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Recent experiments have demonstrated that it is possible to modify ground-state chemical reac-
tivities by placing an ensemble of molecules in an optical microcavity through resonant coupling
between the cavity and vibrational degrees of freedom (DOF) of the molecules. This new strategy
of vibrational strong coupling (VSC), if feasible, will offer a paradigm shift in synthetic chemistry
through cavity-enabled bond-selective chemical transformations. This so-called VSC regime oper-
ates in the absence of any light source, occurs under the resonance condition when cavity frequency
matches the molecular vibrational frequency, and only occurs at the normal incidence when consider-
ing in-plane momentum inside a Fabry-Pérot cavity. In this work, we provide a potential mechanism
that explains all observed phenomena. Using numerically exact quantum dynamics simulations and
an analytic rate theory, we have demonstrated the resonant suppression of the rate constant when
coupling the cavity mode to a vibrational spectator mode in a model reaction. Both the analytic
theory and the simulations can explain previously observed phenomena, including the non-linear
change of the rate constant when increasing Rabi splitting, modification of both reactive enthalpy
and entropy, and for a reason why with a very low barrier, there is a lack of the cavity modification.
The analytic theory can also explain the normal incidence condition, and collective coupling effects
when solvents are collectively coupled to both cavity mode and reaction coordinate.

Recent experiments [1–14] demonstrated that chemi-
cal reaction rate constants can be suppressed [1–6, 9, 10]
or enhanced [11–14] by resonantly coupling molecular vi-
brations to quantized radiation modes inside a Fabry-
Pérot (FP) microcavity [6, 8, 15]. This effect, known
as vibrational strong coupling (VSC) modified chemi-
cal reactivity, has the potential to selectively slow down
competing reactions [2] or speed up a target reaction,
thus achieving mode selectivity and offering a paradigm
shift in chemistry. For example, VSC has been shown
to selectively slow down one reaction over a competing
reaction and revert the selectivities [2, 16], enabling a
new cavity-enabled bond-selective chemical transforma-
tion strategies in synthetic chemistry.

There are several characteristic, universal phenomena
in the VSC experiments [17, 18], including

(1) The resonance effect [1, 10], where the maximum
VSC effect occurs when the cavity frequency is tuned to
the vibrational frequency ωc = ωQ.

(2) The normal incidence effect [1], where the VSC
effect only happens when the in-plane photon momentum
is k∥ = 0.
(3) The collective effect [1, 4, 11] where the magni-

tude of VSC modification increases when increasing the
number of molecules N .

(4) The reaction is under thermal activation without
any optical pumping [1, 2].

To the best of our knowledge, there is no unified,
microscopic theory that can simultaneously explain all
of the above-observed phenomena [17]. Despite ex-
tensive theoretical efforts [10, 16, 19–42], the funda-
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mental mechanism and theoretical understanding of the
cavity-modified ground-state chemical kinetics remain
elusive [17, 18, 43, 44]. There are many insightful hy-
pothesis and mechanisms [10, 16, 19–35, 37–42] that
have been proposed to explain the VSC effects. Un-
fortunately, a clear theoretical understanding of cavity-
modified ground-state chemical reactivity remains miss-
ing.

Further, there is no analytic rate constant theory that
could explain the sharp resonance suppression either
(condition 1). Transition state theory (TST) predicts
no frequency-dependent VSC effects [22, 25] and existing
rate constant theory beyond TST often depends on the
barrier frequency [25, 41, 45], or has a very broad cavity-
frequency dependence for the rate changes [25, 30, 45].
These shortcomings of using the existing rate theories to
explain VSC effects strongly hint that a proper mechanis-
tic description of the VSC resonance suppression leads to
a completely new analytic rate constant expression. On
the other hand, related to the collective effect, seemingly
promising simulations in Ref. 33 showed that the effect
of collective resonance enhancement of rate was due to
the relaxation rate constant of the non-equilibrium ini-
tial condition of the molecule-cavity hybrid system [46],
whereas the chemical reaction rate constant remains the
same as outside the cavity when the dynamics enter into
the linear response regime [46].

There are several key progresses in the past years that
could potentially lead to a unified theory and mecha-
nism that explains the observed VSC effects. First, the
sharp resonance enhancement (condition 1) will show up
when using a quantum state description of the vibrational
states, which has been demonstrated with exact quantum
dynamics simulation [41, 47], mixed quantum-classical
simulations [48], and analytic rate constant theory based
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on Fermi’s golden rule [47, 49, 50]. Second, using the
photonic density of states (DOS) analysis and the FGR
rate expression that explicitly accounts for the in-plane
effective photonic lifetime, the normal incidence condi-
tion (condition 2) can be rationalized [49, 50]. Third, it
has been shown that when the N solvent vibrations cou-
ple to both cavity mode and a reaction coordinate, the
collective effect (condition 3) will naturally emerge [29],
although the resonance condition in Ref. 29 was not
ωc = ωQ due to the use of a classical rate theory which is
not sensitive to ωQ but rather to the reaction barrier fre-
quency [25] (or more generally speaking, curvatures of the
reaction barrier or the partition function that sums over
all frequencies). Nevertheless, the solvent-strong cou-
pling could influence the properties of solute molecules
as shown in recent experiments [51]. All of the above-
mentioned theoretical progress assumes a thermal condi-
tion without any laser-pumping excitation of the system
(condition 4).

In this work, we integrate our previous success and
progress into a unified microscopic mechanism that ex-
plains all of the experimentally observed VSC effects, giv-
ing the resonance condition [47], the normal incidence
condition [49], the collective effect [29], and operating
under the thermally activated condition. We consider a
theoretical model where cavity mode couples to a set of
solvent vibrations {Qj} (spectator modes, or rate pro-
moting vibrations) which in turn couple to a reaction
coordinate R0. This is a model that captures the essen-
tial feature of the recent VSC experiments [10], as well as
classical simulations that demonstrate the collective ef-
fect for reaction rate constant [29] or vibrational energy
relaxation [52]. We use the effective spectral density the-
ory to treat how cavity mode collectively coupled to the
spectator modes can influence the forward reaction along
a given reaction coordinate R0, and derive an analytic
rate constant expression based on Fermi’s Golden Rule
(FGR). We further use numerically exact quantum dy-
namics simulation based on the Hierarchical Equations of
Motion (HEOM) approach to verify the accuracy of the
theory. We discuss the fundamental mechanism of VSC-
suppressed reaction, the basic scaling of VSC effects with
light-matter coupling strengths, the null effect, and col-
lective as well as normal incidence conditions.

RESULTS

Theoretical model. We use the Pauli-Fierz (PF)
Hamiltonian to describe the light-matter interaction of
molecular vibrations in an optical cavity [18, 53]. In the
dipole gauge [53], single mode, long-wavelength approxi-
mations [18], the PF Hamiltonian takes the form

Ĥ = ĤM + ĤRPV + ĤLM + Ĥν + Ĥloss, (1)

where ĤM = T̂0 + V̂ (R̂0) is the Hamiltonian of the re-
active molecule whose ground state potential energy sur-
face is taken to be a symmetric double well potential

(a)

(b)

FIG. 1. Schematic illustration of the VSC-modified re-
actions and the mechanisms. (a). Schematic illustration
of a reactive molecule whose reaction coordinate is coupled
to a set of solvent vibrations, which are in turn coupled to
a cavity mode. (b) Photonic potential coupled to (c) an in-
termolecular vibration whose hybridization leads to a set of
polaritonic states with Rabi splitting ΩR. The intermolecu-
lar vibration in turn couples to a reaction coordinate R0. (d)
Potential energy surface of the chemical reaction along the re-
action coordinate, with four key vibrational states visualized.

along the reaction coordinate R̂0, see Methods, Eq. 25
for details. We use a set of localized diabatic vibrational
states (|νL⟩ , |νR⟩ , |ν′L⟩ , |ν′R⟩) to represent ground and ex-
cited vibrational states associated with the left well (re-
actant) and the right well (product), which are depicted
in Fig, 1d. In this picture, the vibrational frequency ω0

for the reactant is defined as the transition frequency as-
sociated with |νL⟩ → |ν′L⟩, see Methods, Eqs. 26-28 for

details. The description of Ĥν and Ĥloss are provided
in Methods, Eqs. 29-31. The rest of the details for the
model are provided in Supplementary Note 1.
Condensed phase chemical reactions often possess com-

plex structures, where the reaction coordinate strongly
interacts with a variety of environmental vibrations.
These fast dynamical modes, known as rate promoting
vibrations (RPV), have been recognized as playing a
key role in increasing the chemical reaction rate [54–57].
Moreover, it has been theoretically shown [10, 26, 29, 46]
that the cavity mode could significantly influence the re-
action dynamics when it interacts with one of such RPV
or solvent degrees of freedom (DOF). We model the inter-
actions between RPV modes and R0 using the following
Hamiltonian

ĤRPV =

N∑
j=1

Π̂2
j

2
+
ω2
Q

2

(
Q̂j −

Cj
ω2
Q

R̂0

)2

, (2)
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where Π̂j and Q̂j are the momentum and coordinate for
the RPV modes, which could be a spectator mode or
solvent modes that coupled to R0 with coupling strength
Cj . These modes have a uniform frequency ωQ. Further,
we introduce the reorganization energy for R0 caused by
Qj coupling, defined as

Λ =

N∑
j=1

C2
j /(2ω

2
Q). (3)

Note that this is a collective quantity between reaction
coordinate R0 and the solvent DOF Qj . For the solvent-
solute interactions in Eq. 2, with an increasing number of
solvent molecules, the outer sphere solvents will only be
weakly coupled to the solute, while the inner sphere sol-
vent strongly coupled to the solute, resulting in a solute-
solvent distance-specific coupling strength Cj . In this
study, we keep Λ as a fixed parameter.

The light-matter interaction Hamiltonian ĤLM con-
siders one cavity mode coupled to the {Qj} modes, ex-
pressed as

ĤLM =
p̂2c
2

+
ω2
c

2

(
q̂c +

√
2

ωc
ηc

N∑
j=1

Q̂j · cosφj

)2
, (4)

where the photonic position operator q̂c =√
ℏ/(2ωc)(â

† + â) and momentum operator

p̂c = i
√
ℏωc/2(â

† − â) are expressed in terms of

the photonic creation operator â† and annihilation â for
a given cavity mode, with ωc as the cavity frequency. A
generalization of this term with many cavity modes will
be discussed at the end of the paper. Further, ηc is the
light-matter coupling strength expressed as follows [18]

ηc =

√
1

2ℏωcϵ0V
, (5)

where ϵ0 is the permittivity inside the cavity, and V is the
effective quantization volume of that mode. For simplic-
ity, we have assumed that the dipole operators are lin-
ear [24, 41] such that µ̂(Qj) · ê⊥ ≈ Q̂j · cosφj , where ê⊥
is the transverse field polarization direction. In contrast
to the R0 − Qj interaction characterized by Cj (electro-
static interactions) which depends on the solute-solvent
distance, the cavity mode, on the other hand, interacts
with all solvent modes {Qj} with ηc weighted by cosφj ,
resulting in delocalized interactions that can be observed
from the Rabi splitting from spectroscopy [58].

Under the resonance condition of ωc = ωQ, the total
Rabi splitting from the spectral measurements is related
to the light-matter coupling strength. When there is no
dipole angle disorder (cosφj = 1 for all j), the Rabi
splitting is expressed as [17, 18, 58, 59]

ΩR = 2
√
NηcωcµQ =

√
2Nωcηc =

√
N

ϵ0V
(6)

where the transition dipole matrix element associated
with Qj is expressed as µQ = ⟨0|Q̂j |1⟩ =

√
1/(2ωQ)

which is assumed to be identical for all Qj modes.

Analytic Rate Theory. Under the thermally acti-
vated initial condition, the reaction coordinate R0 un-
dergoes a barrier-crossing process, reaches the transition
state, and finally relaxes to the product configuration.
This is the well-accepted classical mechanism that can
be properly described by transition state theory. Quan-
tum mechanically, the same process is described as (1)
the thermally activated vibrational excitation on the re-
actant side |νL⟩ → |ν′L⟩, (2) vibrational excited states
transition |ν′L⟩ → |ν′R⟩, and (3) vibrational relaxation on
the product side |ν′R⟩ → |νR⟩. The population dynamics
from the HEOM exact simulations (see Supplementary
Note 2 and 3) indicate that the reaction mechanism can
be described as follows [47]

|νL⟩
k1−→ |ν′L⟩

k2−→ |ν′R⟩
k3−→ |νR⟩ , (7)

where the initial vibrational excitation (|νL⟩ → |ν′L⟩)
is the rate-limiting step, such that k1 ≪ k2, k3, see
Fig. 1d. This will lead to a steady state population
(time-independent plateau population) of the interme-
diate states |ν′L⟩ and |ν′R⟩, and the overall rate constant
for the entire reaction (k) can be approximate as k ≈ k1.
The |νL⟩ → |ν′L⟩ transition is influenced by the energy
exchange between the phonon bath and the RPV modes
{Qj}. When resonantly coupled to the cavity, the light-
matter hybrid system has a set of polaritonic modes with
frequencies ω± = ωQ ± ΩR/2, thus effectively removing
the RPV’s from the |νL⟩ → |ν′L⟩ transition, explicitly
changing the value of k1, and as |νL⟩ → |ν′L⟩ is still the
rate-limiting step for system compiled inside the cavity
(see Supplementary Note 4), the influence of cavity on k1
explicitly shows up in the entire apparent rate constant
of the reaction.
Based on this observation, the impact of VSC on the

rate is solely attributed to the cavity interacting with
the RPV modes, and influencing the rate constant of the
|νL⟩ → |ν′L⟩ transition, hence imprint its impact on the
apparent rate constant of the reaction. The overall con-
stant is expressed as k ≈ k1 = kD + α · kVSC, where kD
is the rate constant for the double-well potential without
coupling to any RPV modes Qj or the cavity mode qc,
and α is a scaling parameter. When FGR is exact and
the role of {Qj} and qc are directly additive to k, α = 1.
For the previous work of VSC-enhanced rate constant
studies, we found [47, 49] that α ∈ [0.5, 1] are needed
to bring a quantitative agreement of the FGR expression
with the numerically exact results. Throughout the pa-
per, we report the ratio of the rate constant inside and
outside the cavity as follows

k/k0 = kD/k0 + α · kVSC/k0, (8)

where k0 and kD are directly obtained from HEOM sim-
ulations as they are not related to the coupling of the
cavity mode. In this work, under the condition ηc = 0
(outside the cavity), we find that α ≈ 0.7 will bring the
FGR analytic results to quantitatively agree with the nu-
merically exact results from HEOM. This parameter is
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then fixed for all cases of ηc when coupling the RPV
mode to the cavity.

We aim to develop an analytic rate constant theory
that describes the role of {Qj} and qc on the rate con-
stant. To this end, we derived an effective spectral den-
sity, Jeff(ω), that describes the coupling of ĤRPV+ĤLM+

Ĥloss to the reaction coordinate R0, based on the effective
spectral density theory [60, 61]. The details of the deriva-
tion are provided in Supplementary Note 5, and the most
general expression is provided in Eq. 34 in Method. A
more insightful, approximate expression is

Jeff(ω) =
Λ · ω2

Q · ωΓQ(ω)[
ω2
Q − ω2 + R̃(ω)

]2
+ (ωΓQ(ω))2

, (9)

where Λ (defined in Eq. 3) characterizes the couplings
between N RPV modes (e.g., solvent DOF) {Qj} with
R0, and ωQ is the solvent frequency which we assume to
be identical for all {Qj}. In addition, ΓQ characterizes
the excitation decay rate in the {Qj} modes

ΓQ(ω) =
2λQ
γQ

+
2Nχ2 · ω3

cη
2
cτ

−1
c

(ω2
c − ω2)

2
+ ω2τ−2

c

, (10)

where λQ and γQ are phonon bath parameters for {Qj}
modes (see Eq. 30b), τc is the cavity lifetime, and ωc is the
cavity frequency for mode qc. Further, χ characterizes
the angle of the vibrational dipole operator relative to
the cavity mode qc, with the following expression

χ =
1

N

∑
j

cosφj ≡ ⟨cosφ⟩, (11)

Finally, R̃(ω) in Eq. 9 is expressed as

R̃(ω) =
2Nχ2 · ωcη

2
cω

2

(ω2
c − ω2)

2
+ ω2τ−2

c

· (ω2 − ω2
c + τ−2

c ). (12)

Note that in this approximate form of Jeff(ω) in Eq, 9,
there are N − 1 dark states that do not appear [62], thus

being decoupled [29] from the reaction coordinate R̂0.
This is due to a mean-field-like approximation for the Cj
when deriving Eq. 9. In the general expression of the
spectral density (Eq. 34), the dark states can still show
up when having the angle and coupling disorders, but
the dark-state peak magnitude does not dominate when
considering a certain range of disorders. This will be
discussed in detail in the Collective coupling mecha-
nism section.
Fig. 2a presents Jeff(ω) at various ΩR. At ΩR = 0

(black curve), the peak of Jeff(ω) is located at the fre-
quency of ωQ, and the RPV effect is at its maximum
due to ωQ = ω0. With the higher ΩR, Jeff(ω) split into
two peaks (corresponding to the two vibrational polari-
ton frequencies ω± ≈ ωQ ± ΩR/2), and is moving away
from ω0, hence reduce the RPV effect and the value of
k1 for |νL⟩ → |ν′L⟩ transition (c.f. Eq. 7). Note that the
Jeff(ω) expression is only sensitive to the collective cou-
pling strength ΩR, and for N > 1, the behavior of Jeff(ω)

is identical to N = 1 as long as ΩR and Λ are identical.
The rest of the dark vibrational modes are decoupled
from qc and will not explicitly show up in Jeff(ω).
To evaluate the |νL⟩ → |ν′L⟩ transition rate constant

kVSC (Eq. 8), we use the FGR

κ(ω) = 2|∆x|2 · Jeff(ω) · n(ω), (13)

where ω is the transition frequency, ∆x = ⟨νL| R̂0 |ν′L⟩ the
vibrational transition dipole for the |νL⟩ → |ν′L⟩ transi-
tion, and

n(ω) = 1/(eβω − 1) (14)

is the Bose-Einstein distribution function, β ≡ 1/(kBT )
is the inverse of temperature T , and kB is the Boltzmann
constant. Note that the validity of FGR is under the
condition

√
ΛωQ · |∆x| ≪ kBT ≈ 200 cm−1 under T =

300 K, and the “strong coupling condition” [63] will not
break the validity of FGR (although for all known VSC-
induced chemistry experiments, ΩR = 100 cm−1). In this

work, the model system has
∑N

j Cj · |∆x|/
√

2ωQ ≈ 10

cm−1.
For the fixed energy level between |νL⟩ and |ν′L⟩ states,

the FGR rate constant is expressed as kVSC = κ(ω0),
where ℏω0 is the energy difference for the transition.
However, R0 also couples to its own solvent bath (see
Eq. 29), and has fluctuating energy levels. To account
for this effect, we add a broadening function A0(ω − ω0)
to the frequency ω0, with a Lorentzian shape [47, 50] (for
the case under the homogeneous limit [64]) expressed as

A0(ω − ω0) =
1

π

Γ0

(ω − ω0)2 + Γ2
0

, (15)

with the broadening parameter [47] expressed as Γ2
0 =

(ϵ2z/π)
∫∞
0
dω J0(ω) coth(βω/2), and ϵz ≡ ⟨ν′L|R̂0|ν′L⟩ −

⟨νL|R̂0|νL⟩. The full VSC modified rate constant should
be expressed as a convolution [47] between κ(ω) and A0

through kVSC =
∫∞
0
dω κ(ω) · A0(ω − ω0), with detailed

expression

kVSC = 2|∆x|2
∫ ∞

0

dω
Λω2

Q · ωΓQ(ω) · A0(ω − ω0) · n(ω)[
ω2
Q − ω2 + R̃(ω)

]2
+ (ωΓQ(ω))2

,

(16)

The analytic expression of kVSC in Eq. 16 is the first key
result of this work.
Under the resonance condition ωc = ωQ and the the

lossless limit τc → ∞, Eq. 9 can be simplified as follows

Jeff(ω) =
Λ · ωΓQ · (ω2

Q − ω2)2

[(ω2
Q − ω2)2 − Ω2

Rω
2]2 + [ωΓQ · (ω2

Q − ω2)]2

(17)

where ΓQ = 2λQ/γQ is frequency independent part of
ΓQ(ω) (c.f. Eq. 10). As the VSC rate constant modifica-
tion is dependent on Jeff(ω) (Eq. 13), the theory clearly
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(a) (b) (c)

FIG. 2. Resonance behavior of the VSC effect. (a) Effective spectral density Jeff (Eq. 9) with different values of ΩR, where
the two peaks correspond to the polariton modes. (b) VSC enabled rate constant reduction (blue) and the IR spectra for the
spectator mode Qj outside the cavity, both of which occur at ωc = ωQ. The ratio of inside and outside the cavity rate constant
k/k0 obtained from analytic FGR theory (blue solid line) and HEOM (blue solid circles) for N = 1 with ΩR = 57 cm−1. (c)
Normalized rate constant profile k/k0 (with respect to the outside cavity case k0) as a function of cavity frequency ωc and
various ΩR. All calculations are done with a cavity lifetime τc = 500 fs. The FGR results (solid lines) are re-scaled by a factor
of α = 0.7 (see Eq. 8).

indicates a non-linear dependence of kVSC with collec-
tive Rabi splitting ΩR, which has been experimentally
observed [4]. Particularly, further simplifications indi-
cate a scaling

kVSC ∝ 1

Ω2
R

∝ 1

Nη2c
(18)

In fact, both the HEOM numerical data (Fig. 3a) and
the experimental results (e.g., Fig. 3D in Ref. 4) can be
fitted well with k/k0 = kD/k0 + a/(1 + b ·Ω2

R) (where a,
b are fitting parameters), with details provided in Sup-
plementary Note 6. This scaling relation is the second
key results of this work.

VSC rate constant modifications. To validate the
kVSC theory in Eq. 16, we perform numerical simula-
tions of the rate constants for a single molecule (N = 1)
coupled to a single cavity mode, where the details are
provided in Methods. The parameters used for V̂ (R̂0)
set the well frequency ω0 ≈ 1189.7cm−1. For N = 1, the
RPV mode could be either an intermolecular vibration or
a nearby solvent that has a frequency ωQ = ω0. Further,
we set χ = 1 that corresponds to a vibrational dipole
aligned to the cavity mode. All the simulations are per-
formed at T = 300 K and a cavity lifetime τc = 500 fs.
The exact quantum dynamics propagation is done by
using the hierarchical equations of motion (HEOM) ap-
proach [65–68].

Fig. 2b presents the infrared (IR) profile of the RPV
mode (red curve), alongside the cavity-dependent rate
profile (blue curve) obtained from the HEOM simula-
tions (blue dots) and the FGR approach (blue solid line)
outlined in Eq. 8. Both profiles exhibit a distinct sharp
peak around ωQ, which is an essential feature observed in
most VSC experiments [1, 10]. In particular, existing the-
ories for resonance suppression often have a much broader

rate of constant peak (as a function of cavity frequency)
that is significantly broader than the width of the line-
shape [30, 45]. To the best of our knowledge, Eq. 16 is the
first analytic theory that is capable of describing a sharp
resonance suppression behavior indicated in Fig. 2c.

Fig. 2c presents the cavity frequency dependence of
k/k0. Here, the maximum suppression is achieved when
ωc = ωQ. The VSC suppression effects are enlarged at a
larger ΩR, because the peaks in Jeff(ω) are farther away
from the |νL⟩ → |ν′L⟩ transition (as can be seen from
Fig. 2a). This increase in ΩR also allows for light-matter
interactions at larger cavity detuning, contributing to
the broader rate profile. Our analytic FGR expression
(Eq. 16) accurately captures the cavity frequency depen-
dence of the rate constants for a wide range of ΩR. As
such, kVSC in Eq. 16 has achieved a quantitative agree-
ment with the HEOM simulation results and is capable
of describing the sharp resonance behavior observed in
the experiments [1, 10].

With the analytic expression of kVSC in Eq. 16, we fur-
ther explore the behavior of VSC modified rate constant
under the resonance condition ωc = ωQ. We aim to con-
nect with two kinds of experiments. The first kind is the
earlier work by Ebbesen and co-worker [1] for a depro-
tection reaction of alkynyl-silane, as well as the recent
work by Simpkins [10] with alcoholysis reaction between
phenylisocyanate and cyclohexanol. Both reactions show
a resonance suppression captured in Fig. 2. The sec-
ond kind is the CN radical-hydrogen atom abstraction
reaction explored by Weichman and co-workers [69, 70],
where there is no explicit VSC effect (null effect).

Fig. 3a presents k/k0 (blue dots and curve) as a func-
tion of ΩR in the range when the strong coupling condi-
tion is achieved. The results are obtained from HEOM
simulations (blue dots), as well as from the FGR analytic
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(a)

(b)

FIG. 3. VSC modification of the rate constant pre-
dicted by FGR theory (Eq. 16). (a) Ratio of the rate
constant inside and outside the cavity, k/k0, and effective free
energy barrier change ∆(∆G‡) at different ΩR. (b) Eyring
plot of ln(k/T ) v.s. 1/T at various ΩR. In all cases, the cav-
ity is under the resonance condition ωc = ωQ.

expression (blue curve) based on Eq. 8 and Eq. 16. The
results clearly show a non-linear relation of the rate con-
stant with the Rabi splitting. In particular, at a large
Rabi splitting, the maximum suppression of k/k0 con-
verges to the value of the bare double rate (k → kD).
As shown in Fig. 2b, the cavity ultimately removes the
effects the RPV mode has on the reaction rate by split-
ting the spectral density and shifting it away from the
frequency of ω0. The trend of k/k0 closely resembles
the experimental trend (e.g., Fig. 3D in Ref. 4), and the
FGR analytic expression closely agrees with the HEOM
results, especially for a large value of ΩR. The funda-
mental scaling in Eq. 18 is also observed, with details
provided in the Supplemental Note 6.

Fig. 3a also presents the change of the effective free
energy barrier ∆(∆G‡) (red), directly calculated from
the rate constant ratio k/k0 obtained from HEOM sim-
ulations (red dots) and FGR (red line). One can in-
terpret the rate constant changes as the change of the
effective free energy barrier ∆(∆G‡) through [4, 11, 47]

∆(∆G‡) = ∆G‡ − ∆G‡
0 = −kBT ln (k/k0). Note that

this is not an actual change in the free-energy barrier,
but rather an effective measure of the purely kinetic ef-
fect. Here, one can see a non-linear relation of ∆(∆G‡)
with ΩR that agrees with what has been observed ex-
perimentally (e.g., Fig. 3C in Ref. 4). Preliminary ex-
perimental investigations [4] suggest a non-linear trend
between ∆(∆G‡) and ΩR, and future experimental in-
vestigations should focus on measuring more data points
to determine the fundamental scaling relations.
Fig. 3b presents the temperature dependence of the

VSC rate constant, plotting ln(k/T ) as a function of 1/T ,
for reactions outside the cavity (black) and inside a reso-
nant cavity under various light-matter coupling strengths
(colors). If one assumes the rate constant could be de-
scribed by an Eyring-type equation (transition state the-
ory), then

ln(k/T ) ∝ −∆H‡

kB
· 1
T

+
∆S‡

kB
, (19)

where the slope is related to ∆H‡ and the y-intercept is
related to ∆S‡. The rate constants were obtained from
HEOM simulations (filled circles), and fitted by the least
square to obtain linearity (thin lines), as well as from
FGR rate theory (open circles). One can see that as
ΩR increases, both ∆H‡ and ∆S‡ changes. Here, both
the HEOM simulation and the FGR rate theory predict
the same trend. The previous work based on the clas-
sical Grote-Hynes rate theory [16] can only explain the
change in ∆S‡. The current FGR-based theory can ex-
plain changes in both ∆H‡ and ∆S‡, which has been
observed in experiments [1, 4, 6]. Again, we emphasize
that the VSC reaction mechanism is not related to mod-
ification of the ∆H‡ nor ∆S‡, but rather how cavity can
mediate vibrational excitations (see Eq. 7) by coupling
to Q. However, if one chooses to interpret the change
of k/k0 through the effective changes of ∆H‡ and ∆S‡,
then they will exhibit features depicted in Fig. 3b.
Another factor that could influence the VSC-rate con-

stant is the cavity lifetime τc, which also explicitly shows
up in the analytic expression of ΓQ(ω) (see Eq. 10) and

R̃(ω) (see Eq. 12), however, we find that k/k0 is not par-
ticularly sensitive to τc, and themagnitude of suppression
will be maximized under τc → ∞ limit, but start to con-
verge when τc ≥ 300 fs (see Supplementary Note 8).
Null VSC results due to low reaction bar-

rier. Recent experimental investigations [70, 71] on CN
radical-hydrogen atom abstraction reactions do not re-
veal any noticeable change in the rate constant, even
though the molecular system is under the strong coupling
condition. These seemingly null results on the VSC effect
will indirectly inform the fundamental mechanism and
limitations of the VSC-induced rate constant modifica-
tions, and provide insights into when VSC will not be able
to change rate constants. As we previously discussed, the
reason why cavity is able to modify the rate constant is
that k1 ≪ k2, k3, such that k ≈ k1 (see Eq. 7). When the
cavity modifies the vibrational excitation rate constant
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(a) (b)

(c)

FIG. 4. Null results of the VSC effects [70, 71] for a
reaction that has a low energy barrier. (a) Reaction
Potential along the reaction coordinate R0, with the low re-
action barrier [70, 71] such that the vibrational excited states
(green and red) are above the barrier, and the mechanistic
steps in Eq. 7 are no longer satisfied. k/k0 at various (b) cav-
ity frequencies and (c) ΩR, all showing null VSC reactivities.

k1, this effect manifests into the overall rate of reaction.
If the reaction mechanism in Eq. 7 no longer holds, then
coupling to the cavity will not modify the rate constant at
all. This will indeed be the case when the potential bar-
rier height is even lower than the first vibrational excited
state, and ground state tunneling |νL⟩ → |νR⟩ becomes
the dominating reactive channel. This is hypothesized to
be the case for the CN radical reactions in Ref. 71.

To confirm this hypothesis, we contract a model re-
active potential depicted in Fig. 4a with a lower barrier
energy E‡, such that there is only one localized vibra-
tional state, |νL⟩ (orange) in the reactant side as shown
in Fig. 4a. The details of the parameters are provided in
Supplemental Note 1 (model 2). The first excited state
denoted as |ν2⟩ (green in Fig. 4a) has a higher energy than
the barrier height and is fully delocalized across both re-
actant and product well. Additionally, the frequency of
the spectator mode ωQ is adjusted to match that of the
|νL⟩ → |ν2⟩ transition. Note that one can still achieve
VSC when coupling qc with Q when ωc = ωQ. This is
the minimum model that captures the essential features
of the CN radical reactions [70, 71].

Fig. 4b presents the HEOM results of k/k0 under var-
ious cavity frequency ωc with a strong coupling ΩR = 60
cm−1. We do not observe any noticeable change of k/k0
over a wide range of cavity frequency, agreeing with the
null experimental results in Ref. 71. This is opposed to
the situation of Fig. 2c. These results can be interpreted
from the vibrational population dynamics provided in
Fig. S3 in Supplemental Note 4, where the vibrationally
excited states do not actively participate in the forward
reaction, and tunneling between |νL⟩ and |νR⟩ is the pri-
mary mechanism leading to the formation of products for
this low barrier reaction. Similarly, in Ref. 70, a range of
ΩR were used in the experiments (25 ≤ ΩR ≤ 75 cm−1),
and one still finds null VSC results. Fig. 4c presents
k/k0 under various ΩR under the resonance condition
ωc = ωQ, and predicts the same null effect. These results
suggest that the current theory based on the mechanism

in Eq. 7 supports the null VSC results recently discovered
in the experiments [70, 71].

As discussed above, we have seen two main mecha-
nisms by which chemical reactions can proceed in our
model system : (a) the initial vibrational excitation as
the limiting reaction step (as described by Eq. 7) and (b)
the direct tunneling from reactants to products as the
main reactive pathway. Whether a reaction proceeds by
the first or second mechanism is dictated by the position

of the reaction barrier and the conditions are E‡
I > ω0

(for case a) or E‡
II < ω0 (for case b), respectively. Thus,

we propose that for two chemically similar reactions
only the one obeying mechanism (a) will be modified
by the VSC effects. Experimental measurements [72] of
the barrier height E‡ based on infrared absorption spec-
troscopy (in conjunction with DFT simulations) suggest
that (I) alcoholysis reaction between phenylisocyanate

and cyclohexanol has a E‡
I = 6.7 kcal/mol (2343 cm−1),

and for a similar alcoholysis reaction (II) between 2,4-
toluene-diisocyanate and chloraldhydrate, the activation

energy is E‡
II = 2.8 kcal/mol (973 cm−1). Interestingly,

E‡
I > {ω0, ωQ} > E‡

II, and reaction (I) has been investi-
gated by Simpkins et al [10] in a cavity under VSC and
found a sharpe resonance suppression (similar to Fig. 2c).
The current theory thus predicts that coupling reaction
(II) to the cavity will give null results (similar to Fig. 4)
due to its low barrier. Future experiments are encour-
aged to test this theoretical prediction.

Collective Coupling Effect. The current theory
kVSC (Eq. 15) also shows collectiveness of the rate con-
stant modification, originating from the collective cou-
pling between R0 and {Qj} through ĤRPV in Eq. 2, and
the light-matter couplings between qc and {Qj} through

ĤLM (see Eq. 4). We use the spectral density the-
ory to explore the collective effective effect inherent by
the Hamiltonian [29] through the analytic expression of
Jeff(ω), with details provided in Supplementary Note 5.
We consider that N solvent DOF Qj have identical fre-
quency ωQ. When Cj are identical, and there is no disor-
der in the light-matter coupling angles, only the polari-
tonic states show up in Jeff(ω) meaning that the N − 1
dark states present are completely decoupled from the re-
action coordinate and will not affect the rate of reaction.
This can also be understood from a normal mode anal-
ysis approach [29] shown in Supplementary Note 7. As
such, the dark vibrational modes are no longer directly
coupled to R0 and will not influence the rate constant.
When there are certain disorders in Cj and also in cos θj ,
the dark vibrational modes will have a finite spectral den-
sity contribution (see Fig. S5-S6 in Supplementary Note
5), and will gradually diminish the VSC collective effect.

Fig. 5a presents k/k0 with N = 104 at various ΩR.
The overall collective coupling between {Qj} and R0 is
kept fixed at Λ = 1.71 cm−1 (see Eq. 3). Note that

as
√
N always pair up with ηc in kVSC, the results are

thus identical to the case of N = 1 with a much larger
ηc. The theory predicts a sharp resonance suppression
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(a) (b)

(c) (d)

FIG. 5. Collective Effect predicted by the FGR theory.
(a)-(b). k/k0 as a function of (a) the cavity frequency under
different ΩR and (b) numbers of N while the light-matter
coupling per molecule ηc is kept a constant, with identical Cj

for each vibrational mode. The dipole is assumed to be fully
aligned, such that χ = 1. (c) k/k0 as a function of ωc, for a
system with N = 1000, ΩR = 100 cm−1, and χ = 1. Here, we
consider Cj disorder, where the couplings Cj sampled from a
normal distribution with standard deviation σ = ε·0.1 cm−1).
(d) k/k0 for N = 1000, as a function of Cj disorder (σ =
ε·0.1 cm−1) and the angle {φj} between the dipole and cavity
polarization, which are sampled from a uniform distribution
in the range {φj} ∈ [0, π].

when ωc = ωQ, which can not be captured by previous
rate theories [29, 30, 45]. Fig. 5b further present k/k0
as a function of increasing N , while keeping the light-
matter coupling strength ΩR/

√
N constant. The results

present the fundamental scaling relation in Eq. 18. Our
theory demonstrates the same essential feature of the col-
lective coupling effects observed in the experiments [4],
which is the rate constant suppression as increasing the
number of molecules (or concentration of the molecules).
Under the collective coupling regime, the effect scales as
kVSC ∝ 1/N and is caused by the light-matter hybridiza-
tion induced splitting of Jeff(ω). It must be emphasized
that the values of Cj depend on the chemical environment
of the reactive molecule. One usually expects the solvent-
solute coupling involves N ≈ 103−104 molecules [73–75],
which will couple to both R0 and qc. Note that the light-
matter coupling strength per molecule ηc ∝ ΩR/

√
N used

in Fig. 5 is still much larger than the VSC experiments.
Future work is required to fully address the collectiveness
that emerged from coupling at least N = 106 molecules
to the cavity that leads to the rate constant changes.

Fig. 5c-d further explores the effects of having disorders
in Cj , using the exact expression for Jeff(ω) (see Eq. 34).

The exact spectral density under these disorders is pre-
sented in Fig. S6 in Supplementary Note 5. Fig. 5c shows
the cavity frequency dependence of k/k0 for N = 103

at a collective Rabi splitting of ΩR = 100 cm−1. The
values of Cj are taken from a normal distribution with
standard deviation σ = ε · 0.1 cm−1 where the value of
ε will determine the amount of variation in Cj . For all
cases considered here, we ensure that Λ is kept constant.
Further, there is no angle disorder for the light-matter
couplings, such that χ = 1 (c.f. Eq. 11). As one can see,
increasing the disorder in the coupling (increasing ε) de-
creases the cavity effects. This is because adding disorder
to the couplings allows the dark states coupling to R0 to
show up in Jeff(ω) (see Supplementary Note 5, Fig. S6),
thus reducing the cavity effect as these dark modes have
the same frequency as the vibrations outside the cavity.
Nevertheless, the cavity modification effect will survive
with a moderate magnitude of disorder, and the funda-
mental scaling indicated in Eq. 18 is also preserved (see
Fig. S6c in Supplementary Note 5). Fig. 5d shows k/k0
for N = 1000 at resonance for several values of ε and
ΩR = 100 cm−1, with both Cj disorder (satisfies a normal
distribution with σ = ε · 0.1 cm−1) and the random dis-
tribution of the angle between the dipole and cavity field
{φj} ∈ [0, φ], with φ changes from 0 (fully ordered) to
π (isotropic). One can see that with a small Cj disorder,
the collective VSC effect will survive even for a random
disorder of dipole angle for {φj} ∈ [0, 3π/4], due to the
fact that the dark modes have a small contribution in the
spectral density (see Fig. S5 of Supplementary Note 5).
In the previous literature, the conceptual difficulties of
explaining the VSC effects are largely due to the densely
packed dark states that have the same energy as the orig-
inal vibrational excitation [20], which will influence the
rate constant in the same way outside the cavity. Here,
we demonstrate that the extent of the dark states highly
depends on the disorder of the system, where the cavity
is able to modify the reaction rates even in the presence
of such states.

One limitation of the current theory in Eq. 9 is that all
VSC effects will vanish for isotropic disordered dipoles
if there are no correlations among these angle distri-
butions as for fully isotropically distributed dipoles,
⟨cosφ⟩ = 0. This is because kVSC explicitly depends
on χ2 =

∑
ij cosφi · cosφj/N

2, and if one assume that

⟨cosφi · cosφj⟩ = 0 for i ̸= j, χ2 = 3/N . Under these
assumptions, χ2 is negligibly small for a large N , and
the VSC effect vanishes in ΓQ(ω) and R̃(ω) (c.f. Eq. 10
and Eq. 12). Note that Rabi splitting still survives un-
der the isotropic disorder [76], as it only cares about

⟨cos2 φ⟩ = 1/3, and is expected to be 1/
√
3 times smaller

than the fully aligned case. Similarly, it is also a great
challenge for the previous theories [24, 29, 33] to explain
any VSC collective effect when having isotropic disorder
for the molecular dipoles. Nevertheless, in real molecu-
lar systems, one should expect that cosφi and cosφj are
correlated, at least for neighboring molecules due to the
short-range interactions. Further, recent simulations sug-
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gest that strong light-matter coupling can modify inter-
molecular interactions and cause alignment of the molec-
ular dipoles [77]. Further theoretical analysis suggests
that cavity-induced quantum fluctuations lead to many-
body van der Waals interactions, which align intermolec-
ular vectors [78]. All of these theoretical findings suggest
that the χ2 parameter in our theory is not necessarily
zero for realistic systems when coupling molecules inside
the cavity, and future theoretical investigation is needed
to answer this question. Our numerical evaluation of
Jeff(ω) (Eq. 34) also suggests that for a {φj} ∈ [0, 3π/4]
isotropic distribution, the dark modes spectral density
magnitude is still much smaller than polariton peaks,
thus the VSC effects will survive with a moderate an-
gle disorder (see Fig. 5d).

Resonance at the Normal Incidence. The disper-
sion relation of a FP microcavity [6, 18, 79] is

ωk(k∥) =
c

nc

√
k2⊥ + k2∥ =

ck⊥
nc

√
1 + tan2 θ, (20)

where c is the speed of light in vacuum, nc is the refractive
index inside the cavity, c/nc is the speed of the light
inside the cavity, and θ is the incident angle, which is the
angle of the photonic mode wavevector k relative to the
norm direction of the mirrors. For simplicity, we drop nc
throughout this paper [80]. The expression of the many-
mode Hamiltonian is provided in Supplementary Note 9,
Sec. A. When k∥ = 0 (or θ = 0), the photon frequency is

ωc ≡ ωk(k∥ = 0) = ck⊥, (21)

which is the cavity frequency we introduced in Eq. 4.
Experimentally, it is observed that only when ωc = ω0

(or at k∥ = 0, ωk = ωQ, known as the normal inci-
dence condition) will there be VSC effects [2, 10, 81].
For a red-detuned cavity (ωc < ωQ), there are still a fi-
nite number of modes (with a finite value of k∥) to fulfill
the resonance condition ωk = ω0 and generate polariton
states. This is referred to as the oblique incidence, in
which one can observe the splitting of the energy levels
and the formation of polariton states. Surprisingly, there
is no observed VSC effect even though polariton states
are formed at a finite k∥ [2, 6, 10, 17]. Despite recent
theoretical progress [82, 83], there is no widely accepted
theoretical explanation for the VSC effect which happens
only at the normal incidence. Here, we generalize the
single mode expression in Eq. 16 into many modes and
explain the normal incidence condition. In Supplemen-
tary Note 9, we carry out a detailed theoretical analysis.
Our results suggest that by considering many modes, the
FGR rate constant inside a 1D FP cavity (1-dimension
along the k∥ direction) reduces back to the single mode
case, because of the van-Hove-type singularity [84] in the
photonic DOS [49]. As a result, inside a 1D FP cavity,
VSC modification occurs only at the normal incidence
ωc = ω0.

For molecules coupled inside a 2D FP cavity, the FGR

rate constant is expressed as follows

k2DVSC (22)

= 2|∆x|2
∫ ∞

0

dω
Λω2

Q · ωΓ2D
Q (ω) · A0(ω − ω0) · n(ω)

[ω2
Q − ω2 + R̃2D(ω)]2 + [ωΓ2D

Q (ω)]2
,

where Γ2D
Q (ω) and R̃2D(ω) are generalized expressions

when considering a 2D FP cavity

Γ2D
Q (ω) =

2λQ
γQ

+

∫ ∞

ωc

dω̃
F(ω̃) ·Nχ2λ2cω̃

2τ−1
c

(ω̃2 − ω2)
2
+ ω2τ−2

c

, (23a)

R̃2D(ω) (23b)

=

∫ ∞

ωc

dω̃
F(ω̃) ·Nχ2λ2cω

2

(ω̃2 − ω2)
2
+ ω2τ−2

c

· (ω2 − ω̃2 + τ−2
c ).

In the above expressions, λc =
√

1/(ϵ0V) is the cavity
frequency independent coupling strength (c.f. Eq. 5),
and the weighting factor F(ω) is expressed as

F(ω) =
1

Zeff

π

(c∆k∥)2
· τ−1

c ωe−βℏω

τ−1
c + τ−1

∥ (ω)
, (24)

and τ∥(ω) = D
√
k2⊥ + k2∥/(c · k∥) = ωD/

[
c
√
ω2 − ω2

c

]
accounts for the effective photon lifetime due to propa-
gation in the in-plane direction [49] within a mode area
with diameter D. Detailed derivations are provided in
Supplementary Note 9. The cavity frequency at the nor-
mal incidence (k∥ = 0), ωc implicitly shows up in the

expressions of Γ2D
Q and R̃2D (see Eqs. 23a-23b) as the

lower bound of the
∫
dω̃ integral, due to the photonic

DOS only has a finite value when ωk ≥ ωc (or |k∥| ≥ 0).

The rate constant expression k2DVSC (Eq. 22) is the
third key result of this paper. A careful exam of
k2DVSC(ωc) in Eq. 22 reveals that the maximum suppres-
sion of k/k0 indeed happenes at the normal incidence.
Note that F(ω) in Eq. 24 takes a sharp maximum at
k∥ = 0 and decays quickly when k∥ increases, because

τ−1
∥ increases quickly as k∥ increases [49]. This means

that for a 2D cavity, which is used in most VSC exper-
iments, the magnitude of the VSC modification maxi-
mizes around ωk(k∥ = 0) = ωc = ωQ, leading to the
largest suppression of k/k0. Eq. 22 thus explains the
normal incidence condition for rate constant suppression.
Our theory, k2DVSC in Eq. 22 thus successfully explains (1)
resonance condition, (2) normal incidence condition and
operates under the (3) collective coupling regime and (4)
thermally activated condition.
Fig. 6 presents the VSC-suppressed rate constant us-

ing the FGR expression (Eq. 16) under different Rabi
splitting ΩR values and the cavity lifetime is τc = 500 fs.
Here, we consider the molecule coupled inside (a) a 1D
FP cavity and (b) a 2D FP cavity. Fig. 6a presents the
results of k/k0 value using Eq. 16 (dashed line) or nu-
merically evaluating the frequency integral related to the
photonic DOS (solid line), see Supplementary Note 9 for
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(a) (b)

FIG. 6. Normal Incidence effect for an 1D and 2D
FP cavity. FGR rate profiles of k/k0 as a function of ωc,
where the cavity lifetime is τc = 500 fs. Results under various
light-matter coupling strengths are presented. (a) FGR rate
profiles inside a 1D FP cavity. (b) FGR rate profiles for many
mode cases inside a 2D FP cavity.

details (numerically evaluate the integral in Eq. S126).
The result is visually (near) identical to the single-mode
case due to the van-Hove-type singularity in the 1D DOS,
depicted in the dashed curve. Fig. 6b presents k/k0 for
many Qj DOF coupled to many modes inside a 2D FP
cavity, using Eq. 8 with α = 0.7, and the k2DVSC expres-
sion in Eq. 22, with the parameter D = 3.33 µm, which
is a typical value estimated [49] from the VSC experi-
ments [58]. The numerical integration in Eq. 22 is eval-
uated using trapezoidal integration, with the numerical
details provided in Supplementary Note 9. One can see
that the resonance peak is still sharply centered around
ωc = ωQ, where ωc is the normal incidence frequency in a
2D FP cavity. Compared to the single mode or 1D case
(Fig. 6a), the k/k0 distribution is slightly red-shifted,
and the resonance peak is asymmetric as it tails toward
the lower energy regions (ωc < ω0), which is a predic-
tion form the current theory k2DVSC (Eq. 22). In recent
VSC experiments by Simpkins [10], it does seem that the
ωc < ω0 side has a longer tail than the ωc > ω0 side of the
action spectrum (see Fig. 3A of Ref. 10). However, this
seemingly asymmetrical rate constant profile in Ref. 10
could be caused by a lack of experimental data points for
a blue-tuned cavity (ωc > ω0) due to the experimental
difficulty of obtaining such measurements. More experi-
mental data are required to test this trend.

To summarize, we present a microscopic mechanism
and analytic rate theory that explain resonance VSC sup-
pression of the rate constant under the normal-incidence
condition, collective light-matter coupling, and thermally
activated regime. In this mechanism, the cavity mode
qc is coupled to the solvent vibrations {Qj}, which in
turn coupled to a reaction coordinate R0. This collective
coupling can significantly influence the reaction rate con-
stant of the reaction coordinate. For the model reaction
considered in this work, the reactant vibrational excita-
tion |νL⟩ → |ν′L⟩ is the rate-limiting step and thus con-
trols the overall apparent rate constant. In the current
mechanism (Eq. 7), coupling to the cavity explicitly splits

the effective solvent spectral density that influences the
dynamics of reaction coordinate (see Fig. 2b), and thus
reduces the thermal activation rate k1, hence reducing
the overall apparent rate constant.

For a single molecule coupled to a single mode cav-
ity, the theory kVSC (Eq. 16) explains (i) a sharp reso-
nance suppression behavior [1, 10] at ωc = ωQ (Fig. 2);
(ii) non-linear scaling [1, 4] of k/k0 with respect to ΩR

(Fig. 3a), as well as the non-linear scaling [1, 4] of ∆∆G‡

with respect to ΩR; (iii) modification of both effective
activation Entropy and Enthalpy [4] (Fig. 3b). (iv) The
null effect [70, 71] because of a very low reaction barrier
(Fig. 4), such that the mechanistic in Eq. 7 no longer
hold. The analytic theory (using Eq. 8) agrees very well
with the numerically exact simulations for all cases.

The theory kVSC (Eq. 16) explains the collective ef-
fect, where both the collective solvent-solute coupling Λ
as well as the collective light-matter coupling ΩR show up
in the rate constant expression. When there are no dis-
orders for light-matter couplings (χ = 1) and all Qj −R0

couplings Cj are identical, the dark vibrational modes are
completely decoupled from R0, thus not influence the re-
action rate constant anymore. We found that a distri-
bution of the Cj couplings and the angle (φj) between
the molecular dipole and the cavity field will determine
the impact of the dark states on the rate, and the dark
vibrational modes will not dominate the spectral density
Jeff(ω) with a moderate distribution of Cj and when the
light-matter interaction angles {φj} ∈ [0, π/4] with an
isotropic distribution. Beyond that, the magnitude of
the dark modes’ spectral density dominates over the po-
lariton peaks (see Supplementary Note 5) and the rate
constant is reduced back to the outside cavity case (i.e.,
VSC effect diminished).

Including many cavity modes that obey an FP cavity
dispersion, we generalized the theory of kVSC (Eq. 16) to
a many-mode version that explains the normal-incidence
condition (Fig. 6). This is because, for a 2D FP cavity,
the finite in-plane momentum of the mode effectively de-
creases the effective lifetime of the thermal photon in a
given mode volume. This leads to a sharp resonance at
ωc = ωQ when k∥ = 0. All of the above discoveries bring

to a potential first microscopic theory k2DVSC in Eq. 22,
which successfully explains all observed phenomena in
VSC experiments so far, including (1) The resonance ef-
fect ωc = ωQ, (2) the normal incidence effect, where the
VSC effect only happens at k∥ = 0, and operate under
(3) collective coupling condition and (4) the thermal ac-
tivation regime.

The theory (Eq. 16 or Eq. 22) has several interest-
ing predictions that can be checked experimentally. (a)
The magnitude of the VSC effect on rate constant scales
(Eq. 18) as Ω2

R or N , which should be experimentally
verified with more data points that can reliably produce
the scaling. (b) For two chemically similar reactions, if
one operates under the mechanism in Eq. 7 and satis-
fies k1 ≪ k2, k3 but the other does not (due to the low
reaction barrier), then the current theory predicts that
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there will be a VSC effect for the first reaction but not for
the second one. (c) Based on k2DVSC (Eq. 22), the action
spectrum should have a longer tail at the red frequency
(ωc < ωQ).

With the current theory, we recommend future ex-
perimental investigations to focus on (1) confirming the
scaling relation of k/k0 with respect to ωR (or N) with
more data points. (2) confirming potentially null VSC
results in the alcoholysis reaction between 2,4-toluene-
diisocyanate and chloraldhydrate due to its low bar-
rier [72], which will greatly inform the VSC mecha-
nism, given that the similar alcoholysis reaction between
phenylisocyanate and cyclohexanol has shown VSC res-
onance suppression effects [10]. (3) More data points on
the cavity frequency dependence of k/k0 to provide the
shape of the action spectrum , and (4) control the dipole
orientations [85, 86] (so one can control χ in Eq. 11) and
measure the corresponding VSC effects.

METHODS

Model Hamiltonian. We use a double-well (DW)
potential to model the ground state chemical reac-
tion [56, 87]

V (R̂) = −Mω2
b

2
R̂2 +

M2ω4
b

16E‡ R̂
4, (25)

where M = 1836 a.u., ωb = 1000 cm−1 is the barrier
frequency, and E‡ = 2250 cm−1 is the barrier height.
For the matter Hamiltonian ĤM = T̂ + V̂ , the vibra-
tional eigenstates |νi⟩ and eigenenergies Ei are obtained

by solving ĤM|νi⟩ = Ei|νi⟩ numerically using the discrete
variable representation (sinc-DVR) basis [88] with 1001
grid points in the range of [−2.5, 2.5]. To facilitate the
mechanistic studies, we diabatize the two lowest eigen-
states and obtain two energetically degenerate diabatic
states

|νL⟩ =
1√
2

(
|ν0⟩+ |ν1⟩

)
, |νR⟩ =

1√
2

(
|ν0⟩ − |ν1⟩

)
, (26)

both with energies of E = (E1+E0)/2 and a small tunnel-
ing splitting of ∆ = (E1−E0)/2 ≈ 1.025 cm−1. Similarly,
for the vibrational excited states {|ν2⟩, |ν3⟩}, we diaba-
tize them and obtain the first excited diabatic vibrational
states in the left and right wells as follows

|ν′L⟩ =
1√
2

(
|ν2⟩+ |ν3⟩

)
, |ν′R⟩ =

1√
2

(
|ν2⟩ − |ν3⟩

)
, (27)

with degenerate diabatic energy of E ′ = (E3+E2)/2 and
a tunneling splitting of ∆′ = (E3 −E2)/2 ≈ 47.68 cm−1.
A schematic representation of these diabatic states is pro-
vided in Fig. 1d. Based on the two diabatic states |νL⟩
and |ν′L⟩ in the left well, we define the quantum vibration
frequency of the reactant as

ω0 ≡ E ′ − E = 1189.7 cm−1, (28)

which is directly related to the quantum transition of
|νL⟩ → |ν′L⟩.
Further, Ĥν in Eq. 1 is the system-bath Hamiltonian

where each matter DOF is linearly coupled to a set of
dissipative phonon bath modes

Ĥν =
1

2

∑
i

[
p̂2i + ω2

i

(
x̂i −

ci
ω2
i

R̂0

)2]
(29)

+
1

2

∑
j,ζ

[
p̂2j,ζ + ω2

j,ζ

(
x̂j,ζ −

cj,ζ
ω2
j,ζ

Qj

)2]
,

where the frequencies (ωi, ωζ) and couplings (ci, cζ) are
defined from the spectral density function as follows

J0(ω) ≡
π

2

∑
i

c2i
ωi
δ(ω − ωi) =

2λ0γ0ω

ω2 + γ20
, (30a)

JQ(ω) ≡
π

2

∑
ζ

c2ζ
ωζ
δ(ω − ωζ) =

2λQγQω

ω2 + γ2Q
. (30b)

We use Drude-Lorentz model spectral density, with γ0 =
200 cm−1, γQ = 6000 cm−1 for the bath characteristic
frequencies and λ0 = 83.6 cm−1, λQ = 0.147 cm−1 for the
reorganization energies, similar to the previous work [41].
Finally, the cavity mode interacts with the outside cav-

ity electromagnetic field that acts as a bath for the cavity
mode, thus describing the cavity loss

Ĥloss =
1

2

∑
υ

[
p̂υ + ω2

υ

(
x̂υ − cυ

ω2
υ

q̂c

)2 ]
, (31)

where the couplings (cυ) and frequencies (ωυ) are sam-
ple from the photon-loss bath spectral density Jloss(ω) ≡
(π/2)

∑
υ(c

2
υ/ωυ)δ(ω−ωυ) = (ω/τc) exp(−ω/ωm), where

τc is the cavity lifetime [47], and we had assumed that
photon loss satisfies strict Ohmic dissipation. In other
words, as the cutoff frequency ωm → ∞, the photon bath
dynamics reach the Markovian limit [47, 89]. A detailed
discussion can be found in Ref. [47].
Rate Constant Calculations. We use hierarchical

equations of motion (HEOM) to simulate the population
dynamics and obtain the VSC-modified rate constant, see
details in Supplementary Note 1-3. Here, we treat ĤM as
the quantum subsystem and represent it using the vibra-
tional eigenstates {|ν0⟩, |ν1⟩, ...}, and the rest terms in the
Hamiltonian are treated as the bath in HEOM, see details
in Supplementary Note 2. The population dynamics of

the “reactant” is computed as PR(t) = TrS[(1− ĥ)ρ̂S(t)],
where the trace TrS is performed along the system DOF,

and ĥ = h(R̂0−R‡) is the Heaviside operator with R‡ = 0

as the dividing surface for the model potential V (R̂) (in
Eq. 25). The forward rate constant is obtained by eval-
uating [41, 47]

k = − lim
t→tp

ṖR(t)

PR(t) + χeq · [PR(t)− 1]
, (32)
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where χeq ≡ PR/PP denotes the ratio of equilibrium pop-
ulation between the reactant and product. For the sym-
metric double potential model considered in this work,
χeq = 1. The limit t → tp represents that the dynamics
have already entered the rate process regime (linear re-
sponse regime) and tp represents the “plateau time” of
the time-dependent rate which is equivalent to a flux-side
time correlation function formalism [25, 47]. Details of
the simulations are provided in Supplementary Note 3.

For the FGR-based theory, we use the value of the
k0 (outside the cavity rate constant) obtained from the
HEOM simulation and report k/k0 ≈ kD/k0+α·kVSC/k0,
where the α = 0.7 is an ad hoc re-scaling factor needed
to bring the value of FGR rate constant to the consistent
range with the HEOM results for outside cavity situation
when ηc = 0 It is kept fixed for all the results (and for
any finite value of ηc) presented in this work.

General expression for Jeff(ω). We performed a
normal mode analysis on the Hamiltonian presented in
Eq. 1. This analysis is carried out by performing a
Fourier transformed on the classical equations of motion
(∂H/∂Ri), which are solved to obtain

K(ω)R0(ω) = V ′
ω(R0(ω)), (33)

where R0(ω) and V
′
ω(R0(ω)) are the Fourier transformed

reaction coordinate and ∂V (R0)/∂R0. The effective
spectral density is given by the branch cut of K(ω) on
the complex plane

Jeff(ω) = lim
ϵ→0+

Im[K(ω − iϵ)] = Im
[
CTM−1C

]
(34)

where ω ∈ R, C is the vector containing the Qj − R0

couplings and M−1 is the inverse of the matrix contain-
ing the light-matter couplings and bath couplings to the
{Qj} modes, with the following expression

M =

ω
2
1 + P1(ω) + ψ(ω)ν21 · · · ψ(ω)νNν1

...
. . .

...
ψ(ω)ν1νN · · · ω2

N + PN (ω) + ψ(ω)ν2N


(35)

where ωj is the frequency of Qj , νj =
√

2
ωc
ηj · cosφj .

Finally, Pj(ω) and ψ(ω) are associated with the phonon
baths of the RPV modes and the cavity loss, respectively,
according to

Pj(ω) = −ω2 − 2λQ,jω

ω + iγQ,j
(36a)

ψ(ω) =
ω2
cL(ω)

ω2
c + L(ω)

(36b)

and L(ω) = −ω2 − iτ−1
c ω. A detailed derivation and

numerical evaluation of Eq. 34 are provided in Supple-
mentary Note 5.
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