Ĥel−ph, (1a)

Ĥel =
N∑
A

(
N⊗

B<A

1̂(B)
el ⊗ Ĥ (A)

el ⊗
N⊗

B>A

1̂(B)
el

)
⊗ 1̂ph, (1b)

Ĥph =
(

N⊗
A

1̂(A)
el

)
⊗ ωcâ†â, (1c)

Ĥel−ph = ωcA0

N∑
A

(
N⊗

B<A

1̂(B)
el ⊗ μ̂(A) ⊗

N⊗
B>A

1̂(B)
el

)

⊗ (â† + â), (1d)

where μ̂ ≡ �̂μ · �e is the molecular dipole operator projected
into the photonic polarization direction. Here, ωc is the cavity
frequency and

A0 =
√

1

2ωcεV
(2)

is the light-matter coupling strength with V as the cavity
mode volume and ε as the dielectric constant of the medium.

The exact solution of the above Hamiltonian using the
complete Hilbert space is already intractable for more than
N = 10–20 molecules. This is because the dimension of
the Hamiltonian scales exponentially with the number of
molecules as dim[ĤTC] ∝ 2N , assuming that the molecular de-
grees of freedom (DOFs) have only two basis states, {|g〉, |e〉}.
However, since we are interested in collective effects, we will
restrict the description of the above Hamiltonian to the basis
of the first-excited subspace. In the singly excited subspace,
the dimension scales as dim[ĤTC] ∝ N [8].

For clarity, the zero- (|S0〉) and single-excitation (|S1〉)
subspaces including only |g〉 and |e〉 electronic states, i.e., first
two eigenstates of Ĥel (extension to multiple electronically

excited states and an ab initio molecular system to come in
forthcoming work), for each molecule,

|S0〉 =
N⊗
A

|g〉(A) ⊗ |0〉, (3a)

|S1〉 =
N∑
A

(
N⊗

B<A

|g〉(B) ⊗ |e〉(A) ⊗
N⊗

B>A

|g〉(B)

)
⊗ |0〉

+
N⊗
A

|g〉(A) ⊗ |1〉. (3b)

We further make the assumption that there are no per-
manent electronic dipoles, thus decoupling the collec-
tive ground state, 〈g, . . . , g, 0|ωA0μ̂(â† + â)|g, . . . , g, 1〉 =
ωA0

∑N
A μ

(A)
00 = 0. Alternatively, to achieve the identical re-

sult, we could work in the coherent-state basis [67,68], which
shifts away a constant proportional to the identity in the elec-
tronic subspace from the Hamiltonian whereby μ̂ → μ̂ − 〈μ〉
where 〈μ〉 ≡ 〈S0|μ̂|S0〉 is chosen to be the ground-state per-
manent dipole moment. In both situations, the ground state is
decoupled from the light-matter interaction in the TC Hamil-
tonian, which is valid below the ultrastrong-coupling regime
where most experiments in linear spectroscopies of polaritons
reside [69]. In this case, the TC Hamiltonian, without the col-
lective ground state |S0〉, which is to say, |S1〉〈S1|ĤJC|S1〉〈S1|,
can be written as

ĤTC
.=

⎡
⎢⎢⎢⎢⎢⎢⎣

E (0)
eg 0 0 · · · ωcA0μ

(0)
eg

0 E (1)
eg 0 · · · ωcA0μ

(1)
eg

0 0 E (2)
eg · · · ωcA0μ

(2)
eg

...
...

...
. . .

...

ωcA0μ
(0)
eg ωcA0μ

(1)
eg ωcA0μ

(2)
eg · · · ωc

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(4)

Here, E (A)
eg = E (A)

e − E (A)
g is the ground-to-excited transition

energy of molecule A with associated ground-to-excited tran-
sition dipole moment μ(A)

eg = �μ(A)
eg · �e.

For convenience of notation, we define the collective-
coupling strength as

Ã0 = A0

√
N . (5)

The use of this parameter fixes the collective Rabi splitting
�R for any number of molecules N since �R ∝ A0

√
N for

N molecules resonantly coupled to the cavity. For all simula-
tions of the current work, we restrict the cavity parameters
to Ã0 = 0.01 a.u., ωc = 1.00 a.u., 〈Eeg〉N = 1.00 a.u., and
μ(A)

eg = 1.00 a.u. In this case, the average of the molecular
transition frequencies are resonant with the cavity frequency,
〈�Eeg〉N = ωc = 1.00, and all molecular dipole moments are
fixed and equal. As an example, for N = 3 and the above
parameters, the working Hamiltonian becomes

ĤTC
.=

⎡
⎢⎢⎢⎢⎣

E (0)
eg 0 0 0.01/

√
3

0 E (1)
eg 0 0.01/

√
3

0 0 E (2)
eg 0.01/

√
3

0.01/
√

3 0.01/
√

3 0.01/
√

3 1

⎤
⎥⎥⎥⎥⎦.
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As we will see later, the transition frequencies of the molecu-
lar DOFs, �Eeg, will be sampled from various distributions,
Gaussian, rectangular, and Lorentzian, which represent the
primary results of this work. Also, the high degree of sym-
metry and sparsity in this Hamiltonian lends itself well to
approximate approaches that depend on the efficient imple-
mentation of matrix-vector multiplication discussed in the
following section [28,63,70].

The definition of strong coupling arises through the defi-
nition of a unitless coupling parameter η = �R/(2ωc) (with
ωc = 1.0 a.u. in this work). For a set of identical molecules
perfectly resonant with the cavity, strong coupling is defined
as η = �R/2 = 0.01, ultrastrong coupling as η = �R/2 =
0.1, and deep-strong coupling as η = �R/2 = 1.0. Note that
the Rabi splitting depends on the molecular disorder, �R ≡
�R( σ

Ã0
). In the present work, at σ/Ã0 = 0.0 (no molecular

disorder), η = �R/2 = Ã0 = 0.01 for all cases in all figures.
This indicates that the system is initially at the boundary
between the weak- and strong-coupling regimes. We note
that the results presented in this work are independent of the
regime at zero disorder since all conclusions only depend on
the ratio of the disorder to the Rabi splitting at zero disorder
∼σ/Ã0.

III. STOCHASTIC-CHEBYSHEV APPROACH

In this work, we aim to simulate a partial density of states
(DOS) for a given Hamiltonian. Following closely the nota-
tion of Ref. [28], the total density operator is defined as

DOS(E ) = Tr[δ̂
(
E − Ĥ

)
] =

∑
i

δ(E − Ei ), (6)

where E is an arbitrary energy, Tr is the trace operation, Ĥ is
an arbitrary Hamiltonian, Ei is the ith eigenvalue of the Hamil-
tonian Ĥ , and δ is the standard Dirac δ function. In practice, if
one cannot directly diagonalize the Hamiltonian, it is hard to
know the set of Ei to generate the exact DOS. However, in the
following, we will both approximate the δ function and obtain
the DOS without diagonalizing the Hamiltonian or knowing
its eigenvalues [28,71]. The code and data that support the
findings of this article are openly available [72].

A. Chebyshev expansion of an operator function

The δ function of an operator can be approximated as
various different functions in the limit of infinitely small
broadening parameter γ . Here, we choose a δ Gaussian as

δ(Ĥ − E ) = lim
γ→0

e
− (Ĥ−E )2

2γ 2

γ
√

2π
, (7)

though other functions can be used, such as a Lorentzian
∼γ /(Ĥ2 + γ 2). The Chebyshev polynomial expansion of an
operator function can be written as

δ(Ĥ − E )|λ〉 =
∞∑

l=1

cl (E , γ )T̂l ( ˆ̃H )|λl−1〉

≈
NCheb∑
l=0

cl (E , γ )|λl ( ˆ̃H )〉, (8)

where cl (E , γ ) are the expansion coefficients, which en-
code the finite-width spectral function and the energy grid
point, E , on which it is evaluated. In practice, the infinite
sum over Chebyshev moments is truncated to NCheb terms,
which is treated as a convergence parameter. The action of
T̂l (Ĥ ) on an arbitrary vector |λ〉 is defined as T̂l (Ĥ )|λl−1〉 =
|λl (Ĥ )〉. The coefficients are evaluated by the discrete Fourier
transform as

cl (E , γ ) = (2 − δl,0)
∫ 2π

0
dθF (θ ; E )eilθ , (9)

with F (θ ; E ) dependent on the broadening function as

F (θ ; E ) = 1

γ
√

2π
e

[�E cos(θ )−(E−Ē )]2

2γ 2 . (10)

These coefficients cl (E , γ ) can be evaluated once and stored
on disk for all calculations which share the same number
of Chebyshev moments NCheb, window size �E (defined
below), finite broadening γ , and energy grid points E .
All simulations performed in this work share the same
Chebyshev coefficients cl (E , γ ) since all such parameters
are fixed.

The recursion relation of Chebyshev vectors can be written
as

|λ0〉 = |λ〉, (11a)

|λ1( ˆ̃H )〉 = ˆ̃H |λ0〉, (11b)

|λl ( ˆ̃H )〉 = 2 ˆ̃H |λl−1( ˆ̃H )〉 − |λl−2( ˆ̃H )〉. (11c)

Since the Chebyshev series is only defined on the interval
(−1, 1), the shifted and normalized Hamiltonian is

ˆ̃H = Ĥ − Ē 1̂

�E
, (12)

where Ē = ωc = 〈Eeg〉N = 1.00 is the expected average of the
spectrum and �E/Ã0 = 64 = 4 σ max/Ã0 (σ to be introduced
later) is the expected span of the spectrum such that the eigen-
values of ˆ̃H lie on the interval (−1, 1).

B. Trace of an operator in a stochastic basis

Using the stochastic resolution of the identity, 1 =
〈|ξ 〉〈ξ |〉ξ , the trace can be written as

Tr[δ(Ĥ − E )] = 〈〈ξ |δ(Ĥ − E )|ξ 〉〉ξ

= 1

Nr

Nr∑
r

〈ξr |δ(Ĥ − E )|ξr〉, (13)

where |ξr〉 is a random vector of size N = dim(Ĥ ) with el-
ements 〈n|ξr〉 = eiθ where θ ∈ [0, 2π ). The statistics satisfy
〈〈ξr |ξr′ 〉〉ξ = δrr′ , and 〈· · · 〉ξ indicates a classical arithmetic
average over the Nr random vectors {|ξr〉}.

C. Density of states

Combining the Chebyshev expansion with the stochastic
trace, we can write down the approximate DOS for a Hamil-
tonian. The stochastic-Chebyshev approach to calculating the
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FIG. 1. (a) Gaussian, (b) rectangular, and (c) Lorentzian distributions for the molecular excitation frequencies E (A)
eg . The shade of gray

indicates the varying magnitudes of disorder σ/Ã0 relative to the collective-coupling strength Ã0 (dark for weak disorder, light for strong
disorder).

DOS can then be compactly written as

DOS(E , γ ) = Tr[δ(Ĥ − E )]

≈ 1

Nr

Nr∑
r

〈ξr |e− (Ĥ−E )2

2γ 2 |ξr〉

≈ 1

Nr

Nr∑
r

NCheb∑
l=0

cl (E , γ )〈ξr |ξrl ( ˆ̃H )〉 (14)

where NCheb is the number of polynomials in the truncated
Chebyshev expansion (treated as a convergence parameter).
This parameter scales as NCheb ∝ �E

γ
, where �E is the energy

scale of the eigenvalues [Eq. (12)] and γ is the finite-width
δ-broadening parameter [Eq. (7)].

D. Transmission spectrum

The stochastic-Chebyshev photon transmission spectrum
(TM), which is proportional to the photonic DOS, can be
computed similarly as

TM(E , γ ) ∝ DOSph(E , γ ) = Tr[P̂phδ(Ĥ − E )]

≈ 1

Nr

Nr∑
r

NCheb∑
l=0

cl (E , γ )〈ξr |P̂ph|ξrl ( ˆ̃H )〉, (15)

where P̂ph = |g, . . . , g, 1〉〈g, . . . , g, 1| is the projection op-
erator which picks out the excited photon basis element.
Equation (15) compactly represents the primary quantity used
in this work [72].

IV. MODEL SYSTEMS AND COMPUTATIONAL DETAILS

In the experiment, the molecular DOFs always have some
form of intrinsic disorder (energetic disorder or orientation of
the dipole relative to the cavity field intensity or the transition
dipole strength). Molecular disorder can arise from various
phenomena, including both internal (e.g., vibrational modes
of the molecule) and external (e.g., interactions with a sol-
vent) DOFs. Furthermore, there are two main categories of
disorder: (I) dynamic disorder (e.g., thermal fluctuations from
vibrations—internal and/or external), which manifests as a

broadening of the transition energy/spectrum, and (II) static
disorder (e.g., molecular defects, reactant/product species,
isomers, inhomogeneous sizes of particles such as quan-
tum dots or nanoplatelets, varied external environments of
the molecules, multiple electronic states per molecule, etc.),
which may provide multiple spectral peaks [73].

In the present work, we consider three distributions of
molecule excitation frequencies as shown in Fig. 1: (i) Gaus-
sian, (ii) rectangular, and (iii) Lorentzian. Thus, we focus on
the role of strong disorder in the molecular sample. Specifi-
cally, we consider the probability distributions: Gaussian,

PG(E − Ē ) = 1√
2π σ

e− E−Ē
2σ2 , (16)

rectangular,

PR(E − Ē ) =
{

1
σ
, |E − Ē | � σ

2 ,

0, else,
(17)

and Lorentzian,

PL(E − Ē ) = 1

π

σ

(E − Ē )2 + σ 2
. (18)

These disorder distributions were previously explored with
analytic linear response models under a large-N expansion
in Ref. [29]. The rectangular distribution can be considered
as a limiting case of a uniform static disorder where, for
example, inhomogeneous particle sizes (e.g., quantum dots)
can lead to equally distributed features in the frequency do-
main [73]. We expect that the Gaussian distribution, in the
absence of a priori static disorder, will be the most preva-
lent in the experiment due to the random fluctuations (i.e.,
high-frequency, Markovian noise) of the solvent DOFs ubiq-
uitous in most experimental conditions. Of course, the true
shape of the excitation spectra will also depend on the elec-
tronic structure of the molecules themselves. Formally, the
stochastic error scales as O(1/

√
NNr ), where Nr is the num-

ber of random vectors used in the stochastic average and N
is the dimension of the Hamiltonian Ĥ (i.e., the number of
molecules in the current context). However, we find that the
error in the partial density of states scales unfavorably with
the number of molecules due to the small dimension of the
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FIG. 2. Transmission spectra for N = 1 at varying magnitude of
energetic disorders (vertical axis) of the molecules with widths σ

with distribution (a) Gaussian, (b) rectangular, and (c) Lorentzian.
A0 = 0.01 a.u., ωc = 1.00 a.u., Nr = 50 000, NCheb = 2500, γ =
0.001 a.u.

projection operator (dim[P̂ph]/dim[Ĥ ] ∼ 1/N � 1) and due
to the presence of disorder removing beneficial symmetry
from the Hamiltonian. Thus, in practice, we use Nr = 50 000
random vectors in all calculations to ensure convergence and
consistency. Unless otherwise stated, we use γ = Ã0/10 =
0.001 a.u., �E = 0.640 a.u., and NCheb = 2500 with a ratio
�E
γ

= 640. Figures 2–9 present the transmission spectra for
each disorder type [panels, Eqs. (16)–(18)] as functions of the
disorder in the molecular transition frequencies σ (vertical
axis) for (Fig. 2) N = 1, (Fig. 4) N = 2, (Fig. 6) N = 100,
and (Fig. 8) N = 1000 molecules. Figures 3, 5, 7, 9 are the
log-scale intensity analogs to Figs. 2, 4, 6, 8.

FIG. 3. Transmission spectra for N = 1 at varying Gaussian en-
ergetic disorders (vertical axis) of the molecules with widths σ with
distribution (a) Gaussian, (b) rectangular, and (c) Lorentzian. A0 =
0.01 a.u., ωc = 1.00 a.u., Nr = 50 000, NCheb = 2500, γ = 0.001 a.u.
Note that the data shown here are identical to Fig. 2 except that the
intensity is on a log scale.

The scaling of this approach can be written as
O(NrNChebd2) rather than O(d3) for direct diagonalization.
Since the Hamiltonian is sparse, the final scaling of the
stochastic-Chebyshev is O(NrNChebd ), linear in the dimension
of the Hilbert space d ≡ dim[Ĥ].

V. RESULTS AND DISCUSSION

Starting with N = 1 under Gaussian disorder in Fig. 2(a),
we find that that the upper (UP) and lower polariton (LP)
spectral bands collapse (decrease in Rabi splitting, �R =
EUP − ELP) nonlinearly with an increasing energetic disorder

013713-5
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FIG. 4. Transmission spectra for N = 2 at varying magnitude of
energetic disorders (vertical axis) of the molecules with widths σ

with distribution (a) Gaussian, (b) rectangular, and (c) Lorentzian.
A0 = 0.01 a.u., ωc = 1.00 a.u., Nr = 50 000, NCheb = 2500, γ =
0.001 a.u.

σE . Initially, at the range of low disorders, 0 < σ/Ã0 < 2,
the collapse of Rabi splitting is fast, while at large disor-
ders (2 < σ/Ã0 < 8), the collapse is slower. By σ/Ã0 = 10,
the UP and LP are indistinguishable from one another, and
�R → 0. At very weak disorder (0 < σ/Ã0 < 1), it is ev-
ident that the transmission spectrum is slightly broadened
by the presence of the molecular disorder before starting to
collapse [29]. This is more evident on the log scale shown
in Fig. 3(a) by the broad spectral feature at σ/Ã0 = 1.0. This
was also evident in a previous analytical theory exploring such
Gaussian-disordered molecular energies [29]. Furthermore,

FIG. 5. Transmission spectra for N = 2 at varying Gaussian en-
ergetic disorders (vertical axis) of the molecules with widths σ with
distribution (a) Gaussian, (b) rectangular, and (c) Lorentzian. A0 =
0.01 a.u., ωc = 1.00 a.u., Nr = 50, 000, NCheb = 2500, γ = 0.001
a.u. Note that the data shown here are identical to Fig. 4 except that
the intensity is on a log scale.

we note that while the two maxima in the transmission spectra
corresponding to the UP and LP spectral peaks are collapsing
due to the presence of disorder, the edge of the spectra (whose
states are composed of mostly matter character due to highly
off-resonant molecular energies) continues to spread outward.
This can be seen in Fig. 2(a), but is more obviously depicted
on a log scale shown in Fig. 3(a). Note that the log intensity
exhibits noise due to the stochastic trace in the region of
TM = 10−2–10−3 region of intensity.

For the rectangular distribution for N = 1 in Fig. 2(b),
we find that the UP and LP spectral peaks converge with
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FIG. 6. Transmission spectra for N = 100 at varying magnitude
of energetic disorders (vertical axis) of the molecules with widths σ

with distribution (a) Gaussian, (b) rectangular, and (c) Lorentzian.
A0 = 0.01 a.u., ωc = 1.00 a.u., Nr = 50 000, NCheb = 2500, γ =
0.001 a.u.

increasing energetic disorder as expected, but the collapse
is much slower than for the Gaussian disorder. In fact, the
UP and LP states do not fully collapse within 16 σ/Ã0.
Most likely, the peaks converge asymptotically as σ/Ã0 in-
creases. We note again that at weak disorder 0 < σ/Ã0 < 2,
the UP and LP spectral features exhibit a broadening due to
the presence of disorder [29]. Furthermore, compared to the
Gaussian-disordered case, the initial broadening of the UP
and LP spectral bands appears to be slower, as more clearly
shown in Figs. 3(a) and 3(b), maximizing the Rabi splitting
near σ/Ã0 ≈ 3.

FIG. 7. Transmission spectra for N = 100 at varying Gaussian
energetic disorders (vertical axis) of the molecules with widths σ

with distribution (a) Gaussian, (b) rectangular, and (c) Lorentzian.
A0 = 0.01 a.u., ωc = 1.00 a.u., Nr = 50 000, NCheb = 2500, γ =
0.001 a.u. Note that the data shown here are identical to Fig. 6 except
that the intensity is on a log scale.

For the last case of Lorentzian distribution for N = 1 in
Fig. 2(c), the UP and LP collapse is nearly linear in the energy
disorder magnitude, while both the Gaussian- and rectangular-
disorder cases were nonlinear. Specifically, we are tracking
the maximal peak location in the spectra as a function of the
disorder. Further, the collapse is much more rapid compared
to the other two cases, with LP and UP merging between
2–4 σ/Ã0 compared to more than 16 σ/Ã0 for rectangular
and 10 σ/Ã0 for Gaussian. This could be due to the intrinsic
long-tailed nature of the Lorentzian distribution compared to
the short-tailed Gaussian and no-tail rectangular distributions.
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FIG. 8. Transmission spectra for N = 1000 at varying magnitude
of energetic disorders (vertical axis) of the molecules with widths σ

with distribution (a) Gaussian, (b) rectangular, and (c) Lorentzian.
A0 = 0.01 a.u., ωc = 1.00 a.u., Nr = 50 000, NCheb = 2500, γ =
0.001 a.u.

This implies that for few-molecule spectroscopy, for example,
in plasmonic cavity designs [11], the emergence of UP and
LP spectral features may depend heavily on the shape and
magnitude of the molecular disorder. These features of the
molecular ensemble are dictated by the internal processes of
the molecules as well as by their local environment.

It is important to note that for N = 1, there are only two
polaritonic states present in the system, the UP and LP, for
a given stochastic configuration of the molecular transition
energies (one of the Nr = 50 000). Thus, there are no “dark
states,” even in the absence of molecular disorder. This is
evidenced by the lack of transmission intensity in the energy
range between the UP and LP spectral bands at any value of

FIG. 9. Transmission spectra for N = 1000 at varying Gaussian
energetic disorders (vertical axis) of the molecules with widths σ

with distribution (a) Gaussian, (b) rectangular, and (c) Lorentzian.
A0 = 0.01 a.u., ωc = 1.00 a.u., Nr = 50, 000, NCheb = 2500, γ =
0.001 a.u. Note that the data shown here are identical to Fig. 8 except
that the intensity is on a log scale.

disorder magnitude, most clearly seen in the log-scale rect-
angular distribution at E − ωc = 0 [Fig. 3(b), comparing to
Fig. 5(b) to be discussed below].

Figure 4 presents similar data as Fig. 2, but now for the case
of N = 2. In this system, at perfect resonance between the two
molecular excitations and the cavity photon excitation and at
zero molecular disorder, there is one UP, one LP, and one dark
state (i.e., a polaritonic state with no photonic character). At
finite molecular disorder, we can immediately recognize the
emergence of intermediate/middle polaritonic states within
the spectra, hereafter denoted the middle-polariton (MP)
spectral feature. This is seen most clearly for the Gaussian
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[Fig. 4(a)] and rectangular [Fig. 4(b)] cases which emerges at
∼2 σ/Ã0 and 3 σ/Ã0, respectively. This is more evident in the
log-scale analogs shown in Figs. 5(a) and 5(b). The Lorentzian
case shows little-to-no MP formation since the collapse of
the UP and LP peaks occurs rapidly due to the long-tailed
distribution.

Notably, for the Gaussian-disordered case with N = 2
[Fig. 4(a)], the collapse of the UP and LP peaks becomes
much more linear until their collapse at ∼4 σ/Ã0 com-
pared to the slower collapse occurring at 10 σ/Ã0 for the
single-molecule case [Fig. 2(a)]. Thus, moving from the
single-molecule strong coupling to the case of a few-molecule
strong coupling, the collapse of the UP and LP spectral fea-
tures occurs much more rapidly with increasing molecular
disorder. This observation can be explained by the fact that
the two molecular transitions can both cause a splitting with
the photonic DOF, but at a weaker magnitude. Recall that
for N = 2, the single-molecule coupling strength is scaled
down by 1/

√
2 to keep a fixed Rabi splitting at zero disorder.

Thus, in the presence of disorder, the collapse of the UP and
LP features occurs more rapidly due to the weaker single-
molecule coupling strength. As such, this effect may already
be evidenced by few-molecule plasmonic experiments if the
number of molecules can be rigorously constrained to one or
a few (2–5) molecules. Additionally, the UP and LP spectral
features again exhibit a slight broadening at weak disorder
before the collapse.

For the rectangular-disordered case and N = 2 [Fig. 4(b)]
the emergence of the MP feature (near 3 σ/Ã0) is more evident
than in the Gaussian-disordered case [Fig. 4(a)] and retains its
identity for a larger range of disorder (3 < σ/Ã0 < 9) than
the Gaussian case. Further, the collapse of the UP and LP
occurs earlier than for the N = 1 case, now at σ/Ã0 ∼ 14.
The Lorentzian-disordered case, however, shows none of the
spectral changes, compared to the Gaussian and rectangular
cases, moving from one to two molecules. As we will see,
the Lorentzian case has negligible changes for any number of
coupled molecules N .

Figure 6 presents the data with N = 100. For the Gaussian
case [Fig. 6(a)], we observe the clearest evidence that at weak
disorder, the UP and LP spectral peaks increase their Rabi
splitting slightly before contracting [29,63]. Of course, as
noted before, the eigenstates of the Hamiltonian still increase
their overall splitting with increased disorder, but the photonic
character becomes energetically localized to the resonance
energy once the molecules have become sufficiently dispersed
and largely off resonant. Recall that the single-molecule cou-
pling is now scaled down by 1/

√
100 compared to the N = 1

case (Fig. 2).
Interestingly, the rectangular distribution takes on a com-

pletely new character, now exhibiting outward-facing spectral
features at lower disorders (i.e., increasing the Rabi splitting
when 0 < σ/Ã0 < 5). Of the three distributions, the rect-
angular distribution contains the largest average probability
density, 〈PR〉E > 〈PG〉E ≈ 〈PL〉E [see Eqs. (16)–(18)]. For
the case of N = 1 or N = 2, we hypothesize that the molec-
ular distribution for a given stochastic configuration cannot
well enforce the hard boundaries at E = ωc ± σ

2 , while for
N = 100, the hard boundaries are evident for most statis-
tical samples in the average, allowing for the formation of

polaritons which also exhibit the features dictated by such
hard boundaries. Such features were also discussed in
Ref. [29], where the authors analyzed the same excitation
frequency distributions using a large-N expansion of the prob-
lem and extracting the analytic molecular susceptibility χ (E ).
This is also discussed in the recent work using perturbation
theory analysis [74] and response-function-based simulations
[63] of the linear absorption spectra. Notably, our results at
N = 100 match the features predicted by the large-N analyti-
cal theory in Ref. [29].

We also find that the formation of unique MP features is
negligible for the Gaussian and Lorentzian cases in Figs. 7(a)
and 7(c). Instead, a broad spectral activation is noted be-
tween the UP and LP peaks, nearly equally intense at all
points for the Gaussian distribution and slightly curved for the
Lorentzian case. This drastically contrasts with the rectangu-
lar distribution, which showcases a nearly linear broadening
from a point (E − ωc = 0) for the MP feature as a function of
the disorder magnitude (Fig. 7).

In the final case for N = 1000 (Figs. 8 and 9), we find
nearly identical results as for the N = 100 case (Figs. 6 and
7). Thus, interestingly, the collective effects involved in lin-
ear transmission spectroscopy inside the cavity are converged
with only 100 coupled molecules for the model system con-
sidered here. This is likely due to the fact that the dynamics
among the collective states are only sensitive to collec-
tive quantities,

√
NA0, as shown in recent theoretical works

[64–66]. While the converged simulation requires averaging
over a statistical ensemble of molecules, in the experiment,
this is automatically accounted for due to time-evolving ther-
mal fluctuations of the molecules.

VI. CONCLUSIONS

In this work, we use a stochastic-Chebyshev-expansion
approach to simulate the linear spectroscopic signatures of
exciton polaritons under varying types of molecular frequency
disorder: (i) Gaussian, (ii) rectangular, and (iii) Lorentzian.
We find that the transmission spectra exhibit drastically varied
characteristics between different electronic disorder types as
well as, for a fixed type of disorder, between one-, two-, and
many-molecule systems. Specifically, for the Gaussian and
rectangular disorders, we found that the rate of collapse of the
upper and lower polariton spectral features increases with an
increasing number of molecules from N = 1 to 2. Further, the
spectral features at weak disorders are drastically changing
with increasing numbers of coupled molecules in both the
Gaussian and rectangular disorders. At all numbers of coupled
molecules, N , both the Gaussian and rectangular disorder
types exhibit an increased Rabi splitting at weak disorder prior
to its collapse, which agrees with previous analytical work in
the large-N limit [29].

Contrary to Gaussian and rectangular disorder, the
Lorentzian disorder does not exhibit any changes with in-
creasing numbers of coupled molecules N . Additionally,
Lorentzian disorder does not exhibit strong middle-polariton
formation (i.e., the “brightening” of the dark states due to
disorder) compared to other disorder types. The rectangular
distribution exhibits the strongest MP formation.
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Interestingly, and most importantly, we find that the num-
ber of molecules necessary to saturate the collective effects
for linear transmission spectroscopy is N ∼ 100 or less, irre-
spective of the disorder type and magnitude, as long as the
collective-coupling strength

√
NA0 is kept fixed. We empha-

size that this convergence is only with respect to the linear
spectroscopic features and not with respect to any dynamical
properties such as the nonradiative relaxation between polari-
tonic states, which depends on the number of molecules (i.e.,
the number of intermediate polariton states) in the system.
Therefore, our results should be considered as the first step
in understanding collective effects on linear spectroscopy as
a whole. On the other hand, our previous theoretical work
[64–66] suggests that if the relaxation are dictated by a
“golden rule” type of law, then even the dynamics are largely
dictated by the collective quantity

√
NA0.

In the future, we will extend this exploration in three di-
rections: (i) a nonlinear response via a modification of the
observable in Eq. (15), (ii) the inclusion of multimode cavity
structures [28], and (iii) dynamical effects through Chebyshev
propagation [63,75], all with varied molecular distributions
and number of collectively coupled molecules. Further, the
inclusion of the dipole self-energy (DSE), while small, may
yield nontrivial results in the large-N limit due to the ∝N
scaling of the DSE term compared to the ∝√

N scaling of the
bilinear coupling term.

Thus, it is our hope that these works will give insight
into the collective nature of the exciton-polariton systems and

provide a sense of intuitive understanding of the number of
molecules necessary for the convergence of collective effects.
This deeper understanding will help to stimulate future exper-
iments and theoretical studies alike by finding the common
ground between the simple single- or few-molecule simula-
tions and, compared to the seemingly difficult single-molecule
experiments, many-molecule experiments.
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