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This work provides the fundamental theoretical framework for molecular cavity quantum electrody-
namics by resolving the gauge ambiguities between the Coulomb gauge and the dipole gauge Hamiltonians
under the electronic state truncation. We conjecture that such ambiguity arises because not all operators are
consistently constrained in the same truncated electronic subspace for both gauges. We resolve this
ambiguity by constructing a unitary transformation operator that properly constrains all light-matter
interaction terms in the same subspace. We further derive an equivalent and yet convenient expression for
the Coulomb gauge Hamiltonian under the truncated subspace. We finally provide the analytical and
numerical results of a model molecular system coupled to the cavity to demonstrate the validity of our
theory.
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Coupling molecules to the quantized radiation field
inside an optical cavity creates a set of new photon-matter
hybrid excitations, so-called polaritons [1–4]. The rich
dynamic interplay among these electronic, photonic,
and nuclear degrees of freedom (d.o.f.) has enabled a
new paradigm for achieving unique chemical reactivities
[5–9]. The nonrelativistic quantum electrodynamics
(QED) Hamiltonian that describes such quantum light-
matter interactions should obey the gauge principle, i.e.,
giving rise to the same physical results (physical observ-
ables) upon a gauge transformation [10,11]. While the
QED Hamiltonian under both the Coulomb gauge and the
dipole gauge (length gauge) indeed obeys this principle,
these Hamiltonians under a finite electronic state trunca-
tion (the few-level approximation) are known to
give different results for physical observables [12–20],
which is commonly referred to as the gauge ambiguity
[14,17–19]. While using a finite level of projection
on the dipole gauge Hamiltonian often provides
accurate results of the polariton eigenspectrum (when the
few-level truncation is a good approximation [18])
compared to the exact simulation, applying the same level
of electronic state truncation Ĥ0

C often leads to different
results and, sometimes, a significant error in the
ultrastrong light-matter coupling regime [18–20]. In this
Letter, we demonstrate that it is possible to resolve it
and provide identical polariton eigenspectra from
either the Coulomb or the dipole gauge Hamiltonian
upon the same level of the electronic state truncation.
We begin by defining the matter Hamiltonian and the

corresponding total dipole operator as follows:

ĤM ¼ T̂þ V̂ðx̂Þ ¼
X
j

1

2mj
p̂2
j þ V̂ðx̂Þ; μ̂ ¼

X
j

zjx̂j;

ð1Þ

where j is the index of the jth charged particle (including
all electrons and nuclei), with the corresponding mass mj
and charge zj. In addition, x̂≡ fx̂jg ¼ fR̂; r̂g with R̂ and
r̂ representing the nuclear and electronic coordinates,
respectively, p̂≡ fp̂R; p̂rg≡ fp̂jg is the mechanical
momentum operator as well as the canonical momentum
operator, such that p̂j ¼ −iℏ∇j. Further, T̂ ¼ T̂R þ T̂r is
the kinetic energy operator, where T̂R and T̂r represent the
kinetic energy operator for nuclei and for electrons,
respectively, and V̂ðx̂Þ is the potential operator that
describes the Coulombic interactions among electrons
and nuclei. The cavity photon field Hamiltonian under
the single mode assumption is expressed as Ĥph ¼
ℏωcðâ†âþ 1

2
Þ ¼ 1

2
ðp̂2

c þ ω2
cq̂2cÞ, where ωc is the frequency

of the mode in the cavity, â† and â are the photonic creation
and annihilation operators, and q̂c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=2ωc

p ðâ† þ âÞ and
p̂c ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏωc=2

p ðâ† − âÞ are the photonic coordinate and
momentum operators, respectively. Choosing the
Coulomb gauge, ∇ · Â ¼ 0, the vector potential becomes
purely transverse Â ¼ Â⊥. Under the long-wavelength
approximation, Â ¼ A0ðâþ â†Þ ¼ A0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωc=ℏ

p
q̂c, where

A0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=2ωcε0V

p
ê, with V as the quantization volume

inside the cavity, ε0 as the permittivity, and ê is the unit
vector of the field polarization.
The minimal coupling QEDHamiltonian in the Coulomb

gauge (the “p · A” form) is expressed as
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ĤC ¼
X
j

1

2mj
ðp̂j − zjÂÞ2 þ V̂ðx̂Þ þ Ĥph; ð2Þ

where p̂j ¼ −iℏ∇j is the canonical momentum operator.
Upon a gauge transformation Ûχ ¼ exp½ði=ℏÞPj zjχ ðx̂jÞ�,
Ĥχ ¼ ÛχĤCÛ

†
χ remains gauge invariant, because

Ĥχ ¼
P

jð1=2mjÞ½p̂j − zjÂχðx̂jÞ�2 þ V̂ðx̂Þ þ Ĥχ
ph, where

ÂχðxjÞ ¼ Âþ ∇jχðx̂jÞ is gauge transformed vector poten-
tial that provides the same physical field, because
∇j × ∇jχðx̂jÞ ¼ 0. To prove the above equation, we

have used eŶÔðX̂Þe−Ŷ ¼ ÔðeŶX̂e−ŶÞ for a unitary
operator, as well as Ûχp̂jÛ

†
χ ¼ p̂j − zj∇jχðx̂jÞ. Further,

Ĥχ
ph ¼ ÛχĤphÛ

†
χ , ÛχV̂ðx̂ÞÛ†

χ ¼ V̂ðx̂Þ because V̂ is a local
potential operator for the matter, that is, only a function of x̂
and p̂ independent.
We further introduce the Power-Zienau-Woolley (PZW)

gauge transformation operator [10,21] as

Û ¼ exp

�
−
i
ℏ
μ̂ · Â

�
¼ exp

�
−
i
ℏ
μ̂ ·A0ðâþ â†Þ

�
: ð3Þ

The PZW transformation operator can also be expressed as
Û¼exp½−ði=ℏÞ ffiffiffiffiffiffiffiffiffiffiffiffiffi

2ωc=ℏ
p

μ̂A0q̂c�¼exp½−ði=ℏÞðPjzjÂxjÞ�.
Recall that a momentum boost operator Ûp ¼ e−ði=ℏÞp0q̂

displaces p̂ by the amount of p0, such that
ÛpÔðp̂ÞÛ†

p ¼ Ôðp̂þ p0Þ. Hence, Û is a boost operator
for both the photonic momentum p̂c by the amount offfiffiffiffiffiffiffiffiffiffiffiffiffi
2ωc=ℏ

p
μ̂A0, as well as for the matter momentum p̂j by

the amount of zjÂ. The PZW gauge operator [Eq. (3)] is a
special case of Ûχ , such that χ ¼ −x̂j · Â. Using Û† to
boost the matter momentum, one can show that

ĤC ¼ Û†ĤMÛ þ Ĥph; ð4Þ

hence ĤC can be obtained [19] by a momentum boost with
the amount of −zjÂ for p̂j, then adding Ĥph.
The QED Hamiltonian under the dipole gauge (the

“d · E” form [21,22]) can be obtained by performing the
PZW transformation on ĤC as follows:

ĤD¼ ÛĤCÛ
†¼ ÛÛ†ĤMÛÛ†þÛĤphÛ

†

¼ ĤMþℏωc

�
â†âþ1

2

�
þ iωcμ̂A0ðâ†− âÞþωc

ℏ
ðμ̂A0Þ2;

ð5Þ

where we have used Eq. (4) to express ĤC, and the last
three terms of the above equation are the results of
ÛĤphÛ

†. Using q̂c and p̂c, one can instead show that
ĤD ¼ ĤM þ 1

2
ω2
cq̂2c þ 1

2
ðp̂c þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωc=ℏ

p
μ̂A0Þ2, because

the PZW operator boosts the photonic momentum p̂c
by

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωc=ℏ

p
μ̂A0.

When describing light-matter interactions, it is often
necessary to truncate the electronic states for the matter
(atoms or molecules), due to the difficulties of obtaining
accurate high-lying electronic excited states. The gauge
invariance is explicitly enforced between ĤC [Eq. (2)] and
ĤD [Eq. (5)] through the unitary PZW gauge transforma-
tion [Eq. (3)] in the full Hilbert space. However, the gauge
invariance could explicitly break down when a truncation
of electronic states is applied to both Hamiltonians
[18,19,23]. Consider a finite subset of states fjαig, where
the projection operator P̂ ¼ P

α jαihαj defines the trunca-
tion of the full electronic Hilbert space 1̂r ¼ P̂ þ Q̂ to the
corresponding subspace P̂. This truncation reduces the size
of the Hilbert space from originally 1̂r ⊗ 1̂R ⊗ 1̂ph to now
P̂ ⊗ 1̂R ⊗ 1̂ph, where 1̂R and 1̂ph represent the identity
operators of the nuclear and the photonic d.o.f.,
respectively.
The truncated matter Hamiltonian is ĤM ¼

P̂ĤMP̂ ¼ P̂ T̂ P̂þP̂ V̂ðx̂ÞP̂. Throughout this Letter, we
use calligraphic symbols (such as ĤM) to indicate operators
in the truncated Hilbert space. Truncating the momentum
operator and dipole operator as P̂p̂jP̂ and P̂ μ̂ P̂, the
QED Hamiltonians under the truncated subspace are
defined [18] as

Ĥ0
C ¼ ĤM þ Ĥph þ

X
j

�
−

zj
mj

P̂p̂jP̂ Âþ z2jÂ
2

2mj

�
; ð6Þ

ĤD ¼ ĤM þ Ĥph þ iωcP̂ μ̂ P̂A0ðâ† − âÞ
þ ωc

ℏ
ðP̂ μ̂ P̂A0Þ2: ð7Þ

Note that Ĥ0
C ¼ P̂ĤCP̂ ¼ P̂Û†ĤMÛ P̂þĤph. However,

ĤD ≠ P̂ĤDP̂. The latter requires the dipole self-energy
term to be evaluated as P̂μ̂2P̂ ¼ P̂ μ̂ðP̂ þQÞμ̂ P̂, requiring
the knowledge of electronic states in Q̂ (those higher
excited states that are difficult to obtain). Hence, ĤD is
often defined as Eq. (7) in the literature [18,19,23], and
P̂ĤDP̂ seems to lead to less accurate results compared to
the numerically exact calculations (see Supplemental
Material [24], Sec. VII).
It is well known that Ĥ0

C and ĤD do not generate the
same polariton eigenspectrum [18–20,23] under the ultra-
strong coupling regime [36]. Since electronic state trunca-
tion is often necessary, one would have to choose a
particular gauge to describes light-matter interactions,
leading to a well-known ambiguity [14,17,18] as to which
Hamiltonian, Ĥ0

C or ĤD, is viable to compute physical
quantities when applying P̂. This fundamentally different
behavior of Ĥ0

C and ĤD upon states truncation is also
attributed to the fundamental asymmetry of the p̂ and
μ̂ ¼ P

j zjx̂j operators [18]. This ambiguity is attributed
[18,25] to the fact that Ĥ0

C usually requires a larger subset
of the matter states to converge or generate consistent
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results with ĤD, and apparently, under the complete
basis limit, they should be gauge invariant. It will be
theoretically novel to resolve this gauge ambiguity and
provide consistent results from both gauges under the same
level of electronic state truncation.
We conjecture that this gauge ambiguity emerges

because the P̂Û† and Û P̂ in Ĥ0
C [Eq. (6)] do not

consistently constrain light-matter interaction operators
in the same electronic subspace as those corresponding
operators in ĤD. Indeed, all light-matter interaction
operators in ĤD are completely constrained in the subspace
P̂. Meanwhile, for Ĥ0

C, the corresponding light-matter
interaction operators are not properly contained in P̂,
such that some of them are entering into the subspace
Q̂ ¼ 1̂r − P̂, and this is indeed the case for Û P̂ ¼
ðP̂ þ Q̂ÞÛ P̂. It is also apparent by examining the dia-
magnetic term z2j Â

2=2mj in Ĥ0
C, which is effectively

evaluated in the full space [18,19] 1̂r (based on the
Thomas-Reiche-Kuhn sum rule), hence is not properly
confined in P̂. This diamagnetic term overestimates what it
should be in the subspace [18,19], and by confining it
inside P̂, the results can be significantly improved [19].
Similarly, using P̂ Û P̂ [19,23] does not resolve this gauge
ambiguity either (see Supplemental Material [24], Sec. II).
Based on the above conjecture, the gauge ambiguity in

the truncated electronic subspace will be resolved by
defining the following unitary operator:

Û ¼ exp

�
−
i
ℏ
P̂ μ̂ P̂ ·Â

�
≡ exp

�
−
i
ℏ
μ̃ðx̂; p̂Þ · Â

�
; ð8Þ

such that all terms in Û ¼ P∞
n¼0ð1=n!Þð−i=ℏÞnðP̂ μ̂ P̂ÞnÂn

are properly confined within the subspace P̂, and upon
gauge transformation, all light-matter interaction operators
are now consistently confined in P̂ for both gauges. Here,
Û is defined analogously to the PZW gauge operator Û in
the full space [Eq. (3)], and P̂ μ̂ P̂≡μ̃ðx̂; p̂Þ in principle is a
function of both x̂ and p̂, due to the finite level projection
that ruins the locality of x̂ [19,37]. Further, Û is a unitary
transformation operator in the P̂ subspace and the identity
operator in the subspace of 1̂r − P̂, such that we still have
ÛÛ† ¼ 1̂r ⊗ 1̂R ⊗ 1̂ph ¼ ÛÛ†. Using Û, one can define
the following Coulomb gauge Hamiltonian:

ĤC ¼ Û†ĤMÛ þ Ĥph; ð9Þ

analogously to ĤC in Eq. (4) in the full space. One can then
formally show that ĤC [Eq. (9)] and ĤD [Eq. (7)] are
related through Û [Eq. (8)] as follows ÛĤCÛ

† ¼
ĤM þ ÛĤphÛ

† ¼ ĤD. Note that to establish the last

equality, we have used the fact that ÛĤphÛ
† ¼

Ûð1
2
ω2
cq̂2cþ 1

2
p̂2
cÞÛ†¼ 1

2
ω2
cq̂2cþ 1

2
ðp̂cþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωc=ℏ

p
P̂ μ̂P̂A0Þ2.

Thus, we have formally demonstrated that the gauge
ambiguities between the Coulomb and dipole gauge

Hamiltonians can be resolved for an arbitrary matter-cavity
hybrid system, under the same level of electronic state
truncation.
To derive the detailed expression of ĤC, we notice that

P̂ μ̂ P̂≡μ̃ðx̂; p̂Þ is in principle a nonlinear function of both
x̂ and p̂, as opposed to μ̂ [Eq. (1)] which is a pure linear
function of x̂. Thus, Û† no longer just boosts the
matter momentum by zjÂ. Using the Baker-Campbell-
Hausdorff (BCH) identity, Û†p̂jÛ ¼ p̂j þ ði=ℏÞ½μ̃ Â;
p̂j� þ 1

2
ði=ℏÞ2½μ̃ Â; ½μ̃ Â; p̂j�� þ � � �, we have Û†p̂jÛ ¼

p̂j − ∇jμ̃ðx̂; p̂ÞÂþ P̃j, where P̃j ≡ 1
2
ði=ℏÞ2½μ̃ Â;

½μ̃ Â; p̂j�� þ � � � is the residual momentum that accounts
for terms with more than one commutator in the BCH
identity. Hence, under the projection, Û† boosts the matter
momentum by the amount of −∇jμ̃ ÂþP̃j. Similarly,
P̂ V̂ðx̂ÞP̂ ¼ V̂ðx̂; p̂Þ is a nonlocal potential [16,19,37].
Hence, Û† also displaces the matter coordinate as well
as boost the matter momentum inside V̂ðx̂; p̂Þ, whereas
Û†V̂ Û can be formally derived through the BCH identity.
Using the above result of Û†p̂jÛ, as well as the fact

that both Û† and Û commute with P̂ such that
Û†P̂ T̂ P̂ Û ¼ P̂Û†T̂ Û P̂, we can derive ĤC [in Eq. (9)] as

ĤC¼ Û†P̂ T̂P̂ ÛþÛ†P̂ V̂ðx̂ÞP̂ ÛþĤph

¼
X
j

1

2mj
P̂ðp̂j−∇jμ̃ÂþP̃jÞ2P̂þ Û†V̂ðx̂;p̂ÞÛþĤph;

ð10Þ

where the sum j includes all charged particles (electrons
and nuclei). Note that Ĥ0

C [Eq. (6)] as well as ĤC [Eq. (2)]
only contain the vector potential Â up to the second order.
This is no longer the case for ĤC in Eq. (10). In fact, both
the P̃j term and the Û†V̂ðx̂; p̂ÞÛ term in principle contain

infinite orders of Â. It is also self-evident that ĤC

[Eq. (10)] will return to ĤC [Eq. (2)] under the complete
electronic states limit, such that μ̃≡ P̂ μ̂ P̂ → μ̂, thus
∇jμ̃ → ∇jμ̂ ¼ zj, hence P̃j → 0, as well as Û → Û, hence
Û†P̂ V̂ðx̂ÞP̂ Û → Û†V̂ðx̂ÞÛ ¼ V̂ðx̂Þ. Unfortunately, ĤC
no longer remains a gauge-invariant form (except when
approaching the complete electronic states limit), by only
involving charges but not higher multipole moments.
Nevertheless, ĤC is invariant from ĤD through the Û
transformation, resolving the ambiguity between them.
There are scenarios where the Coulomb gauge is more
convenient [25,38,39] than the dipole gauge for describing
light-matter interactions, such as for a solid state material
[25,38] interacting with the radiation field where the wave
function satisfies periodic boundary conditions and the
expectation value of the dipole operator becomes ill defined
[40]. For these scenarios, instead of using Ĥ0

C, the currently
derived ĤC should be used to investigate the light-matter

interactions. Compared to Ĥ0
C which requires many
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electronic states to provide a reasonable polariton eigens-
pectrum [18,25], ĤC requires as few electronic state as ĤD
and provides identical results.
To further present an equivalent yet convenient ĤC for

molecular cavity QED, we use the electronic states
associated with the electronic Hamiltonian Ĥel ¼
T̂r þ V̂ ¼ ĤM − T̂R. The adiabatic electronic states
jαðRÞi are the eigenstates of Ĥel through ĤeljαðRÞi ¼
ðT̂r þ V̂ÞjαðRÞi ¼ EαðRÞjαðRÞi. Using P̂ ¼ P

α jαðRÞi
hαðRÞj, the projected electronic Hamiltonian is
Ĥel ¼ P̂ĤelP̂ ¼ P

α EαðRÞjαihαj. Alternatively, diabatic
electronic states [41–44] fjφi; jϕig can be obtained by the
unitary transform [41–45] from the adiabatic states jαðRÞi.
The character of the diabatic states does not depend
on R, such that hφj∇Rjϕi ¼ 0. With P̂ ¼ P

φ jφihφj,
Ĥel¼ P̂ĤelP̂¼P

φVφφðRÞjφihφjþP
φ≠ϕVφϕðRÞjφihϕj,

where VφϕðRÞ ¼ hφjĤeljϕi is a diabatic matrix element
of Ĥel.
The central result of this Letter is reached by splitting the

matter Hamiltonian as ĤM ¼ T̂R þ Ĥel, then through a
similar derivation procedure to obtain the following:

ĤC ¼ Û†P̂T̂RP̂ Û þÛ†P̂Ĥelðp̂r; x̂ÞP̂ Û þĤph

¼
X
j∈R

1

2mj
P̂ðp̂j − ∇jμ̃ ÂþP̃jÞ2P̂ þ Û†ĤelÛ þ Ĥph;

ð11Þ

where the sum over j only includes nuclei. In the above
expression, we did not specify the choice of P̂, which could
be either adiabatic or diabatic. Under the limiting case
when A0 ¼ 0 or μ̃ · Â ¼ 0, both the −∇jμ̃ Â and P̃j terms
become 0, and Û† ¼ Û → P̂ ⊗ 1̂R ⊗ 1̂ph. Thus, under
such a limit, ĤC → ĤM þ Ĥph; hence, the matter
and the cavity becomes decoupled. When using adiabatic
states for the truncation, one can show that [42,46]
P̂p̂2

j P̂¼ðp̂j− iℏ
P

α;βd
j
αβjαihβjÞ2, where dj

αβ ≡ hαj∇jjβi
is the well-known derivative couplings. Besides these
adiabatic derivative couplings, the light-matter inter-
action also induced additional “derivative”-type couplings,
−∇jμ̃ Â and P̃j, regardless of the electronic representation
used in constructing P̂. When using the Mulliken-Hush
diabatic states [43,47] which are the eigenstates of the μ̃≡
P̂ μ̂ P̂ operator, such that μ̃ ¼ P

ϕ μϕϕjϕihϕj, one can
prove that P̃j ¼ 0 for all nuclei. This is because that
∇jμ̃ ¼ P

ϕ ∇jμϕϕjϕihϕj, thus both μ̃ Â and ½μ̃ Â; p̂j�
become purely diagonal matrices, hence all of the higher
order commutators in Û†p̂jÛ become zero, resulting in
P̃j ¼ 0 for j ∈ R.
Finally, we use the above general principle to derive

analytical results for a model system. Without loosing
generality, let us consider a molecular system within the
diabatic states fj0i; j1ig, which represents a broad range of
chemical systems [48–50]. To simplify our algebra, we will
assume there is only one nuclear d.o.f. with the coordinate

R̂ and momentum p̂R, and μ̂ is always aligned along the
polarization direction of Â (which is ê). Under the
truncated space, P̂ ¼ j0ih0j þ j1ih1j, the dipole operator
is expressed as μ̃≡ P̂ μ̂ P̂ ¼ Δμσ̂z þ μ̄ P̂þμ10σ̂x, where
Δμ ¼ 1

2
ðμ00 − μ11Þ, μ̄ ¼ 1

2
ðμ00 þ μ11Þ, and μφϕðR̂Þ ¼

hφjμ̂jϕi. Note that these transition and permanent dipoles
are functions of R̂. The electronic Hamiltonian in
this truncated subspace is Ĥel¼ P̂ĤelP̂¼ εðR̂Þσ̂zþ
V̄ðR̂ÞP̂þV10ðR̂Þσ̂x, where εðR̂Þ ¼ 1

2
½V00ðR̂Þ − V11ðR̂Þ�,

V̄ðR̂Þ ¼ 1
2
½V00ðR̂Þ þ V11ðR̂Þ�, and VφϕðR̂Þ ¼ hφjĤeljϕi

(i.e., they are Ĥel’s matrix elements). Using the above spin
representation for μ̃ and Ĥel, as well as the BCH identity,
one can analytically show (see Supplemental Material [24],
Sec. I) that for the terms in ĤC from Eq. (11), we have

Û†ĤelÛ ¼ Ĥel þ ½εðR̂Þ sinθ−V10ðR̂Þ cosθ�fsin ½ξÂ�σ̂y
þ cosθð1− cos½ξÂ�Þσ̂x þ sinθðcos½ξÂ�− 1Þσ̂zg;

ð12Þ

ξ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðμ00 − μ11Þ2 þ 4μ210
p

, tan θ ¼ 2μ01=ðμ00 − μ11Þ, and
the residual momentum is P̃R¼1

2
ð∇RtanθÞcos2θfð1−

cos½ξÂ�Þσ̂yþ½ðsinθÞσ̂z−ðcosθÞσ̂x�ðsin½ξÂ�−ξÂÞg. Note that
for using adiabatic states projection P̂ ¼ P

α jαðRÞihαðRÞj,
the Û†ĤelÛ expression in Eq. (12) remains the same form
with V̂01 ¼ 0, and so does the form of ĤC, except for the
detailed expression of P̃. The above result has two
interesting limits. The first limit is the Rabi model (two-
level atom interacts with a cavity) under the Coulomb
gauge [19] that provides the consistent results of the dipole
gauge Rabi model (see Supplemental Material [24], Sec. I).
The second limit is when these diabatic states are also
Mulliken-Hush diabatic states, which means that μ10 ¼ 0

and tan θðRÞ ¼ 0, hence ∇R tan θðRÞ ¼ 0, and P̃R ¼ 0,
agreeing with our previous analysis of this residual
momentum.
Figure 1 demonstrates the validity of our theory with a

numerical example of a molecule couple to the cavity [1].
Here, we use the Shin-Metiu model molecular system [26],
which contains two fixed ions, one moving electron and
proton (whose position is R), all interacting with each other
through modified Coulombic potentials. The details of this
model, as well as the procedure to obtain the strict diabatic
states (not the Mulliken-Hush diabatic representation) are
provided in Supplemental Material, Secs. V–VII. Figure 1(a)
presents the diabatic potential and the matrix elements of
μ̃. Here, we focus on comparing the polaritonic potential
energy surface EkðRÞ, which is defined as ĤD

pljΦkðRÞi ¼
EkðRÞjΦkðRÞi, where ĤD

pl ¼ ĤD − T̂R represents the
polariton Hamiltonian under the dipole gauge. In the
truncated electronic subspace, ĤD

pl ¼ Ĥel þ ÛĤphÛ
†, ĤC

pl ¼
Û†ĤD

plÛ ¼ Û†ĤelÛ þ Ĥph, and ĤC0
pl ¼ P̂Û†ĤD

plÛ P̂. Note

that the analytical results of Û†ĤelÛ is expressed in
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Eq. (12), whereas the details of other expressions are
provided in Supplemental Material [24], Sec. VIII.
The matrix elements of these Hamiltonians are evaluated
with the two electronic diabatic states and a large number of
Fock states, and diagonalizing this matrix gives EkðRÞ.
Figure 1(b) presents EkðRÞ with A0 ¼ 0.2 a:u: and ℏωc ¼
3 eV (such that the light and matter excitations are in
resonance at R ¼ 0). While the ĤD

pl (solid) and Ĥ
C
pl (dotted)

give identical results throughout all range of R, ĤC0
pl (dashed)

gives inconsistent results and breakdown gauge invariance.
Figures 1(c)–1(d) present Ek − E0 at ℏωc ¼ 3 eV as a
function of the field strength A0, at R ¼ 0 (resonance
condition) and R ¼ −1.74 a:u: (detuned), respectively.
Again, the results from the Coulomb gauge and dipole
gauge agree with each other exactly throughout the entire
range of the field strength, whereas simple state truncation
on the Coulomb gauge QED Hamiltonian breaks the gauge
invariance, especially in the ultrastrong coupling regime
[19,36]. Interestingly, ĤC requires much fewer vacuum’s
Fock states to converge the polariton eigenspectrum [25]
compared to ĤD, as shown in the SI. Hence, using ĤC for
ultrastrong light-matter interactions provides a numerical
advantage of using a much fewer Fock states to converge the
polariton eigenspectrum, while uses as few matter states as
required in ĤD (as opposed to Ĥ0

C which requires many
electronic states [18,25]).

In conclusion, we lay out the fundamental theoretical
framework for the molecular cavity QED by presenting the
general procedure to obtain the Coulomb gauge
Hamiltonian that provide the consistent results from the
dipole gauge Hamiltonian, under the same level of elec-
tronic state truncation. While using a finite level of
projection on ĤD often provides accurate results of the
polariton eigenspectrum, Ĥ0

C often introduce the gauge
ambiguity (especially in the ultrastrong coupling regime).
Instead, ĤC in Eq. (11) resolves such gauge ambiguity by
proving consistent results as ĤD. Investigations based upon
the Coulomb gauge [25,38,39] should consider using ĤC.
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pl (solid), Ĥ
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